QCD factorization for quasi－parton distributions at twist－three level

Alexey Vladimirov
（Regensburg University）
in collaboration with Y．Ji \＆V．Braun

Universităt Regensburg

This talk is based on

- [2103.12105] (JHEP 05 (2021) 086) V.Braun, Y. Ji, AV "QCD factorization for twist-three axial-vector parton quasidistributions"
- [2108.03065] V.Braun, Y. Ji, AV "QCD factorization for chiral-odd parton quasi- and pseudo-distributions"
I am going to present you the factorization theorem for twist-3 quasidistributions and discuss how one can extract twist- 3 distributions from them.

Outline

- What are twist-three distributions
- Quasi Ioffe-time distributions (qITDs) and factorization theorem for them
- From qITDs to pPDFs and qPDFs
- How to access twist-3 distribution

Disclaimer:

It is a purely theoretical talk \Rightarrow many formulas \Rightarrow easy to get lost Ask questions!

Everyone knows twist-2 distributions: $\{q, \delta q, \Delta q\}$ or $\left\{f_{1}, g_{1}, h_{1}\right\}$ What about twist-3 distributions?

- There is a terminological ambiguity.
[Jaffe,Ji,Nucl.Phys.B 92]

$$
\begin{align*}
\int \frac{\mathrm{d} \lambda}{2 \pi} & \mathrm{e}^{i \lambda x}\langle P S| \bar{\psi}(0) \gamma_{\mu} \gamma_{5} \psi(\lambda n)|P S\rangle \\
& \equiv 2\left[g_{1}(x) p_{\mu}(S \cdot n)+g_{\mathrm{T}}(x) S_{\perp \mu}+M^{2} g_{3}(x) n \cdot S n_{\mu}\right] \tag{3}
\end{align*}
$$

where we have written $S_{\mu}=S \cdot n p_{\mu}+S \cdot p n_{\mu}+S_{\perp \mu}$. These distribution functions, $g_{1}(x), g_{\mathrm{T}}(x) \equiv g_{1}(x)+g_{2}(x)$, and $g_{3}(x)$, contribute to a hard process at order $g_{1}(x), g_{\mathrm{T}}(x) / Q, g_{3}(x) / Q^{2}$ and hence are twist-two, three and four, respectively. Typically a distribution function of twist- t appears in physical observables with coefficient powers of $(1 / Q)^{t-2},(1 / Q)^{t-1}$, etc. Thus there appears to be some ambiguity in the definition of higher-twist $(t>2)$ structure functions. For example, either $g_{2}(x)$ or $g_{\mathrm{T}}(x)=g_{1}(x)+g_{2}(x)$ can be a useful measure of transverse spin in deep inelastic scattering depending on the circumstances. A light-cone operator product expansion provides a formal and powerful way of isolating "irreducibly" higher-twist parts of higher-twist structure functions. This method will be applied to cases of interest in subsect.

Everyone knows twist-2 distributions: $\{q, \delta q, \Delta q\}$ or $\left\{f_{1}, g_{1}, h_{1}\right\}$ What about twist-3 distributions?

$$
\begin{align*}
& \int \frac{\mathrm{d} \lambda}{2 \pi} \mathrm{e}^{i \lambda x}\langle P S| \bar{\psi}(0) \gamma_{\mu} \psi(\lambda n)|P S\rangle \equiv 2\left[f_{1}(x) p_{\mu}+M^{2} f_{4}(x) n_{\mu}\right] \\
& \int \frac{\mathrm{d} \lambda}{2 \pi} \mathrm{e}^{i \lambda x}\langle P S| \bar{\psi}(0) \gamma_{\mu} \gamma_{5} \psi(\lambda n)|P S\rangle \\
& \equiv 2\left[g_{1}(x) p_{\mu}(S \cdot n)+g_{\mathrm{T}}(x) S_{\perp \mu}+M^{2} g_{3}(x) n \cdot S n_{\mu}\right] \\
& \int \begin{aligned}
\mathrm{d} \lambda \\
2 \pi \\
\mathrm{e}
\end{aligned} \\
& \left.\begin{array}{rl}
i \lambda x
\end{array} P S|\bar{\psi}(0) \psi(\lambda n)| P S\right\rangle \equiv 2 M e(x)
\end{aligned} \quad \begin{aligned}
& \mathrm{d} \lambda \\
& 2 \pi \mathrm{e}^{i \lambda x}\langle P S| \bar{\psi}(0) \sigma_{\mu \nu} i \gamma_{5} \psi(\lambda n)|P S\rangle \equiv \\
& 2\left[h_{1}(x)\left(S_{\perp \mu} p_{\nu}-S_{\nu \perp} p_{\mu}\right) / M\right. \\
&\left.+h_{3}(x) M\left(S_{\perp \mu} n_{\nu}-S_{\perp \nu} n_{\mu}\right)\right] \tag{5}
\end{align*}
$$

Everyone knows twist-2 distributions: $\{q, \delta q, \Delta q\}$ or $\left\{f_{1}, g_{1}, h_{1}\right\}$ What about twist-3 distributions?

$$
\begin{align*}
& \left.\left.\int \frac{\mathrm{d} \lambda}{2 \pi} \mathrm{e}^{i \lambda x}\langle P S| \bar{\psi}(0) \gamma_{\mu} \psi(\lambda n)|P S\rangle \equiv 2 f_{1}(x)\right)_{\mu}+M^{2} f_{4}(x) n_{\mu}\right] \text { twist-2 } \\
& \int \frac{\mathrm{d} \lambda}{2 \pi} \mathrm{e}^{\mathrm{i} \lambda x}\langle P S| \bar{\psi}(0) \gamma_{\mu} \gamma_{5} \psi(\lambda n)|P S\rangle \\
& \equiv 2 \underbrace{}_{1}(x) p_{\mu}(S \cdot n)+g_{\mathrm{T}}(x) S_{\perp \mu}+M^{2} g_{3}(x) n \cdot S n_{\mu}] \\
& \int \frac{\mathrm{d} \lambda}{2 \pi} \mathrm{~m}^{i \lambda x}\langle P S| \bar{\psi}(0) \psi(\lambda n)|P S\rangle \equiv 2 M e(x) \\
& \begin{aligned}
& \int \frac{\mathrm{d} \lambda}{2 \pi} \mathrm{e}^{i \lambda x}\langle P S| \bar{\psi}(0) \sigma_{\mu \nu} i \gamma_{5} \psi(\lambda n)|P S\rangle \equiv 2(\underbrace{}_{1}(x)\left(S_{\perp \mu} p_{\nu}-S_{\nu \perp} p_{\mu}\right) / M \\
&+h_{L}(x) M\left(p_{\mu} n_{\nu}-p_{\nu} n_{\mu}\right)(S \cdot n) \\
&\left.+h_{3}(x) M\left(S_{\perp \mu} n_{\nu}-S_{\perp \nu} n_{\mu}\right)\right], ~(5)
\end{aligned}
\end{align*}
$$

Universitãt Regensburg

Everyone knows twist-2 distributions: $\{q, \delta q, \Delta q\}$ or $\left\{f_{1}, g_{1}, h_{1}\right\}$ What about twist-3 distributions?

$$
\begin{aligned}
& \text { [Jaffe,Ji,Nucl.Phys.B 92] }
\end{aligned}
$$

$$
\begin{align*}
& \int \frac{\mathrm{d} \lambda}{2 \pi} \mathrm{e}^{i \lambda x}\langle P S| \bar{\psi}(0) \gamma_{\mu} \gamma_{5} \psi(\lambda n)|P S\rangle \quad \text { twist-3 } \\
& \left.\equiv 2 g_{1}(x) p_{\mu}(S \cdot n)+g_{\mathrm{T}}(x) S_{\perp \mu}+M^{2} g_{3}(x) n \cdot S n_{\mu}\right] \\
& \int \frac{\mathrm{d} \lambda}{2 \pi} \mathrm{e}^{\mathrm{i} \lambda x}\langle P S| \bar{\psi}(0) \psi(\lambda n)|P S\rangle \equiv 2 M e(x) \\
& \int \frac{\mathrm{d} \lambda}{2 \pi}{ }^{\mathrm{i} \lambda x}\langle P S| \bar{\psi}(0) \sigma_{\mu \nu} i \gamma_{5} \psi(\lambda n)|P S\rangle \equiv 2 h_{1}(x)\left(S_{\perp \mu} p_{\nu}-S_{\nu \perp} p_{\mu}\right) / M \\
& +\left(h_{L}(x) M\left(p_{\mu} n_{\nu}-p_{\nu} n_{\mu}\right)(S \cdot n)\right. \\
& \left.+h_{3}(x) M\left(S_{\perp \mu} n_{\nu}-S_{\perp \nu} n_{\mu}\right)\right] \text {, } \tag{5}
\end{align*}
$$

I am going to discuss "quasi"-analogs of twist-3 $g_{T}(x), e(x)$ and $h_{L}(x)$ in terms of "formal" twist-3 distributions

