Quark Masses

Andreas S. Kronfeld Fermilab

3rd Proton Mass Workshop: Origin and Perspective Argonne National Laboratory & Planet Earth's Internet January 13–15, 2021

Proton Mass

- We QCD folks like to say that 98% of the nucleon mass and, hence, that of everyday objects is the strong interaction.
- The rest comes from quark masses and, in the Standard Model, that means from quarks burrowing their way through the Higgs field.

up, down, strange

charm, bottom

What's a Quark Mass?

- You can't put a quark on a scale and weigh it.
- Need definition, preferably regularization-independent, in QFT.
- Natural candidate is the "perturbative pole mass." Alas, ambiguous:
 - physics—infrared gluons need to find a sink;
 - mathematics—obstruction to Borel summation of perturbative series;
 - numbers: $m_{b,pole}/\bar{m}_b = (1, 1.093, 1.143, 1.183, 1.224),$ $\bar{m}_h \equiv m_{h,\overline{\mathrm{MS}}}(\bar{m}_h);$
 - nonsense: pole mass makes little sense for a light quark, m_l , because the natural scale for self-energy contributions is m_l itself.

Precise Results from Lattice QCD

- Numerical results [quoting arXiv:1802.04248]: • Masses: $m_{l,\overline{\text{MS}}}(2 \text{ GeV}) = 3.404(14)_{\text{stat}}(08)_{\text{syst}}(19)_{\alpha_s}(04)_{f_{\pi,\text{PDG}}} \text{ MeV}$ $m_{u,\overline{\text{MS}}}(2 \text{ GeV}) = 2.118(17)_{\text{stat}}(32)_{\text{syst}}(12)_{\alpha_s}(03)_{f_{\pi,\text{PDG}}} \text{ MeV}$ $m_{d,\overline{\text{MS}}}(2 \text{ GeV}) = 4.690(30)_{\text{stat}}(36)_{\text{syst}}(26)_{\alpha_s}(06)_{f_{\pi,\text{PDG}}} \text{ MeV}$ $m_{s,\overline{\text{MS}}}(2 \text{ GeV}) = 92.52(40)_{\text{stat}}(18)_{\text{syst}}(52)_{\alpha_s}(12)_{f_{\pi,\text{PDG}}} \text{ MeV}$ $m_{c,\overline{\text{MS}}}(3 \text{ GeV}) = 984.3(4.2)_{\text{stat}}(1.6)_{\text{syst}}(3.2)_{\alpha_s}(0.6)_{f_{\pi,\text{PDG}}} \text{ MeV}$ $m_{b,\overline{\text{MS}}}(m_{b,\overline{\text{MS}}}) = 4203(12)_{\text{stat}}(1)_{\text{syst}}(8)_{\alpha_s}(1)_{f_{\pi,\text{PDG}}} \text{ MeV}$
 - Mass ratios: $m_c/m_s = 11.784(11)_{stat}(17)_{syst}(00)_{\alpha_s}(08)_{f_{\pi,PDG}}$ $m_b/m_s = 53.93(7)_{stat}(8)_{syst}(1)_{\alpha_s}(5)_{f_{\pi,PDG}}$ $m_b/m_c = 4.577(5)_{stat}(7)_{syst}(0)_{\alpha_s}(1)_{f_{\pi,PDG}}$

Heavy Comparisons

• Precision: 0.3% for bottom to 0.5% for charm.

plots from arXiv:1802.04248, arXiv:1805.06225

Light Comparisons

• 0.75% for strange quark.

• 2% for up quark.

plots from arXiv:1802.04248, arXiv:1805.06225

$$M_p - 2m_u - m_d = 0.9905M_p$$

 $M_n - 2m_d - m_u = 0.9878M_n$

Synopsis

- Precise results for all quarks but top (use pQCD + Tevatron, LHC, ILC).
- Good agreement—plots not from FLAG 2019, but results shown are all highly rated.
- Several different methods: RI-SMOM, correlator moments, HQET+MRS.
- Common features:
 - adjust bare lattice mass until chosen hadron mass agrees with PDG;
 - compute a regulator-independent renormalized mass;
 - convert this mass to $\overline{\text{MS}}$ with (multi-loop) perturbation theory.
- Precise results for charm & bottom \Rightarrow light-quark masses via mass ratios.

Outline

- Introduction: precise results for all quarks but top.
- What's a quark mass?
- What does it mean that the quoted up-quark mass has a 2% uncertainty? Or what does "50 sigma from zero" say about the strong CP problem?
 - Requires discussion of renormalization:
 - most of which you know;
 - pay attention to additional additive effects lying beyond perturbation theory.

What's a Quark Mass?

What's a Quark Mass?

