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● Two related methods to analyze the space-like separated fields with Large 
Momentum Effective Theory or Short Distance Factorization to obtain PDFs

● LaMET/SDF and the PDF
○ LaMET: factorization relation and power expansion with respect to large momentum scale 

○ SDF: factorization relation and power expansion with respect to short distance scale

● Wilson Line Operator matrix element

○ Lorentz Composition

LaMET and SDF

V. Braun and D. Müller (2007) 0709.1348
A. Radyushkin (2017) 1705.01488
Y. Q. Ma and J. W. Qiu (2017) 1709.03018

X. Ji (2013) 1305.1539

B. Musch et al (2010) 1011.1213 3



LaMET and SDF
● Two related methods to analyze the space-like separated fields with Large 

Momentum Effective Theory or Short Distance Factorization to obtain PDFs
● LaMET and SDF

○ LaMET: factorization and power expansion with respect to large momentum scale 

○ SDF: factorization and power expansion with respect to short distance scale

● SDF begins with the OPE with a short distance scale
○ Power corrections are ordered by twist
○ The SDF’s leading twist kernel is related to LaMET’s kernel by integral formula.

● Known to                                                     

V. Braun and D. Müller (2007) 0709.1348
A.Radyushkin (2017) 1705.01488
Y. Q. Ma and J. W. Qiu (2017) 1709.03018
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The Reduced distribution and normalization

● The pseudo-ITD is subject to many systematic errors
○ Lattice spacing, higher twist, incorrect pion mass, finite volume

● A ratio can remove renormalization constants and the low Ioffe time 
systematic errors
○ Avoids additional gauge fixed RI-Mom calculations

○ Is a renormalization group invariant quantity, guaranteeing finite continuum limit (no power 
divergences)

● New ratio method with non-zero momentum could remove different HT errors

A.Radyushkin (2017) 1705.01488
T. Izubuchi (2020) 2007.06590
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Systematic errors of Lattice PDFs

● Pion mass
○ Just use correct values (duh!)
○ Extrapolate PDF to physical pion mass

● Finite Volume
○ Calculate size of effects in a model theory

○ Parameterize unknown functional dependence
● Lattice Spacing

○ Parameterizing unknown functional dependence

○ Interpolate data at fixed hard scale and extrapolate continuum limit

● Power Corrections
○ LaMET
○ SDF and Lattice Cross Sections
○ OPE without OPE and Hadronic Tensors

● Inverse Problems
○ Get to these later 6

C. Alexandrou et al (2020) 2011.00964
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Continuum limits of other Lattice PDFs
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Systematic Errors in pion pseudo-ITD fits

● Our data is subject to systematic errors from many sources
○ Higher twist, finite lattice spacing, unphysical pion mass, finite volume

● First matching is applied applied to the data to remove              dependence 

 

Parameterizations of these corrections are fit to the ITD
○ Reduced pseudo-ITD corrections begin at
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Systematic Errors in LCS in fits

● Our data is subject to systematic errors from many sources
○ Higher twist, finite lattice spacing, unphysical pion mass, finite volume
○ Expect to be larger than the pseudo-ITD due to lack of ratio

● Data does not have precision for identifying DGLAP              behavior. 

● Parameterizations of these corrections are fit to the LCS
○ LCS corrections begin at
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Inverse Problem Solutions for Lattice PDFs

● Parametric
○ Fit a phenomenologically motivated function

■ Method used by most pheno extractions
■ Potentially significant, but controllable model dependence

○ Fit to a neural network
■ Machine learning is hip
■ Expensive tuning procedure

● Non-Parametric
○ Backus-Gilbert

■ No model dependence, one tunable parameter
○ Bayesian Reconstruction

■ Very general, Bayesian statistics has systematics included in meaningful way
○ Bayes-Gauss-Fourier transform

Y. Burnier and A. Rothkopf (2013) 1307.6106, J. Liang et al (2019) 1906.05312

J. Liang, K-F. Liu, Y-B. Yang (2017) 1710.11145

S. Forte, L. Garrido, J. Latorre, A. Piccione  (2002) 0204232

C. Alexandrou, G. Iannelli, K. Jansen, F. Manigrasso (2020) 2007.13800

JK, K. Orginos, A. Rothkopf, S. Zafeiropoulos  (2019) 1901.05408
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Unknown functions

● Want to determine a continuous unknown function from the data
● Lattice systematic errors

○ Lattice spacing is the only one used in this study

● Power Corrections

● Factorization of the PDF
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Jacobi Polynomials

● Orthogonal set of Polynomials
○ Textbook orthogonality relationship

● Change variables for more useful metric and integration range:
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Jacobi Polynomial parameterizations

● Parameterize unknown functions

○ Example: PDFs

● How to Fourier transform of this parameterization

13



Jacobi Polynomial parameterizations
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● Decays to 0 with Ioffe time
● Large     only at large Ioffe time if coefficients are small



Jacobi Polynomial parameterizations

● Including the factorization kernel

● Parameterize leading twist pseudo-ITD instead of ITD
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Jacobi Polynomial parameterizations
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● Remains small function Ioffe time, generating small perturbative corrections at 
NLO

● Future work will expand to NNLO



● The normalization of the unknown functions is governed by the 
coefficients

○ Nuisance terms will have no             terms 

● With infinite terms, all     and      can parameterize the PDF

○ In that limit,      and       lose their meaning and cannot distinguish large or small    behavior

● At truncated number of terms,     and     can be fit to find optimal parameters 
for that truncation, given that it is common between all terms

● Relationship between linear coefficients and moments

Jacobi Polynomial parameterizations
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Jacobi Polynomial parameterizations