Formal definition of the twist \Rightarrow geometrical twist $=$ dimension - spin Defined for the local operators

$$
\begin{aligned}
\bar{q}(z) \gamma^{\mu}[z, 0] q(0) & =\sum_{n=0}^{\infty} \frac{z_{\mu_{1}} \ldots z_{\mu_{n}}}{n!} O^{\mu \mu_{1} \ldots \mu_{n}} \\
O^{\mu_{1} \ldots \mu_{n}} & =\bar{q} \gamma^{\mu_{1}} D^{\mu_{2}} \ldots D^{\mu_{n}} q \longleftarrow
\end{aligned} \begin{aligned}
& \text { A Lorentz tensor } \\
& \text { Sort it over irr.rep. }
\end{aligned}
$$

Universitãt Regensburg

Formal definition of the twist \Rightarrow geometrical twist $=$ dimension - spin Defined for the local operators

$$
\begin{array}{c}
\bar{q}(z) \gamma^{\mu}[z, 0] q(0)=\sum_{n=0}^{\infty} \frac{z_{\mu_{1}} \ldots z_{\mu_{n}}}{n!} O^{\mu \mu_{1} \ldots \mu_{n}} \\
O^{\mu_{1} \ldots \mu_{n}}=\bar{q} \gamma^{\mu_{1}} D^{\mu_{2}} \ldots D^{\mu_{n}} q \& \\
O^{\mu \nu}=\underbrace{\left.\frac{O^{\mu \nu}+O^{\nu \mu}}{2}-\frac{g^{\mu \nu}}{4} O_{\rho}^{\rho}\right]}_{\text {spin }=2}+\underbrace{\text { Sort it over irr.rep. }}_{\text {A Lorentz tensor }} \\
\left.\frac{O^{\mu \nu}-O^{\nu \mu}}{2}\right]
\end{array}+\underbrace{\frac{g^{\mu \nu}}{4} O_{\rho}^{\rho}}_{\text {spin }=1} \leftarrow-\begin{array}{l}
\text { 2-index } \\
\text { example }
\end{array}] .
$$

Universităt Regensburg

Formal definition of the twist \Rightarrow geometrical twist $=$ dimension - spin Defined for the local operators

$$
\begin{aligned}
\bar{q}(z) \gamma^{\mu}[z, 0] q(0) & =\sum_{n=0}^{\infty} \frac{z_{\mu_{1}} \ldots z_{\mu_{n}}}{n!} O^{\mu \mu_{1} \ldots \mu_{n}} \\
O^{\mu_{1} \ldots \mu_{n}} & =\bar{q} \gamma^{\mu_{1}} D^{\mu_{2}} \ldots D^{\mu_{n}} q
\end{aligned}
$$

A Lorentz tensor Sort it over irr.rep.

Twist-decomposition is purely algebraic operation

$$
+\underbrace{\left[\frac{O^{\mu_{1} \mu_{2} \cdot \mu_{n}}-O^{\mu_{2} \mu_{1} \cdots \mu_{n}}+\ldots}{n!}+\ldots\right]}_{\text {1-pair-anti-symmetric }+ \text { simmetric traceless }}+
$$

Universitãt Regensburg

Non-local OPE

- \mathbf{c} is an integro-differential operator
- There are methods to make twist-decomposition directly in the non-local form
- Famous example: $\left[\bar{q}(z)[z, 0] \gamma^{\mu} q(0)\right]^{\mathrm{tw}-2}=\int_{0}^{1} d \alpha \frac{\partial}{\partial z_{\mu}} \bar{q}(\alpha z)[\alpha z, 0] \not \approx q(0)+O\left(z^{2}\right)$

Lorentz symmetry is preserved by renormalization
The geometrical twist (as a quantum number) is preserved by renormalization Thus, operators of different geometrical twist do not mix with each other, and result into independent physical observables

Collinear (naive) twist

- No formal definition
- Usually, counted by dimension
- Examples: $g_{T}(x), h_{L}(x), e(x)$
- Do not have definite evolution properties
- Some of them have "parton interpretation"

Geometrical twist

- Formal definition
- Closed evolution equation
- Do not have a simple "parton interpretation"
- Almost unknown phenomenologically

Factorization theorem is formulate in terms of geometrical twist distribution

There are four quark-PDFs of twist-three
invariant definition; $z^{2}=0$

$$
\begin{array}{ll}
\langle p| i g \bar{q}(a z) \gamma^{\rho} \not \not \gamma^{\mu} \gamma^{5} F_{\rho z}(b z) q(c z)|p\rangle & =4 s_{T}^{\mu} \zeta^{2} M \widehat{S}^{+}(a \zeta, b \zeta, c \zeta), \\
\langle p| i g \bar{q}(a z) \gamma^{\mu} \not \approx \gamma^{\rho} \gamma^{5} F_{\rho z}(b z) q(c z)|p\rangle & =4 s_{T}^{\mu} \zeta^{2} M \widehat{S}^{-}(a \zeta, b \zeta, c \zeta), \\
\langle p| g \bar{q}(a z) \sigma^{\mu z} \gamma^{5} F_{\mu z}(b z) q(c z)|p\rangle & =4 \lambda_{z} \zeta^{2} M \widehat{H}(a \zeta, b \zeta, c \zeta), \\
\langle p| g \bar{q}(a z) \sigma^{\mu z} F_{\mu z}(b z) q(c z)|p\rangle & =4 \zeta^{2} M \widehat{E}(a \zeta, b \zeta, c \zeta) .
\end{array}
$$

$$
\zeta=(p z)=p_{z}=\text { Ioffe time }
$$

There is no standard notation!

$$
\begin{gathered}
S^{ \pm}=-T \mp \Delta T \\
H=\delta T_{g} \\
E=\delta T_{\epsilon}
\end{gathered}
$$

N	U	L	T
U	q		δT_{ϵ}
L		Δq	δT_{g}
T	T	ΔT	δq

There are four quark-PDFs of twist-three
light-cone definition, $z^{\mu}=n^{\mu} z^{-}$

$$
\begin{array}{ll}
\langle p| i g \bar{q}(a z) \gamma^{\rho} \gamma^{+} \gamma^{\mu} \gamma^{5} F_{\rho+}(b z) q(c z)|p\rangle & =4 s_{T}^{\mu} p_{+}^{2} M \widehat{S}^{+}(a \zeta, b \zeta, c \zeta), \\
\langle p| i g \bar{q}(a z) \gamma^{\mu} \gamma^{+} \gamma^{\rho} \gamma^{5} F_{\rho+}(b z) q(c z)|p\rangle & =4 s_{T}^{\mu} p_{+}^{2} M \widehat{S}^{-}(a \zeta, b \zeta, c \zeta), \\
\langle p| g \bar{q}(a z) \sigma^{\mu z} \gamma^{5} F_{\mu+}(b z) q(c z)|p\rangle & =4 s^{+} p_{+} M^{2} \widehat{H}(a \zeta, b \zeta, c \zeta), \\
\langle p| g \bar{q}(a z) \sigma^{\mu+} F_{\mu+}(b z) q(c z)|p\rangle & \tag{4}
\end{array} 4_{+}^{2} M \widehat{E}(a \zeta, b \zeta, c \zeta) ., ~
$$

$$
\zeta=(p z)=p_{z}=\text { Ioffe time }
$$

- There is no standard notation!
- $S^{ \pm}$are chiral even, H, E are chiral-odd
- Alike twist-2 but with additional $F_{\mu+}$ (due to anti-symmetrized $\left[D_{\mu}, D_{\nu}\right]$)
- Depend on 3 position $\Rightarrow 3$-variable PDFs (vs. 2 at twist-2)
- 3 positions -1 common position $=2$ d.o.f. (for PDF!)

Notation comment: Widehat $=$ position space, e.g. $\widehat{g_{T}}(\zeta)=\int_{-1}^{1} d x e^{i x \zeta} g_{T}(x)$.

$$
\begin{aligned}
\widehat{S}^{ \pm}\left(\zeta_{1}, \zeta_{2}, \zeta_{3}\right) & =\int[d x] e^{-i\left(\zeta_{1} x_{1}+\zeta_{2} x_{2}+\zeta_{3} x_{3}\right)} S^{ \pm}\left(x_{1}, x_{2}, x_{3}\right) \\
\int[d x] & =\int_{-1}^{1} d x_{1} d x_{2} d x_{3} \delta\left(x_{1}+x_{2}+x_{3}\right)
\end{aligned}
$$

Not too much is known about twist-three distributions

From TMDs

From DIS (g_{2} structure function)

Lattice input will be essential!