- You can't put a quark on a scale and weigh it.
- Need definition, preferably regularization-independent, in QFT.
- Natural candidate is the "perturbative pole mass." Alas, ambiguous:
 - physics—infrared gluons need to find a sink;
 - mathematics—obstruction to Borel summation of perturbative series;
 - numbers: $m_{b,pole}/\bar{m}_b = (1, 1.093, 1.143, 1.183, 1.224),$ $\bar{m}_h \equiv m_{h,\overline{\mathrm{MS}}}(\bar{m}_h);$
 - nonsense: pole mass makes little sense for a light quark, m_l , because the natural scale for self-energy contributions is m_l itself.

Unambiguous Definitions

- All come from quantum field theory:
 - bare mass of a cutoff Lagrangian, e.g., lattice gauge theory;
 - renormalized masses
 - based on a simple physical observable, *e.g.*, correlator moment, quarkonium mass as computed in perturbation theory, ...;
 - Ward identities;
 - regulator-independent via momentum-space subtraction;
 - computationally simple, *e.g.*, (modified) minimal subtraction in dimensional regularization.

Unambiguous Definitions

- All come from quantum field theory:
 - bare mass of a cutoff Lagrangian, *e.g.*, lattice gauge theory;
 - renormalized masses —

- regulator-independent via momentum-space subtraction;
- computationally simple, *e.g.*, (modified) minimal subtraction in dimensional regularization.

Quark Propagator

- Consider quark propagator $FT[q(x)\overline{q}(0)]$.
- The quark field is a 3, so have to choose a (covariant) gauge. Then,

$$\mathsf{FT}[q(x)\bar{q}(0)] = \frac{i}{\not p - m_0 - \Sigma(p^2;m_0)}$$
$$\Sigma(p^2;m_0) = \not p A(p^2;m_0) - C(p^2;m_0)$$

where m_0 is chosen to absorb UV divergences not compensated w/ Z_q .

• The second term could have additive renormalization:

$$C(p^{2};m_{0}) = m_{0}^{*} + (m_{0} - m_{0}^{*})B(p^{2};m_{0}) + O(\Lambda_{\text{QCD}}) + O(m_{d}m_{s}/\Lambda_{\text{QCD}})$$

(linear UV) condensates, renormalons (instantons)

Instantons?

- Here "instanton" is any gauge-field configuration with nonzero topological charge Q.
- Georgi, McArthur (1981) down strange Choi, Kim, Sze Consider Q = 1: Kaplan, Manohar Banks, Nir, Seiberg ri Cohen, Kaplan, Nelson Creutz Srednicki Bardeen (2018) up Zero mode: $(\text{Det} \times S_{up}) r_I e^{-S_I} = \frac{(m_u + \lambda)(m_d + \lambda)(m_s + \lambda)}{(m_u + \lambda)} r_I e^{-S_I}$ $=\frac{m_u m_d m_s}{m_u} r_I \exp \left| -\frac{2\pi}{\alpha_s (1/r_I)} \right|$ $\sim \frac{m_d m_s}{\Lambda_{\rm OCD}}$ when $r_I \Lambda_{\rm QCD} \sim 1$

Instantons?

- Here "instanton" is any gauge-field configuration with nonzero topological charge Q.
- Georgi, McArthur (1981) down strange Choi, Kim, Sze Consider Q = 1: Kaplan, Manohar Banks, Nir, Seiberg r Cohen, Kaplan, Nelson Creutz Srednicki Bardeen (2018) up Zero mode: $(\text{Det} \times S_{up}) r_I e^{-S_I} = \frac{(m_u + \lambda)(m_d + \lambda)(m_s + \lambda)}{(m_u + \lambda)} r_I e^{-S_I}$ $=\frac{m_u m_d m_s}{m_u} r_I$ $(r_I \Lambda_{\rm QCD})$ when $r_I \Lambda_{\rm QCD} \sim 1$

Instantons?

- Here "instanton" is any gauge-field configuration with nonzero topological charge Q.
- Georgi, McArthur (1981) down strange Choi, Kim, Sze Consider Q = 1: Kaplan, Manohar Banks, Nir, Seiberg rI Cohen, Kaplan, Nelson Creutz Srednicki Bardeen (2018) up Zero mode: $(\text{Det} \times S_{\text{up}}) r_I e^{-S_I} = \frac{(m_u + \lambda)(m_d + \lambda)(m_s + \lambda)}{(m_u + \lambda)} r_I e^{-S_I}$ $=\frac{m_u m_d m_s}{r_I}$ $(r_I \Lambda_{\rm QCD})^{18}$ m_{μ} when $r_I \Lambda_{\rm QCD} \sim 1$ 2 MeV?