● Final functional form

●

18
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Bayesian Fits

● Standard     minimization, but with modified function 

● Prior Distributions
○ Uniform distribution within bounds
○ Normal distribution
○ Log-Normal distribution

● Additional terms are designed to push weakly push the maximum probability 
to “reasonable” values 19



Variable Projection

● Fitting a linear combination of non-linear 
functions can be accelerated using 
Variable Projection (VarPro)

● Only Non-linear parameters needed in 
iterative non-linear minimization

● Linear parameters are minimized 
analytically

● After defining model only     and       
are minimized

● Reducing number of parameters in 
non-linear fit dramatically improves 
stability

● Ratio with non-zero momenta cannot 
use VarPro 20



Lattice ensembles
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● E5 and N5 were generated as part of CLS collaboration
● Ã5 was generated for this study
● Three lattice spacings for lattice spacing dependence
● Fixed pion mass
● Will ignore the difference between physical volumes until future work

P. Fritzsch et al (2012) 1205.5380



Obtaining Matrix Elements

● Used combination of summation and generalized eigenvalue problem 
methods (sGEVP) to control excited state contamination

○ 3 operators only gives slight improvement
○ Used 3 momentum smearing parameters and 2 types of smearing the sink interpolator field 

(point and gaussian)
○ Whichever of the 6 correlators had sufficient signal were used within the fit, dropping the 

largest momentum smearing parameter results for fits to small momenta data and the smallest 
momentum smearing parameter results for fits to the large momenta data

● Estimated systematic error from fitting matrix elements by varying minimum 
Euclidean time

22
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Reduced Matrix Elements
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Prior Distribution parameters

● Non-linear parameters
○ Log-Normal distribution

● Linear PDF parameters
○ Normal distribution

● Linear nuisance parameters
○ Normal distribution
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Chi squared of fits
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Minimalist parameterization

● Philosophy- The best models are those with the fewest number of parameters 
and steps should be taken to avoid overfitting

● Parameters should be added if they improve the     or      significantly, and 
avoided otherwise.

● PDF terms

●      terms

● No other nuisance terms
26



Minimalist parameterization
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Adding more parameters

● Expectations of effects on    and       of various data
○ Low Ioffe time data is generally more precise than large Ioffe time data
○ Large       data has large errors from signal-to-noise ratio of correlation functions
○ Large     data has large errors from requiring ratio to remove exponentially decaying 

renormalization constant
○ Ratio cancels nuisance terms in low Ioffe time limit, assuming their coefficients are small

●    effects are strongest at small   , at low Ioffe time, which have more 
precision, but their size is suppressed by the ratio

○ Could have larger effects on      and        due to precision 

●    effects are strong where data has less precision at larger Ioffe times

●           effects could be strong in any regime
28



Chi squared of fits
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Study varying parameters
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Studying nuisance terms

● Calculating all possible nuisance terms will allow us to see expected size of 
systematic errors

● Parameters whose distribution seems to match the prior distribution are not 
being controlled by the data

○ Removal of them should not effect      only 

● If priors are uncorrelated, parameters which are dominated by priors will be 
uncorrelated to other parameters

31



Study nuisance terms
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Study nuisance terms
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Fit results
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Correlations between parameters

● Parameters which are only controlled by prior distributions will not be 
correlated to other parameters
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AICc averaging

● Akaike Information Criteria (AIC)
○ Adds weight to disfavor models with too many parameters

● Corrected AIC (AICc)
○ Used when few number of datapoints compared to number of parameters

● Weighted average to determine expectation values of observables
○ Ideally, averages away model biases

36

R. Zhang et al (2020) 2005.13955
H.-W. Lin et al (2020) 2011.14971



AICc averaging

● Use a range of models for the AICc weighted average

● To average away model biases, sufficiently many distinct models are required

● Undesirable models could be removed, or their large AICc will exponentially 
suppress them in the weighted average

● For this study will use models with
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Averaged Results
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Review

● Identify the systematic errors which your data is sensitive to
○ Higher twist, lattice spacing errors

● Define a function which parameterizes the systematic error
○ Define functions of series of Jacobi polynomials multiplying their orthogonality relationship’s 

metric function

● Choose a set of prior distributions for your parameters
○ Normal distributions for the linear coefficients
○ Log-Normal distributions for the non-linear

● Vary parameterizations and priors to study model dependence and overfitting

● Use AICc to create a weighted average of believable models
39



Conclusions and Outlook

● Jacobi polynomial parameterizations allow for a systematically controlled 
determination of the PDF

○ With more ensembles, other systematics can be included in the same fashion
○ Pion mass dependence, finite volume, perturbative truncation
○ Can be used with different observables

● Parameterizing in     space allows for Ioffe time functions which decay to 0 at 
large Ioffe time

○ Also avoids intermediate matching between pseudo-ITD and ITD in our previous works
● We have studied a range of the number of parameters to attempt to handle 

model dependence with AIC/AICc averaging
○ Truly distinct models, parametric and non-parametric, are required to completely remove 

remaining model dependent biases
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Extra slides
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Studying Prior Distributions

● Prior distributions must be chosen to not introduce significant biases 

● If prior distributions are creating significant biases, then     and       will differ

● Increasing(decreasing) widths of prior distributions will generally 
increase(decrease) both     and
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Studying Prior Distributions

● Prior distributions must be chosen to not introduce significant biases 
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Studying Prior Distributions

● Prior distributions must be chosen to not introduce significant biases 
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Studying Prior Distributions

● Prior distributions must be chosen to not introduce significant biases 
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