Quasi-Ioffe-time distributions (qITDs)

 measurable on the lattice; $z^{2}<0$$$
\begin{aligned}
\langle p, s| \bar{q}(z) \gamma^{\mu} q(0)|p, s\rangle= & 2 p^{\mu} \mathcal{F}_{1}\left(\zeta, z^{2}\right)+2 \frac{z^{\mu} \zeta-p^{\mu} z^{2}}{\zeta^{2}} M^{2} \mathcal{F}_{3}\left(\zeta, z^{2}\right) \\
\langle p, s| \bar{q}(z) \gamma^{\mu} \gamma^{5} q(0)|p, s\rangle= & 2 p^{\mu} s_{L} \mathcal{G}_{1}\left(\zeta, z^{2}\right)+2 s_{T}^{\mu} M \mathcal{G}_{T}\left(\zeta, z^{2}\right)+\frac{z^{\mu} \zeta-p^{\mu} z^{2}}{\zeta^{2}} s_{L} M^{2} \mathcal{G}_{3}\left(\zeta, z^{2}\right) \\
\langle p, s| \bar{q}(z) i \sigma^{\mu z} \gamma^{5} q(0)|p, s\rangle= & 2 s_{T}^{\mu} \zeta \mathcal{H}_{1}\left(\zeta, z^{2}\right)-(s z)\left(z^{\mu}-p^{\mu} \frac{z^{2}}{\zeta}\right) M \mathcal{H}_{L}\left(\zeta, z^{2}\right) \\
\langle p, s| \bar{q}(z) q(0)|p, s\rangle= & 2 M \mathcal{E}\left(\zeta, z^{2}\right) \\
& s_{T}^{\mu} \text { transverse to }(p, z) \text {-plane }
\end{aligned}
$$

At leading power $z^{2} \rightarrow 0$

- twist -2
- twist $-2+$ twist -3
\leftarrow that is what we are interested in
- twist $-2+$ twist $-3+$ twist -4
qITDs (and position space) are much simpler from the theory side (there will be examples in the talk).
pPDFs and qPDF are Fourier transformation of qITDs

$$
\begin{aligned}
\operatorname{pPDF}\left(x, z^{2}\right) & =\int \frac{d \zeta}{2 \pi} e^{-i x \zeta} \operatorname{qITD}\left(\zeta, z^{2}\right) \\
\operatorname{qPDF}\left(x, p_{v}^{2}\right) & =p_{v} \int \frac{d z}{2 \pi} e^{-i x z p_{v}} \operatorname{qITD}\left(z p_{v}, z^{2}\right)
\end{aligned}
$$

Plan:

- Derive all formulas for qITDs (factorization at $z^{2} \rightarrow 0$)
- Fourier transform to pPDF (factorization at $z^{2} \rightarrow 0$)
- Fourier transform to qPDF (factorization at $p_{v}^{2} \rightarrow \infty$)

Universitãt Regensburg

LO factorization, $z^{2} \rightarrow 0$

Tree order is trivial

- Set $z^{2}=0$ and compare parametrizations (e.g. with Jaffe,Ji)

$$
\begin{aligned}
\mathcal{G}_{T}\left(\zeta, z^{2}\right) & =\widehat{g_{T}}(\zeta)+O\left(z^{2}\right) \\
\mathcal{H}_{L}\left(\zeta, z^{2}\right) & =\widehat{h_{L}}(\zeta)+O\left(z^{2}\right) \\
\mathcal{E}\left(\zeta, z^{2}\right) & =\widehat{e}(\zeta)+O\left(z^{2}\right)
\end{aligned}
$$

- But it is not enough, because:
- At NLO the expression is not expressed via g_{T}, h_{L} or e
- g_{T}, h_{L} and e are not "true" distributions (no evolution)
- g_{T}, h_{L} have twist-2 part
- We must make twist-decomposition

Universitãt Regensburg

Tree order is not so trivial

- Symmetrizing, anti-symmetrizing,...

$$
\begin{aligned}
\mathcal{G}_{T}\left(\zeta, z^{2}\right) & =\widehat{g}_{T}^{\mathrm{tw} 2}(\zeta)+\widehat{g}_{T}^{\mathrm{tw} 3}(\zeta)+O\left(z^{2}\right) \\
\mathcal{H}_{L}\left(\zeta, z^{2}\right) & =\widehat{h}_{L}^{\mathrm{tw} 2}(\zeta)+\widehat{h}_{L}^{\mathrm{tw} 3}(\zeta)+O\left(z^{2}\right) \\
\mathcal{E}\left(\zeta, z^{2}\right) & =\Sigma_{q}+\widehat{e}_{\mathrm{nl}}(\zeta)+O\left(z^{2}\right)
\end{aligned}
$$

- Twist-2 parts (here $x>0$)

$$
\begin{array}{ccc}
\widehat{g}_{T}^{\mathrm{tw} 2}(\zeta)=\int_{0}^{1} d \alpha \widehat{\Delta q}(\alpha \zeta), & \Leftrightarrow & g_{T}^{\mathrm{tw} 2}(x)=\int_{x}^{1} \frac{d y}{y} \Delta q(y) \\
\widehat{h}_{L}^{\mathrm{tw} 2}(\zeta)=2 \int_{0}^{1} d \alpha \alpha \widehat{\delta q}(\alpha \zeta), & \Leftrightarrow & h_{L}^{\mathrm{tw} 2}(x)=2 x \int_{x}^{1} \frac{d y}{y^{2}} \delta q(y)
\end{array}
$$

LO factorization, $z^{2} \rightarrow 0$

Tree order is not so trivial

- Symmetrizing, anti-symmetrizing,...

$$
\begin{aligned}
\mathcal{G}_{T}\left(\zeta, z^{2}\right) & =\widehat{g}_{T}^{\mathrm{tw} 2}(\zeta)+\widehat{g}_{T}^{\mathrm{tw} 3}(\zeta)+O\left(z^{2}\right) \\
\mathcal{H}_{L}\left(\zeta, z^{2}\right) & =\widehat{h}_{L}^{\mathrm{tw} 2}(\zeta)+\widehat{h}_{L}^{\mathrm{tw} 3}(\zeta)+O\left(z^{2}\right) \\
\mathcal{E}\left(\zeta, z^{2}\right) & =\Sigma_{q}+\widehat{e}_{\mathrm{nl}}(\zeta)+O\left(z^{2}\right)
\end{aligned}
$$

- Twist-3 parts $(\bar{\alpha}=1-\alpha)$

$$
\begin{aligned}
\widehat{g}_{T}^{\mathrm{tw} 3}(\zeta) & =2 \zeta^{2} \int_{0}^{1} d \alpha \int_{0}^{\alpha} d \beta \beta \widehat{S}^{-}(\zeta, \bar{\beta} \zeta, \bar{\alpha} \zeta) \\
\widehat{h}_{L}^{\mathrm{tw} 3}(\zeta) & =\zeta^{2} \int_{0}^{1} d \alpha \int_{0}^{\alpha} d \beta \alpha(2 \beta-\alpha) \widehat{H}(\alpha \zeta, \beta \zeta, 0) \\
\widehat{e}_{\mathrm{nl}}(\zeta) & =\zeta^{2} \int_{0}^{1} d \alpha \int_{0}^{\alpha} d \beta \widehat{E}(\alpha \zeta, \beta \zeta, 0)
\end{aligned}
$$

LO factorization, $z^{2} \rightarrow 0$

Tree order is not so trivial

- Symmetrizing, anti-symmetrizing,...

$$
\begin{aligned}
\mathcal{G}_{T}\left(\zeta, z^{2}\right) & =\widehat{g}_{T}^{\mathrm{tw} 2}(\zeta)+\widehat{g}_{T}^{\mathrm{tw} 3}(\zeta)+O\left(z^{2}\right) \\
\mathcal{H}_{L}\left(\zeta, z^{2}\right) & =\widehat{h}_{L}^{\mathrm{tw} 2}(\zeta)+\widehat{h}_{L}^{\mathrm{tw} 3}(\zeta)+O\left(z^{2}\right) \\
\mathcal{E}\left(\zeta, z^{2}\right) & =\Sigma_{q}+\widehat{e}_{\mathrm{nl}}(\zeta)+O\left(z^{2}\right)
\end{aligned}
$$

- Distribution \mathcal{E} has a local contribution (nuclear-sigma term)

$$
2 M \Sigma_{q}=\langle p| \bar{q}(0) q(0)|p\rangle \quad \Rightarrow \quad \delta(x) \Sigma_{q}
$$

Universitãt Regensburg

Why position space is convenient

$$
\widehat{f}(\zeta)=\int d x e^{-i \zeta x} f(x), \quad \widehat{f}\left(\zeta_{1}, \zeta_{2}, \zeta_{3}\right)=\int[d x] e^{-i\left(x_{1} \zeta+x_{2} \zeta_{2}+x_{3} \zeta_{3}\right)} f\left(x_{1}, x_{2}, x_{3}\right)
$$

Twist-2 distributions $\rightarrow 1$ term in 2 regions

$$
\int_{0}^{1} d \alpha \widehat{\Delta q}(\alpha \zeta) \Longleftrightarrow \int d y \int_{0}^{1} d \alpha \delta(x-y \alpha) \Delta q(y)=\theta(x) \int_{x}^{1} \frac{d y}{y} \Delta q(y)-\theta(-x) \int_{-1}^{x} \frac{d y}{y} \Delta q(y)
$$

Twist- 3 distributions $\rightarrow 3$ terms in 6 regions

$$
2 \zeta^{2} \int_{0}^{1} d \alpha \int_{\alpha}^{1} d \beta \bar{\beta} \widehat{S}^{-}(\zeta, \beta \zeta, \alpha \zeta) \Longleftrightarrow
$$

$$
2 \int[d x] \int_{0}^{1} d \alpha\left(\frac{\delta\left(x+\alpha x_{1}\right)}{x_{1} x_{3}}+\frac{\delta\left(x+x_{1}+\alpha x_{2}\right)}{x_{2} x_{3}}+\frac{\delta\left(x+x_{1}\right)}{x_{1} x_{2}}\right) S^{-}\left(x_{1}, x_{2}, x_{3}\right)
$$

- Similar for e_{nl}
- For distribution $h_{L}^{\text {tw } 3}$ there are 6 terms in 6 regions!