Pole Mass

• The pole mass is defined via

$$m_{\text{pole}} = \lim_{p^2 \to m_{\text{pole}}^2} \frac{m_0 - C(p^2; m_0)}{1 - A(p^2; m_0)}$$

- If we "knew" m_{pole} , m_0 would be chosen to absorb UV divergences and any additive terms.
- Perturbation theory with a chirally symmetric UV regulator:
 - $C(p^2;m_0) = m_0 B(p^2;m_0)$ and the "nonperturbative" terms are lost;
 - develop asymptotic expansion in α_s for A & B and obtain m_{pole} orderby-order using iteration;
 - infrared finite & gauge independent at every order of perturbation theory.

Pole Mass II

- The natural scale for perturbation theory is of order m_{pole} :
 - fine for heavy quarks with $m \gg \Lambda_{QCD}$, modulo renormalons;
 - for light quarks with $m \leq \Lambda_{\rm QCD}$, even the perturbative loops are long-distance contributions.
- Self energy could be calculated in lattice gauge theory (Landau gauge), establishing a curve on the (m_{pole}, m_0) plane, but with no prospect of converting m_{pole} to anything useful.
- Renormalization is not just supposed to make quantities UV finite:
 - to gain the full power of the renormalization group, one wants to separate long- and short-distance quantities.

Mass-independent Renormalization

- For light quarks, the conceptually (and computationally) cleanest schemes are mass independent.
- (Modified) minimal subtraction MS (MS) is the best known example; limited to dimensional regularization and, thus, perturbation theory.
- Regulator-independent momentum-subtraction:

$$m(\mu) = \frac{m_0 - C(-\mu^2; m_0)}{1 - A(-\mu^2; m_0)} \qquad Z_q(\mu) = 1 - A(-\mu^2)$$

- Renormalized mass $m(\mu)$ vanishes when the numerator vanishes, *i.e.*, at the self-consistent of $m_0^*(\mu) = C(-\mu^2; m_0^*(\mu))$.
- Additive contributions to C (at $p^2 = -\mu^2$) is absorbed into $m_0^*(\mu)$?

Additive Corrections

- With a large, space-like momentum routed through the quark, only shortdistance contributions matter:
 - renormalons disappear;
 - instanton effects now of order $m_d m_s \Lambda^{18} \mu^{-19}$;
 - but now the OPE tells us that condensates appear [Politzer, 1976; Pascual, de Rafael, 1982], e.g., $\langle \bar{q}q \rangle / \mu^2 -$
 - because of fixed gauge, icky condensates like $\langle A^2 \rangle$ can also arise.
- It makes more sense to omit these contributions from the renormalized mass: then a purely perturbative conversion to MS is well-defined.

Mass Ratios

In particular, fitting away the condensates means

$$\frac{m_{Rb}(\mu_R)}{m_{Rc}(\mu_R)} = \frac{m_{\overline{\mathrm{MS}}b}(\mu_{\overline{\mathrm{MS}}})}{m_{\overline{\mathrm{MS}}c}(\mu_{\overline{\mathrm{MS}}})} = \frac{m_{0b}}{m_{0c}} + \mathcal{O}(a^2)$$

in any "mass independent" scheme.

- Last equality holds if the lattice fermions have some chiral symmetry (staggered, overlap)—
 - more work for other lattice fermions (Wilson, domain wall) needed.
- The precise results use staggered fermions.
- Perturbative conversion under best control for heavy quarks; use the ratios to get the up, down, and strange masses.

Methods for Heavy Quarks

RI/SMOM

hep-lat/9411010, arXiv:0712.1061, arXiv:1306.3881, arXiv:1805.06225

- Here, the bare charm mass is fixed to a meson mass.
- The renormalization constant is computed via $Z_m Z_s = 1$, renormalizing the scalar density in a scheme similar to that outlined above:
 - fit away (milder) condensates by varying μ ;
 - extrapolating valence mass to zero to make Z_m mass independent;
 - convert to $\overline{\text{MS}}$ with perturbation theory at ~5 GeV.
- Adjust light bare masses to further meson masses (one-to-one).
- Use ratios of bare masses to obtain light $\overline{\text{MS}}$ masses.

Quarkonium Moments

hep-lat/9505025, arXiv:0805.2999, arXiv:1408.4169, arXiv:1901.06424

- Here, the bare charm (bottom) mass is fixed to a meson mass.
- A physical renormalized charm mass is defined via time moments of the Euclidean correlation function:
 - natural scale is $2m_c$ ($2m_b$), so perturbation theory should work;
 - fit away (mild) condensates by varying m_h in $m_c < m_h < m_b$;
 - analyze moments with $\overline{\text{MS}}$ perturbation theory at ~3–10 GeV.
- Adjust light bare masses to further meson masses (one-to-one).
- Use ratios of bare masses to obtain light $\overline{\text{MS}}$ masses.