Evolution

$$
\begin{array}{ll}
\text { tw-2 : } & \frac{d \widehat{\delta q}(\zeta)}{d \ln \mu^{2}}=a_{s} \int_{0}^{1} d \alpha\left(\frac{1+\alpha^{2}}{1-\alpha}\right)_{+} \widehat{\delta q}(\alpha \zeta)+a_{s}^{2} \ldots \\
\text { tw-3 : } & \frac{d}{d \ln \mu^{2}} \widehat{S}^{-}\left(z_{1}, z_{2}, z_{3}\right)=-a_{s}\left[\mathbb{H} \otimes \widehat{S}^{-}\right]\left(z_{1}, z_{2}, z_{3}\right)+a_{s}^{2} \ldots
\end{array}
$$

$[\mathbb{H} \otimes \widehat{S}]\left(z_{1}, z_{2}, z_{3}\right)=N_{c} \int_{0}^{1} d \alpha\left(\frac{4}{\alpha} \widehat{S}\left(z_{1}, z_{2}, z_{3}\right)-\frac{\bar{\alpha}}{\alpha} \widehat{S}\left(z_{12}^{\alpha}, z_{2}, z_{3}\right)-\frac{\bar{\alpha}}{\alpha} \widehat{S}\left(z_{1}, z_{2}, z_{32}^{\alpha}\right)\right.$ $\left.-\frac{\bar{\alpha}^{2}}{\alpha} \widehat{S}\left(z_{1}, z_{21}^{\alpha}, z_{3}\right)-\frac{\bar{\alpha}^{2}}{\alpha} \widehat{S}\left(z_{1}, z_{23}^{\alpha}, z_{3}\right)-2 \int_{0}^{\bar{\alpha}} d \beta \bar{\beta} \widehat{S}\left(z_{1}, z_{23}^{\beta}, z_{32}^{\alpha}\right)\right)$
$+\frac{1}{N_{c}} \int_{0}^{1} d \alpha\left(\frac{2}{\alpha} \widehat{S}\left(z_{1}, z_{2}, z_{3}\right)-\frac{\bar{\alpha}}{\alpha} \widehat{S}\left(z_{13}^{\alpha}, z_{2}, z_{3}\right)-\frac{\bar{\alpha}}{\alpha} \widehat{S}\left(z_{1}, z_{2}, z_{31}^{\alpha}\right)\right.$
$\left.+\bar{\alpha} \widehat{S}\left(z_{2}, z_{12}^{\alpha}, z_{3}\right)-\int_{0}^{\bar{\alpha}} d \beta \widehat{S}\left(z_{13}^{\alpha}, z_{2}, z_{31}^{\beta}\right)+2 \int_{\bar{\alpha}}^{1} d \beta \bar{\beta} \widehat{S}\left(z_{1}, z_{23}^{\beta}, z_{32}^{\alpha}\right)\right)$
$-3 C_{F} \widehat{S}\left(z_{1}, z_{2}, z_{3}\right)$.

$$
z_{i j}^{\alpha}=z_{i} \bar{\alpha}+z_{j} \alpha
$$

- For all twist-3 LO evolution kernels see e.g.
[Braun, Manashov, Pirnay, 09]
- For relevant LO evolution kernels see appendices

Evolution for $g_{T}^{\mathbf{t w} \mathbf{3}}$

$$
\begin{aligned}
\int_{0}^{1} d \alpha \int_{\alpha}^{1} d \beta & \bar{\beta}[\mathbb{H} \otimes \widehat{S}](\zeta, \beta \zeta, \alpha \zeta)=\int_{0}^{1} d \alpha \int_{\alpha}^{1} d \beta\left[N_{c} \bar{\beta}(\ln \bar{\alpha}-2 \ln \alpha+1)\right. \\
& \left.-\frac{1}{N_{c}}\left(\alpha \beta-\frac{\alpha^{2}}{2}+\bar{\beta}(2 \ln \alpha-\ln \bar{\alpha})\right)-3 C_{F} \bar{\beta}\right] \widehat{S}(\zeta, \beta \zeta, \alpha \zeta) \\
& -\frac{1}{N_{c}} \int_{0}^{1} d \alpha \int_{0}^{\alpha} d \beta\left[\left(\frac{\beta}{\alpha}-\frac{\beta(2-\beta)}{2}\right) \widehat{S}(\zeta, \beta \zeta, \alpha \zeta)+\beta \frac{2-\beta}{2} \widehat{S}(\bar{\alpha} \zeta, \bar{\beta} \zeta, 0)\right] .
\end{aligned}
$$

Universitãt Regensburg

Evolution for $g_{T}^{\mathbf{t w} \mathbf{3}}$

$$
\begin{aligned}
\int_{0}^{1} d \alpha \int_{\alpha}^{1} d \beta & \bar{\beta}[\mathbb{H} \otimes \widehat{S}](\zeta, \beta \zeta, \alpha \zeta)=\int_{0}^{1} d \alpha \int_{\alpha}^{1} d \beta\left[N_{c} \bar{\beta}(\ln \bar{\alpha}-2 \ln \alpha+1)\right. \\
& \left.-\frac{1}{N_{c}}\left(\alpha \beta-\frac{\alpha^{2}}{2}+\bar{\beta}(2 \ln \alpha-\ln \bar{\alpha})\right)-3 C_{F} \bar{\beta}\right] \widehat{S}(\zeta, \beta \zeta, \alpha \zeta) \\
& -\frac{1}{N_{c}} \int_{0}^{1} d \alpha \int_{0}^{\alpha} d \beta\left[\left(\frac{\beta}{\alpha}-\frac{\beta(2-\beta)}{2}\right) \widehat{S}(\zeta, \beta \zeta, \alpha \zeta)+\beta \frac{2-\beta}{2} \widehat{S}(\bar{\alpha} \zeta, \bar{\beta} \zeta, 0)\right] .
\end{aligned}
$$

Large- N_{c}
At large- N_{c} equation is diagonal!

$$
\frac{d \widehat{g_{T}}(\zeta)}{d \ln \mu^{2}}=a_{s} N_{c} \int_{0}^{1} d \alpha\left[\left(\frac{1+\alpha}{1-\alpha}\right)_{+}+\delta(\bar{\alpha})\right] \widehat{g_{T}}(\alpha \zeta)+\frac{a_{s}}{N_{c}} \ldots+a_{s}^{2} \ldots
$$

Similar case for e and h_{L}

LO

$$
\begin{aligned}
\mathcal{G}_{T}\left(\zeta, z^{2}\right) & =\widehat{g}_{T}^{\mathrm{tw} 2}(\zeta)+\widehat{g}_{T}^{\mathrm{tw} 3}(\zeta)+O\left(z^{2}\right) \\
\mathcal{H}_{L}\left(\zeta, z^{2}\right) & =\widehat{h}_{L}^{\mathrm{tw} 2}(\zeta)+\widehat{h}_{L}^{\mathrm{tw} 3}(\zeta)+O\left(z^{2}\right) \\
\mathcal{E}\left(\zeta, z^{2}\right) & =\Sigma_{q}+\widehat{e}_{\mathrm{n} 1}(\zeta)+O\left(z^{2}\right)
\end{aligned}
$$

Beyond LO

$$
\begin{aligned}
\mathcal{G}_{T}\left(\zeta, z^{2}\right) & =C_{g} \otimes \widehat{g}_{1}(\zeta)+C_{T} \otimes \widehat{S^{-}}(\zeta)+O\left(z^{2}\right) \\
\mathcal{H}_{L}\left(\zeta, z^{2}\right) & =C_{h} \otimes \widehat{h}_{1}(\zeta)+C_{L} \otimes \widehat{H}^{\mathrm{tw} 3}(\zeta)+O\left(z^{2}\right) \\
\mathcal{E}\left(\zeta, z^{2}\right) & =C_{\Sigma} \otimes \Sigma_{q}+C_{S} \otimes \widehat{E}(\zeta)+O\left(z^{2}\right)
\end{aligned}
$$

- Beyond LO the formulas involve more general terms then combinations g_{T}, h_{L} and $e_{\mathrm{n} 1}$
- Factorization theorem is "automatically proven" due to the existence of OPE
- We have computed all coefficient functions at NLO using the background field method

Structure of NLO computation

+ mirror diagrams

Structure of NLO computation

+ mirror diagrams

Structure of NLO computation

- NLO Twist-3 computations are involved
- No "standard" techniques
- No dedicated numerical packages
- We made computation in $2+$ independent ways:
- V.Braun: background-field propagator + Schwinger gauge + position space
- AV: background-field vertices + axial-gauge + position space
- Yao Ji: background-field vertices + axial-gauge + momentum space
- Checks
- Cancellation of gauge dependent terms
- Final expressions for different computations coincides! (very strong check)
- Agreement with known twist-3 evolution (non-trivial check)
- Twist-2 parts coincides with literature
- We computed ITDs (it is simpler)
- Fourier transform ITDs to pPDFs (all known parts coincides!)
- Double-Fourier transform pPDFs to qPDFs (all known parts coincides!)
- The expressions for \mathcal{G}_{T} [2103.12105]
- The expressions for \mathcal{E} and \mathcal{H}_{L} [2108.03065]