HQET ⊕ MRS

arXiv:1701.00347, arXiv:1712.04983, arXiv:1802.04248

- Here, the bare charm (bottom) mass is fixed to a heavy-light meson mass.
- The leading renormalon is removed from the pole mass, called minimal renormalon subtraction (MRS):

$$m_{\text{MRS}} \equiv \bar{m} \left(1 + \sum_{n=0}^{\infty} \left[r_n - R_n \right] \alpha_{\text{g}}^{n+1}(\bar{m}) \right) + \mathscr{J}_{\text{MRS}}(\bar{m})$$

- the $r_n R_n$ are very small; $\mathscr{J}_{MRS}(\bar{m})$ is known exactly and can be computed via a convergent series in $1/\alpha_s(\bar{m})$.
- fit the binding energy away by varying m_h in $m_c < m_h < m_b$:

$$M = m_{\rm MRS} + \bar{\Lambda} + \frac{\mu_{\pi}^2 - \mu_G^2(\bar{m})}{2m_{\rm MRS}} + \cdots$$

• Use ratios of bare masses to obtain light $\overline{\text{MS}}$ masses.

Summary, Outlook

Summary

- Precise bottom and charm masses are determined via three distinct methods with very different systematics:
 - heavy-quark scale makes a clean separation of short- and longdistance contributions possible (OPE, EFT);
 - nonperturbative short-distance contributions are fit away or tiny;
 - tests of reliability of conversion to \overline{MS} .
- Precise light masses are obtained from these via mass ratios that are the same in all mass-independent schemes.
- Precise results from MILC's 2+1+1 HISQ (or 2+1 asqtad) ensembles, *i.e.*, with staggered quarks.

HISQ Ensembles: 2+1+1

MILC, <u>arXiv:1212.4768</u>, <u>arXiv:1712.09262</u>

<i>a</i> (fm)	size	am'i/am's/am'c	# confs	# sources	notes
≈ 0.15	16 ³ × 48	0.0130/0.065/0.838	1020	4	
≈ 0.15	24 ³ × 48	0.0064/0.064/0.828	1000	4	
≈ 0.15	32 ³ × 48	0.00235/0.0647/0.831	1000	4	physical
≈ 0.12	24 ³ × 64	0.0102/0.0509/0.635	1040	4	
≈ 0.12	32 ³ × 64	0.00507/0.0507/0.628	1020	4	also 24 ³ , 40 ³
≈ 0.12	48 ³ × 64	0.00184/0.0507/0.628	999	4	physical
≈ 0.12	24 ³ × 64	0.0102/0.03054/0.635	1020	4	$m_s' < m_s$
≈ 0.12	24 ³ × 64	0.01275/0.01275/0.640	1020	4	$m'_s = m'_l$
≈ 0.12	32 ³ × 64	0.00507/0.0304/0.628	1020	4	$m_s' < m_s$
≈ 0.12	32 ³ × 64	0.00507/0.022815/0.628	1020	4	$m_s' < m_s$
≈ 0.12	32 ³ × 64	0.00507/0.012675/0.628	1020	4	$m_s' \ll m_s$
≈ 0.12	32 ³ × 64	0.00507/0.00507/0.628	1020	4	$m'_s = m'_l$
≈ 0.12	32 ³ × 64	0.0088725/0.022815/0.628	1020	4	$m_s' < m_s$
≈ 0.09	32 ³ × 96	0.0074/0.037/0.440	1005	4	
≈ 0.09	48 ³ × 96	0.00363/0.0363/0.430	999	4	
≈ 0.09	64 ³ × 96	0.0012/0.0363/0.432	484	4	physical
≈ 0.06	48 ³ ×144	0.0048/0.024/0.286	1016	4	
≈ 0.06	64 ³ ×144	0.0024/0.024/0.286	572	4	
≈ 0.06	96 ³ ×192	0.0008/0.022/0.260	842	6	physical
≈ 0.042	64 ³ ×192	0.00316/0.0158/0.188	1167	6	
≈ 0.042	144 ³ ×288	0.000569/0.01555/0.1827	429	6	physical
≈ 0.03	96 ³ ×288	0.00223/0.01115/0.1316	724	4	

Remark

- Idea that $m_u = 2 \text{ MeV}$ could come from instantons seems implausible:
 - such contributions to the self energy enter into pole mass of light quarks, which is not portable;
 - thus, not what lattice QCD does;
 - in RI/(S)MOM scheme this contribution is clearly tiny;
 - similarly for the bare lattice mass, which probably somehow includes effects for r_I in $(250 \text{ GeV})^{-1} \ll r_I < a$;
 - starting from heavy-quark masses, large instantons are not probed.
- Hence, $m_u = 2 \text{ MeV}$ stems from Yukawa coupling at 250 GeV.