Results are lengthy. I am not presenting them explicitly here. See publication

Presentation of the result

3-point VS. 2-point

$$
\begin{aligned}
\widehat{g}_{T}^{\mathrm{tw} 3}(\zeta) & =2 \zeta^{2} \int_{0}^{1} d \alpha \int_{0}^{\alpha} d \beta \beta \widehat{S}^{-}(\zeta, \bar{\beta} \zeta, \bar{\alpha} \zeta) \\
\widehat{h}_{L}^{\mathrm{tw} 3}(\zeta) & =\zeta^{2} \int_{0}^{1} d \alpha \int_{0}^{\alpha} d \beta \alpha(2 \beta-\alpha) \widehat{H}(\alpha \zeta, \beta \zeta, 0) \\
\widehat{e}_{\mathrm{n} 1}(\zeta) & =\zeta^{2} \int_{0}^{1} d \alpha \int_{0}^{\alpha} d \beta \widehat{E}(\alpha \zeta, \beta \zeta, 0)
\end{aligned}
$$

3pt distribution

- "True" QFT functions
- Complicated expressions
- Complicated numerics

2pt distribution

- "Fake" QFT functions
- Just like usual PDFs
- Tree order

In the final expression we rewrite 3 pt distributions via 2 pt distribution, where it is possible

Use symmetry relations

$$
\begin{aligned}
S^{+}\left(x_{1}, x_{2}, x_{3}\right)=+S^{+}\left(-x_{3},-x_{2},-x_{1}\right) & S^{-}\left(x_{1}, x_{2}, x_{3}\right)=-S^{-}\left(-x_{3},-x_{2},-x_{1}\right) \\
H\left(x_{1}, x_{2}, x_{3}\right)=-H\left(-x_{3},-x_{2},-x_{1}\right) & E\left(x_{1}, x_{2}, x_{3}\right)=+E\left(-x_{3},-x_{2},-x_{1}\right)
\end{aligned}
$$

Examples:

$$
\begin{aligned}
& \zeta^{2} \int_{0}^{1} d \alpha \int_{0}^{\alpha} d \beta \alpha \bar{\alpha}(2 \beta-\alpha) \widehat{H}(\alpha \zeta, \beta \zeta, 0)=\int_{0}^{1} d \alpha \alpha^{2} \widehat{h}_{L}^{\mathrm{tw} 3}(\alpha \zeta) \\
& \zeta^{2} \int_{0}^{1} d \alpha \int_{0}^{\alpha} d \beta \ln \bar{\alpha} \widehat{E}(\alpha \zeta, \beta \zeta, 0)=\int_{0}^{1} d \alpha\left(\frac{1}{1-\alpha}\right)_{+} \widehat{e}_{n l}(\alpha \zeta) \\
& \zeta^{2} \int_{0}^{1} d \alpha \int_{0}^{\alpha} d \beta \ln \beta \widehat{E}(\alpha \zeta, \beta \zeta, 0)=\text { cannot be rewritten as } 2 \mathrm{pt} \\
& \zeta^{2} \int_{0}^{1} d \alpha \int_{\alpha}^{1} d \beta \ln \bar{\alpha} \widehat{E}(\alpha \zeta, \beta \zeta, 0)=\text { cannot be rewritten as } 2 \mathrm{pt}
\end{aligned}
$$

The factorization theorem has the form

$$
\widehat{\mathcal{G}}_{T}(\zeta)=\underbrace{\int_{0}^{1} d \alpha \mathbf{C}_{1}(\alpha) \widehat{\Delta q}(\alpha \zeta)}_{\text {tw-2 part }}+\underbrace{\int_{0}^{1} d \alpha \mathbf{C}_{T, 2 \mathrm{pt}}(\alpha) \widehat{g}_{T}^{\mathrm{tw} 3}(\alpha \zeta)}_{\text {tw-3 2pt part }}+\underbrace{\zeta^{2} \mathbf{C}_{L, 3 \mathrm{pt}} \otimes \widehat{S}^{-}}_{\text {tw-3 3pt part }}+O\left(z^{2}\right)
$$

- Same form for \mathcal{H}_{L}
- Similar form for \mathcal{E} with tw-2 part $\rightarrow C_{\Sigma} \Sigma_{q}$
- Coefficient functions depends on

$$
L_{z}=\ln \left(\frac{-z^{2} \mu^{2}}{4 e^{-2 \gamma_{E}}}\right)
$$

- 3-point part contains "irreducible" 3-point terms which cannot be presented via 2-pt

Universitãt Regensburg

Example of expression

Twist-3 part

$$
\begin{equation*}
\mathcal{G}_{T}^{\mathrm{tw} 3}\left(\zeta, z^{2}\right)=\widehat{g}_{T}^{\mathrm{tw} 3}(\zeta ; \mu)+a_{s} \mathbf{C}_{2 \mathrm{pt}}^{(1)} \otimes \widehat{g}_{T}^{\mathrm{tw} 3}+2 \zeta^{2} a_{s} \mathbf{C}_{3 \mathrm{pt}}^{(1)} \otimes \widehat{S}^{-} \tag{4.31}
\end{equation*}
$$

with

$$
\begin{align*}
\mathbf{C}_{2 \mathrm{pt}}^{(1)} \otimes \widehat{g}_{T}^{\mathrm{tw} 3}= & \int_{0}^{1} d \alpha\left[\mathbf{C}_{T}^{(1)}\left(\alpha, \mathrm{L}_{z} ; \mu\right)+N_{c}\left(\mathrm{~L}_{z}(\delta(\bar{\alpha})-\alpha)+\alpha+2 \delta(\bar{\alpha})\right)\right] \widehat{g}_{T}^{\mathrm{tw} 3}(\alpha \zeta ; \mu) \\
\mathbf{C}_{3 \mathrm{pt}}^{(1)} \otimes \widehat{S}^{-}= & -\mathrm{L}_{z} \mathrm{P}_{\mathrm{tw} 3} \otimes \widehat{S}^{-}+\int_{0}^{1} d \alpha\left\{\int_{\alpha}^{1} d \beta\left(2 N_{c} \ln \beta+\frac{1}{N_{c}} \frac{\alpha^{2}}{2}\right) \widehat{S}^{-}(\zeta, \beta \zeta, \alpha \zeta)\right. \tag{4.32}\\
& \left.+\frac{1}{N_{c}} \int_{0}^{\alpha} d \beta\left[\frac{\beta^{2}}{2} \widehat{S}^{-}(\bar{\alpha} \zeta, \bar{\beta} \zeta, 0)-\left(\frac{\beta(2+\beta)}{2}-\frac{2 \beta}{\alpha}(1+\ln \alpha)\right) \widehat{S}^{-}(\zeta, \beta \zeta, \alpha \zeta)\right]\right\} \tag{4.33}
\end{align*}
$$

where the logarithmic part is given by

$$
\begin{align*}
\mathrm{P}_{\mathrm{tw} 3} \otimes \widehat{S}^{-}= & \frac{1}{N_{c}} \int_{0}^{1} d \alpha\left\{\int_{\alpha}^{1} d \beta \frac{\alpha(\alpha-2)}{2} \widehat{S}^{-}(\zeta, \beta \zeta, \alpha \zeta)\right. \\
& \left.+\int_{0}^{\alpha} d \beta\left[\frac{\beta(\beta-2)}{2} \widehat{S}^{-}(\bar{\alpha} \zeta, \bar{\beta} \zeta, 0)+\left(\frac{\beta(2-\beta)}{2}-\frac{\beta}{\alpha}\right) \widehat{S}^{-}(\zeta, \beta \zeta, \alpha \zeta)\right]\right\} \tag{4.34}
\end{align*}
$$

Example of expression

Twist-3 part

$$
\begin{equation*}
\mathcal{G}_{T}^{\mathrm{tw} 3}\left(\zeta, z^{2}\right)=\widehat{g}_{T}^{\mathrm{tw} 3}(\zeta ; \mu)+a_{s} \mathbf{C}_{2 \mathrm{pt}}^{(1)} \otimes \widehat{g}_{T}^{\mathrm{tw} 3}+2 \zeta^{2} a_{s} \mathbf{C}_{3 \mathrm{pt}}^{(1)} \otimes \widehat{S}^{-} \tag{4.31}
\end{equation*}
$$

with

$$
\mathbf{C}_{2 \mathrm{pt}}^{(1)} \otimes \widehat{g}_{T}^{\mathrm{tw} 3}=\int_{0}^{1} d \alpha\left[\mathbf{C}_{T}^{(1)}\left(\alpha, \mathrm{L}_{z} ; \mu\right)+N_{c}\left(\mathbf{L}_{z}(\delta(\bar{\alpha})-\alpha)+\alpha+2 \delta(\bar{\alpha})\right)\right] \widehat{g}_{T}^{\mathrm{tw} 3}(\alpha \zeta ; \mu)
$$

$$
\begin{equation*}
\mathbf{C}_{3 \mathrm{pt}}^{(1)} \otimes \widehat{S}^{-}=-\mathrm{L}_{z} \mathrm{P}_{\mathrm{tw} 3} \otimes \widehat{S}^{-}+\int_{0}^{1} d \alpha\left\{\int_{\alpha}^{1} d \beta\left(2 N_{c} \ln \beta+\frac{1}{N_{c}} \frac{\alpha^{2}}{2}\right) \widehat{S}^{-}(\zeta, \beta \zeta, \alpha \zeta)\right. \tag{4.32}
\end{equation*}
$$

$$
\begin{equation*}
\left.+\frac{1}{N_{c}} \int_{0}^{\alpha} d \beta\left[\frac{\beta^{2}}{2} \widehat{S}^{-}(\bar{\alpha} \zeta, \bar{\beta} \zeta, 0)-\left(\frac{\beta(2+\beta)}{2}-2 \beta(1+\ln \alpha)\right) \widehat{S}^{-}(\zeta, \beta \zeta, \alpha \zeta)\right]\right\} \tag{4.33}
\end{equation*}
$$

where the logarithmic part is given by
non-2pt contribution at large N_{c}

$$
\begin{align*}
\mathrm{P}_{\mathrm{tw} 3} \otimes \widehat{S}^{-}= & \frac{1}{N_{c}} \int_{0}^{1} d \alpha\left\{\int_{\alpha}^{1} d \beta \frac{\alpha(\alpha-2)}{2} \widehat{S}^{-}(\zeta, \beta \zeta, \alpha \zeta)\right. \\
& \left.+\int_{0}^{\alpha} d \beta\left[\frac{\beta(\beta-2)}{2} \widehat{S}^{-}(\bar{\alpha} \zeta, \bar{\beta} \zeta, 0)+\left(\frac{\beta(2-\beta)}{2}-\frac{\beta}{\alpha}\right) \widehat{S}^{-}(\zeta, \beta \zeta, \alpha \zeta)\right]\right\} \tag{4.34}
\end{align*}
$$

From ITDs to pPDFs

$$
\mathfrak{g}_{T}\left(x, z^{2}\right)=\int \frac{d \zeta}{2 \pi} e^{-i x \zeta} \mathcal{G}_{T}\left(\zeta, z^{2}\right)
$$

$$
\mathfrak{g}_{T}\left(x, z^{2}\right)=g_{T}(x)+a_{s} \int_{|x|}^{1} \frac{d \alpha}{\alpha}\left(\mathfrak{C}_{T}\left(\alpha, \mathrm{~L}_{z}\right) g_{T}^{\mathrm{tw} 2}\left(\frac{x}{\alpha}\right)+\mathfrak{C}_{2 \mathrm{pt}}^{(1)}\left(\alpha, \mathrm{L}_{z}\right) g_{T}^{\mathrm{tw} 3}\left(\frac{x}{\alpha}\right)\right)+2 a_{s} \mathfrak{C}_{3 \mathrm{pt}}^{(1)} \otimes S^{-}
$$

2 pt pPDF coeff. functions $=2 \mathrm{pt} q \mathrm{PDF}$ coeff. function

$$
\begin{aligned}
\mathfrak{C}_{3 \mathrm{pt}}^{(1)} \otimes S^{-}= & -\mathrm{L}_{z} \mathfrak{F}_{\mathrm{tw} 3} \otimes S^{-} \\
& +\int[d x] \int_{0}^{1} d \alpha\left\{\frac{-2 N_{c}}{1-\alpha}\left(\frac{\delta\left(x+\alpha x_{1}\right)}{x_{1} x_{3}}+\frac{\delta\left(x-x_{3}-\alpha x_{2}\right)}{x_{2} x_{3}}+\frac{\delta\left(x+x_{1}\right)}{x_{1} x_{2}}\right)\right. \\
& +\frac{1}{N_{c}}\left[-\frac{2}{(1-\alpha)_{+}} \frac{\delta\left(x+\alpha x_{1}\right)}{x_{1} x_{2}}+\frac{2(1+\ln \bar{\alpha})}{1-\alpha} \frac{\delta\left(x+\alpha x_{1}\right)-\delta\left(x+x_{1}+\bar{\alpha} x_{3}\right)}{x_{2}^{2}}\right. \\
& -\bar{\alpha}\left(\frac{\delta\left(x-\alpha x_{3}\right)}{x_{1} x_{2}}+\frac{\delta\left(x-\alpha x_{2}\right)}{x_{2} x_{3}}-\frac{\delta\left(x+\alpha x_{2}\right)}{x_{1} x_{2}}-\frac{\delta\left(x+\alpha x_{1}\right)}{x_{1} x_{2}}+\frac{\delta\left(x+\alpha x_{1}\right)}{x_{1} x_{3}}\right) \\
& \left.\left.-\left(\frac{\delta\left(x-\alpha x_{2}\right)}{x_{2} x_{3}}+\frac{\delta\left(x+\alpha x_{1}\right)}{x_{1} x_{3}}+2 \frac{\delta\left(x+x_{1}\right)}{x_{1} x_{2}}\right)\right]\right\} S^{-}\left(x_{1}, x_{2}, x_{3}\right),
\end{aligned}
$$

$$
\mathrm{g}_{i}\left(x, p_{v}\right)=\int \frac{d \zeta}{2 \pi} \int_{-1}^{1} d y e^{\left.i(y-x) \zeta_{\mathfrak{g}_{i}}\left(y, \frac{\zeta^{2}}{p_{v}^{2}}\right), ~\right)}
$$

Long expressions!

 see (5.11)-(5.21) in [2103.12105] see (4.42)-(4.50) in [2103.12105]30 domains!
12 singular points!
qPDF representation is just

How to extract twist-3 distributions from lattice?
Problem: Given measurement of qITD, pPDF, qPDF extract (some information about) twist-3 PDF

What is the problem?

- Lattice measurements, already some [S.Bhattachary, et al,2004.04130], [S.Bhattachary, et al,2107.02574]

- How to clean away "uninteresting" twist-2 part?
- No such problem for distribution \mathcal{E} (but Σ-term)
- For distributions \mathcal{H}_{L} and \mathcal{G}_{T} situations are different

Let me start from h_{L}

$$
\langle p, s| \bar{q}(z) i \sigma^{\mu z} \gamma^{5} q(0)|p, s\rangle=2 s_{T}^{\mu} \zeta \mathcal{H}_{1}\left(\zeta, z^{2}\right)-(s z)\left(z^{\mu}-p^{\mu} \frac{z^{2}}{\zeta}\right) M_{\text {not-interesting }}^{\mathcal{H}_{L}}\left(\zeta, z^{2}\right)
$$

In fact, there is only one twist-2 "structure function" $\sim 2 S^{\mu} \zeta$
It is decribed by $\langle p|\left[\bar{q}(z) i \sigma^{\mu z} \gamma^{5} q(0)\right]^{\text {tw } 2}|p\rangle$
Thus, \mathcal{H}_{1} and $\mathcal{H}_{L}^{\text {tw }} 2$ are just different projections of it.
They are connected by exact relation

$$
\mathcal{H}_{L}^{\mathrm{tw} 2}\left(\zeta, z^{2}\right)=2 \int_{0}^{1} d \alpha \alpha \mathcal{H}_{1}\left(\alpha \zeta, z^{2}\right)
$$

We called it Jaffe-Ji relation (JJ) since similar relation has been derived in [Jaffe,Ji,91]

$$
\langle p, s| \bar{q}(z) i \sigma^{\mu z} \gamma^{5} q(0)|p, s\rangle=2 s_{T}^{\mu} \zeta \mathcal{H}_{1}\left(\zeta, z^{2}\right)-(s z)\left(z^{\mu}-p^{\mu} \frac{z^{2}}{\zeta}\right) M \mathcal{H}_{L}\left(\zeta, z^{2}\right)
$$

In fact, there is only one twist-2 "structure function" $\sim 2 S^{\mu} \zeta$
It is decribed by $\langle p|\left[\bar{q}(z) i \sigma^{\mu z} \gamma^{5} q(0)\right]^{\text {tw } 2}|p\rangle$
Thus, \mathcal{H}_{1} and $\mathcal{H}_{L}^{\text {tw } 2}$ are just different projections of it.
They are connected by exact relation

$$
\mathcal{H}_{L}^{\mathrm{tw} 2}\left(\zeta, z^{2}\right)=2 \int_{0}^{1} d \alpha \alpha \mathcal{H}_{1}\left(\alpha \zeta, z^{2}\right)
$$

We called it Jaffe-Ji relation (JJ) since similar relation has been derived in [Jaffe,Ji,91]
Chicking JJ relation at NLO

$$
\begin{aligned}
& \mathcal{H}_{1}\left(\zeta, z^{2}\right)=\widehat{\delta} q(\zeta)+a_{s} \int_{0}^{1} d \alpha \mathbf{C}_{1}^{(1)}(\alpha) \widehat{\delta q}(\alpha \zeta)+O\left(z^{2}\right) \quad \widehat{h}_{L}^{\mathrm{tw} 2}(\zeta)=2 \int_{0}^{1} d \alpha \alpha \widehat{\delta q}(\alpha \zeta) \\
& \mathcal{H}_{L}\left(\zeta, z^{2}\right)=\widehat{h}_{L}^{\mathrm{tw} 2}(\zeta)+a_{s} \int_{0}^{1} d \alpha \mathbf{C}_{1}^{(1)}(\alpha) \widehat{h}_{L}^{\mathrm{tw} 2}(\alpha \zeta)+\text { twist- } 3+O\left(z^{2}\right)
\end{aligned}
$$

Universităt Regensburg

$$
\langle p, s| \bar{q}(z) i \sigma^{\mu z} \gamma^{5} q(0)|p, s\rangle=2 s_{T}^{\mu} \zeta \mathcal{H}_{1}\left(\zeta, z^{2}\right)-(s z)\left(z^{\mu}-p^{\mu} \frac{z^{2}}{\zeta}\right) M \mathcal{H}_{L}\left(\zeta, z^{2}\right)
$$

In fact, there is only one twist-2 "structure function" $\sim 2 S^{\mu} \zeta$
It is decribed by $\langle p|\left[\bar{q}(z) i \sigma^{\mu z} \gamma^{5} q(0)\right]^{\text {tw } 2}|p\rangle$
Thus, \mathcal{H}_{1} and $\mathcal{H}_{L}^{\mathrm{tw}}{ }^{2}$ are just different projections of it.
They are connected by exact relation

$$
\mathcal{H}_{L}^{\mathrm{tw} 2}\left(\zeta, z^{2}\right)=2 \int_{0}^{1} d \alpha \alpha \mathcal{H}_{1}\left(\alpha \zeta, z^{2}\right)
$$

We called it Jaffe-Ji relation (JJ) since similar relation has been derived in [Jaffe,Ji,91]

$$
\mathcal{H}_{L}^{\mathrm{tw} 3}\left(\zeta, z^{2}\right)=\mathcal{H}_{L}\left(\zeta, z^{2}\right)-2 \int_{0}^{1} d \alpha \alpha \mathcal{H}_{1}\left(\alpha \zeta, z^{2}\right)
$$

twist-3 part can be extracted using the same lattice simulation!

Universitãt Regensburg

JJ-relation is exact (at all orders of PT)

It also exact for pPDFs

$$
\mathfrak{h}_{L}^{\mathrm{tw} 3}\left(x, z^{2}\right)=\mathfrak{h}_{L}\left(x, z^{2}\right)-2 x \int_{x}^{1} \frac{d y}{y^{2}} \mathfrak{h}_{1}\left(y, z^{2}\right)
$$

JJ-relation is violated for qPDFs

$$
\begin{aligned}
\mathrm{h}_{L}\left(x, p_{v}\right)-2 & \int_{|x|}^{1} d y \mathrm{~h}_{1}\left(\frac{x}{y}, p_{v}\right)=\mathrm{h}_{L}^{\mathrm{tw} 3}\left(x, p_{v}\right) \\
& +8 a_{s} C_{F} \int_{|x|}^{1} d y\left(2 \ln y \ln \bar{y}-\ln ^{2} y+2 \operatorname{Li}_{2}(\bar{y})\right) \delta q\left(\frac{x}{y}\right)+O\left(a_{s}^{2}\right)
\end{aligned}
$$

- Fourier transformation for qPDF changes the factorization scale z^{2}
- Terms Fourier of terms $\sim \ln \left(z^{2}\right)$ violate JJ-relation
- In principle can be subtracted perturbatively

What about axial case?

$$
\langle p, s| \bar{q}(z) \gamma^{\mu} \gamma^{5} q(0)|p, s\rangle=2 p^{\mu} \frac{(s z)}{\zeta} M \mathcal{G}_{1}\left(\zeta, z^{2}\right)+s_{T}^{\mu} M \mathcal{G}_{T}\left(\zeta, z^{2}\right)+\ldots
$$

There is only one twist-2 "structure function" $\sim 2 S^{\mu} M$
It is decribed by $\langle p|\left[\bar{q}(z) i \gamma^{\mu} q(0)\right]^{\text {tw } 2}|p\rangle$
Thus, \mathcal{G}_{1} and $\mathcal{G}_{T}^{\mathrm{tw} 2}$ are just different projections of it.
They are connected by exact relation

$$
\mathcal{G}_{T}^{\mathrm{tw} 2}\left(\zeta, z^{2}\right)=\int_{0}^{1} d \alpha \mathcal{G}_{1}\left(\alpha \zeta, z^{2}\right)
$$

It is called Wandzura-Wilczek relation (WW) since similar relation has been derived for DIS structure functions in [WW,77]

What about axial case?

$$
\langle p, s| \bar{q}(z) \gamma^{\mu} \gamma^{5} q(0)|p, s\rangle=2 p^{\mu} \frac{(s z)}{\zeta} M \mathcal{G}_{1}\left(\zeta, z^{2}\right)+s_{T}^{\mu} M \mathcal{G}_{T}\left(\zeta, z^{2}\right)+\ldots
$$

There is only one twist-2 "structure function" $\sim 2 S^{\mu} M$
It is decribed by $\langle p|\left[\bar{q}(z) i \gamma^{\mu} q(0)\right]^{\text {tw } 2}|p\rangle$
Thus, \mathcal{G}_{1} and $\mathcal{G}_{T}^{\mathrm{tw} 2}$ are just different projections of it.
They are connected by exact relation

$$
\mathcal{G}_{T}^{\mathrm{tw} 2}\left(\zeta, z^{2}\right)=\int_{0}^{1} d \alpha \mathcal{G}_{1}\left(\alpha \zeta, z^{2}\right)
$$

It is called Wandzura-Wilczek relation (WW) since similar relation has been derived for DIS structure functions in [WW,77]

Chicking WW relation at NLO

$$
\begin{aligned}
& \mathcal{G}_{1}\left(\zeta, z^{2}\right)=\widehat{\Delta q}(\zeta)+a_{s} \int_{0}^{1} d \alpha \mathbf{C}_{1}^{(1)}(\alpha) \widehat{\Delta q}(\alpha \zeta)+O\left(z^{2}\right) \\
& \mathcal{G}_{T}\left(\zeta, z^{2}\right)=\widehat{g}_{T}^{\mathrm{tw} 2}(\zeta)+a_{s} \int_{0}^{1} d \alpha \frac{\widehat{g}_{T}^{\mathrm{tw} 2}(\zeta}{T}(\zeta) \widehat{g}_{T}^{\mathrm{tw} 2}(\alpha \zeta)+\text { twist- } 3+O\left(z^{2}\right)
\end{aligned}
$$

$$
\widehat{g}_{T}^{\text {tw2 }}(\zeta)=\int_{0}^{1} d \alpha \widehat{\Delta q}(\alpha \zeta)
$$

Universităt Regensburg

What about axial case?

$$
\langle p, s| \bar{q}(z) \gamma^{\mu} \gamma^{5} q(0)|p, s\rangle=2 p^{\mu} \frac{(s z)}{\zeta} M \mathcal{G}_{1}\left(\zeta, z^{2}\right)+s_{T}^{\mu} M \mathcal{G}_{T}\left(\zeta, z^{2}\right)+\ldots
$$

There is only one twist-2 "structure function" $\sim 2 S^{\mu} M$
It is decribed by $\langle p|\left[\bar{q}(z) i \gamma^{\mu} q(0)\right]^{\text {tw } 2}|p\rangle$
Thus, \mathcal{G}_{1} and $\mathcal{G}_{T}^{\mathrm{tw} 2}$ are just different proietions of it.
They are connected by exact relation

$$
\mathcal{G}_{T}^{\mathrm{tw} 2}\left(\zeta, z^{2}\right)=\int_{0}^{1} d \alpha \mathcal{G}_{1}\left(\alpha \zeta, z^{2}\right)
$$

It is called Wandazura-Wilczek relation (WW) since similar relation has been derived for DIS structure functions in [WW,77]

In the case of quasi-distribution there is an extra structure function $\sim \frac{z^{\mu} z^{\nu}}{z^{2}}$
It is zero at tree-order but appears at NLO (see e.g. [Radyushkin,17; Braun,et al,18; Izubuchi, et al,18]) Thus, there is no exact WW relation for \mathcal{G}_{T} case

No WW－relation for qITDs and pPDFs

$$
\mathfrak{g}_{T}\left(x, z^{2}\right)-\int_{|x|}^{1} \frac{d y}{y} \mathfrak{g}_{1}\left(y, z^{2}\right)=4 a_{s} C_{F} \int_{|x|}^{1} \frac{d y}{y}(\bar{y}+\ln y) \Delta q\left(\frac{x}{y}\right)+\text { twist-three }+O\left(a_{s}^{2}\right)
$$

No WW－relation for qITDs and pPDFs

$$
\begin{aligned}
\mathrm{g}_{T}\left(x, p_{v}\right)- & 2 \int_{|x|}^{1} d y \mathrm{~g}_{1}\left(\frac{x}{y}, p_{v}\right)= \\
& 8 a_{s} C_{F} \int_{|x|}^{1} d y\left(\ln y \ln \bar{y}-\frac{\ln ^{2} y}{4}+\mathrm{Li}_{2}(\bar{y})\right) \Delta q\left(\frac{x}{y}\right)+\text { twist-three }+O\left(a_{s}^{2}\right)
\end{aligned}
$$

－In principle can be subtracted perturbatively
－Numerical estimate shows that violation is large $\sim 100 \%$ of the twist－ 3 part．
－No WW relation \Rightarrow no Burkhardt－Cottingham sum rules

Theory side

- All (simplest) twist-3 qITDs (pPDFs, qPDFs) are considered $\sim g_{T}(x), h_{L}(x), e(x)$
- LO and NLO expressions for qITDs, pPDFs, qPDFs are derived
- Nothing principally new \Rightarrow routine twist-3 computation

Practical side

- Distribution $\mathcal{E} \sim e(x)$ is pure twist-3
- Distribution $\mathcal{H}_{L} \sim h_{L}(x)$ has twist-2 part
- It can be purified by means of exact JJ-relation for qITDs and pPDFs
- qPDF case violates JJ relation (but it could be improved perturbatively)
- Distribution $\mathcal{G}_{T} \sim g_{T}(x)$ has twist-2 part
- WW-relation is violated by a "hidden" tensor structure $\sim z^{\mu} z^{\nu} / z^{2}$

I believe, that lattice simulation will provide an important input in tw3-physics. But it could be not that simple.

Backup slides

Universitãt Regensburg

IMPORTANT NOTE: no light-cone

$$
\begin{aligned}
& \begin{array}{l}
z^{2} \neq 0 \\
{\left[\bar{q}(z)[z, 0] \gamma^{\mu} q(0)\right]^{\mathrm{tw}-2}=\int_{0}^{1} d \alpha \frac{\partial}{\partial z_{\mu}} \bar{q}(\alpha z)[\alpha z, 0] \not \approx q(0)+O\left(z^{2}\right)} \\
\text { see e.g. (5.10) [Balitsky \& Braun, 89] }
\end{array} \\
& \langle p|\left[\bar{q}(z)[z, 0] \gamma^{\mu} q(0)\right]^{\mathrm{tw}-2}|p\rangle=2 p^{\mu} \int_{-1}^{1} d x e^{i x(p z)} f_{1}(x) \quad \text { twist-2 PDF }
\end{aligned}
$$

IMPORTANT NOTE: no light-cone

$$
\begin{aligned}
& \begin{array}{l}
z^{2} \neq 0 \\
{\left[\bar{q}(z)[z, 0] \gamma^{\mu} q(0)\right]^{\mathrm{tw}-2}=\int_{0}^{1} d \alpha \frac{\partial}{\partial z_{\mu}} \bar{q}(\alpha z)[\alpha z, 0] \not \approx q(0)+O\left(z^{2}\right)} \\
\text { see e.g. (5.10) [Balitsky \& Braun, 89] }
\end{array} \\
& \langle p|\left[\bar{q}(z)[z, 0] \gamma^{\mu} q(0)\right]^{\mathrm{tw}-2}|p\rangle=2 p^{\mu} \int_{-1}^{1} d x e^{i x(p z)} f_{1}(x) \text { twist-2 PDF } \\
& \begin{array}{l}
z^{2}=0 \quad\left[\bar{q}(z)[z, 0] \gamma^{\mu} q(0)\right]^{\mathrm{tw}-2}=\bar{n}^{\mu} \bar{q}(z)[z, 0] \gamma^{+} q(0)
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
{\left[\bar{q}(z)[z, 0] \gamma^{\mu} q(0)\right]^{\mathrm{tw}-2} } & =\bar{n}^{\mu} \bar{q}(z)[z, 0] \gamma^{+} q(0) \\
\left.\left.\langle p| \bar{q}(z)[z, 0] \gamma^{+} q(0)\right|_{z^{2}=0}| | p\right\rangle & =2 p^{+} \int_{-1}^{1} d x e^{i x(p z)} f_{1}(x) \text { same twist-2 PDF }
\end{aligned}
$$

Light-cone limit is very helpful! (but not necessary)

Important points

$$
\begin{aligned}
& \mathbf{B}= a_{s} C_{F} \Gamma(-\epsilon) \mathbf{Z}^{\epsilon} \int_{0}^{1}[d \alpha d \beta d \gamma] \bar{q}\left(z_{12}^{\alpha}\right)\left\{\frac{\gamma^{\mu} \gamma^{\nu} \Gamma \gamma^{\nu} \gamma^{\mu}}{2}+\epsilon \frac{\gamma^{\mu} \nLeftarrow \Gamma \nLeftarrow \gamma^{\mu}}{v^{2}}\right. \\
&\left.+\frac{z_{12}}{2}\left[-\alpha \gamma^{\mu} \nLeftarrow \Gamma \stackrel{\not \partial}{\gamma^{\mu}}-\bar{\beta} \gamma^{\mu} \psi \Gamma \overrightarrow{\not \partial} \gamma^{\mu}+\bar{\alpha} \gamma^{\mu} \overleftarrow{\not \partial} \Gamma \not \psi \gamma^{\mu}+\beta \gamma^{\mu} \overrightarrow{\not \partial} \Gamma \not \psi \gamma^{\mu}\right]\right\} q\left(z_{21}^{\beta}\right) \\
&+z^{2} \ldots
\end{aligned}
$$

Important points

$$
\begin{gathered}
\mathbf{B}=a_{s} C_{F} \Gamma(-\epsilon) \mathbf{Z}^{\epsilon} \int_{0}^{1}[d \alpha d \beta d \gamma] \bar{q}\left(z_{12}^{\alpha}\right)\left\{\begin{array}{r}
\frac{\gamma^{\mu} \gamma^{\nu} \Gamma \gamma^{\nu} \gamma^{\mu}}{2}+\epsilon \frac{\gamma^{\mu} \psi \Gamma \psi \gamma^{\mu}}{v^{2}} \\
\left.+\frac{z_{12}}{2}\left[-\alpha \gamma^{\mu} \psi \Gamma \overleftarrow{\not \partial} \gamma^{\mu}-\bar{\beta} \gamma^{\mu} \psi \Gamma \ddot{\partial} \gamma^{\mu}+\bar{\alpha} \gamma^{\mu} \overleftarrow{\not \partial} \Gamma \not \gamma^{\mu}+\beta \gamma^{\mu} \overrightarrow{\not \partial} \Gamma \psi \gamma^{\mu}\right]\right\} q\left(z_{21}^{\beta}\right) \\
+z^{2} \ldots
\end{array}\right. \\
\text { Mixes structure functions! } \\
\bar{q} \gamma^{\mu} q \sim C_{\|} \otimes \bar{q} \gamma^{\mu} q+\frac{z^{\mu} z^{\nu}}{z^{2}} C_{\perp} \otimes \bar{q} \gamma_{\nu} q \\
C_{\|}=O(1), \quad C_{\perp}=O\left(\alpha_{s}\right)
\end{gathered}
$$

Leads to violation of WW-relation for structure functions

$$
\begin{aligned}
& \mathcal{G}_{T}^{\mathrm{tw} 2}\left(\zeta, z^{2}\right)-\int_{0}^{1} d \alpha \mathcal{G}_{1}\left(\alpha \zeta, \alpha^{2} z^{2}\right)= \\
& =8 a_{s} C_{F} \int_{0}^{1} d \alpha\left(\operatorname{Li}_{2}(\bar{\alpha})+\ln \bar{\alpha} \ln \alpha-\frac{\ln ^{2} \alpha}{4}\right) \widehat{\Delta q}(\alpha \zeta)+\mathcal{O}\left(a_{s}^{2}\right) \\
& \quad \text { no such problem for } h_{L} \text { and } e_{\mathbf{n} l}
\end{aligned}
$$

Important points

$$
\begin{aligned}
\mathbf{B}= & a_{s} C_{F} \Gamma(-\epsilon) \mathbf{Z}^{\epsilon} \int_{0}^{1}[d \alpha d \beta d \gamma] \bar{q}\left(z_{12}^{\alpha}\right)\left\{\frac{\gamma^{\mu} \gamma^{\nu} \Gamma \gamma^{\nu} \gamma^{\mu}}{2}+\epsilon \frac{\gamma^{\mu} \psi \Gamma \psi \gamma^{\mu}}{v^{2}}\right. \\
& \left.+\frac{z_{12}}{2}\left[-\alpha \gamma^{\mu} \psi \Gamma \overleftarrow{\not \partial} \gamma^{\mu}-\bar{\beta} \gamma^{\mu} \psi \Gamma \ddot{\partial} \gamma^{\mu}+\bar{\alpha} \gamma^{\mu} \overleftarrow{\partial} \Gamma \psi \gamma^{\mu}+\beta \gamma^{\mu} \vec{\partial} \Gamma \not \psi \gamma^{\mu}\right]\right\} q\left(z_{21}^{\beta}\right) \\
& +z^{2} \ldots
\end{aligned}
$$

$$
2 \text { point } \rightarrow 3 \text { point }
$$

$$
\not \partial q \rightarrow+i g \AA q+\mathrm{EOM}
$$

This term is not gauge-invariant!
Gauge-dependance cancels once summed with 3-point diags.

