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Interaction of a hadron with gravity  

Let us change the metric in long wave, static way
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For e.m. ffs fully relativistic and model independent interpretation in terms of charge distributions can be given within
a phase space approach  /Lorce, PRL125 (2020)/. Analogous interpretation of EMT ffs is possible.

Zitterbewegung is irrelevant here:
• For Integrated quantities (charges) like 
• For large distance asymptotic
• For heavy particles, e.g. for nucleon in the large Nc limit, nuclei, quarkonia
• Everything can be reformulated using phase space Wigner picture /Lorce, PRL125 (2020)/

• Interesting task: to define static EMT in IMF= light cone pressure and shear forces?
      (for charge distributions see /M. Burkardt ’00, G. A. Miller ’07/)

Particular way to localise a hadron.  Other possibilities
and discussion of static EMT in terms of phase-space
Wigner distribution see in /Lorce et al. ’18/

 Compton wave length or amplitude of Zitterbewegung

/Hilbert ‘1915/
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Very well known problem for e.m. ffs /1970’s/

Irrelevant for: 
• Integrated quantities like
• For large distance asymptotics
• For heavy particles, e.g. for nucleon in the large Nc limit, nuclei, quarkonia
• Open interesting problem: to define static EMT on LC = light cone pressure and shear forces?

      (for charge distributions see /M. Burkardt ’00, G. A. Miller ’07/)

Particular way to localise a hadron.  Other possibilities
and discussion of static EMT in terms of phase-space
Wigner distribution see in /Lorce et al. ’18, Lorce, PRL125 (2020)/
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Nucleon gravitational form factors from instantons: forces between quark and gluon
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Using the instanton picture of the QCD vacuum we compute the nucleon c̄Q(t) form factor of the
quark part of the energy momentum tensor (EMT). This form factor describes the non-conservation
of the quark part of EMT and contributes to the quark pressure distribution inside the nucleon.
Also it can be interpreted in terms of forces between quark and gluon subsystems inside the nucleon.
We show that this form factor is parametrically small in the instanton packing fraction. Numerically
we obtain for the nucleon EMT a small value of c̄Q(0) ' 1.4 · 10�2 at the low normalisation point
of ⇠ 0.4 GeV2. This smallness implies interesting physics picture – the forces between quark and
gluon mechanical subsystems are smaller than the forces inside each subsystem. The forces from
side of gluon subsystem squeeze the quark subsystem – they are compression forces. Additionally,
the smallness of c̄Q(t) might justify Teryaev’s equipartition conjecture. We estimate that the
contribution of c̄Q(t) to the pressure distribution inside the nucleon is in the range of 1�20% relative
to the contribution of the quark D-term.

INTRODUCTION

The hadron form factors of energy momentum tensor (EMT) were introduced in 1960’s in Refs. [1, 2] to study the
behaviour of hadrons in curved space-time and to obtain the basic mechanical properties of them. Nowadays the
interest to EMT form factors increased as they can be, in principle, accessed in hard exclusive processes without
invoking very weak gravitational forces and in this way to study in details the mechanical properties of the hadrons.

The symmetric QCD energy-momentum tensor operators for quark and gluon can be obtained by varying the QCD
action in respect to the metric of curved space-time, it has the following form
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The nucleon matrix element of individual pieces of EMT operator can be parameterized as the following expression,
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N

where M
N

is the nucleon mass. Due to EMT conservation,
Eq. (3), the constraint

P
a

c̄a(t) = 0 holds
The physics interpretation of the EMT form factors, their calculation in various models, and extraction from

experimental data were extensively discussed in recent review [3]. Here we concentrate on the form factor c̄Q(t) =P
a=u,d,s,...

c̄a(t), which describes the non-conservation of EMT for individual quark and gluon pieces. This form factor
is important to determine the pressure forces distribution in the nucleon individually for quarks and gluons, and to
study the forces between quark and gluon subsystems in the nucleon. The form factor c̄Q(t) is the least studied, we
are aware only about the calculation of c̄Q(t) in the bag model with the result of c̄Q(0) ' �1/4 [4]. The value resulted
from the relation c̄Q(0) = �AQ(0)/4 in the bag model [4], however the authors of [4] stressed that this relation is not
true in QCD because the renormalised quark part of the energy-momentum tensor has a trace anomaly. The relations
of c̄Q(t) to twist-4 generalised parton distributions (GPDs) were derived in Refs. [5, 6, 9].

Kobzarev, Okun ’1962 , Pagels ‘1966

EMT form factors for the nucleon

The name  “D-term” is rather technical, it can be traced back to more or less accidental notations chosen 
in /Weiss, MVP ’99/. Nowadays, given more clear physics meaning of this quantity, we might call this term as
 “Druck-term” derived from German word for pressure
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The physics interpretation of the EMT form factors, their calculation in various models, and extraction from

experimental data were extensively discussed in recent review [3]. Here we concentrate on the form factor c̄Q(t) =P
a=u,d,s,...

c̄a(t), which describes the non-conservation of EMT for individual quark and gluon pieces. This form factor
is important to determine the pressure forces distribution in the nucleon individually for quarks and gluons, and to
study the forces between quark and gluon subsystems in the nucleon. The form factor c̄Q(t) is the least studied, we
are aware only about the calculation of c̄Q(t) in the bag model with the result of c̄Q(0) ' �1/4 [4]. The value resulted
from the relation c̄Q(0) = �AQ(0)/4 in the bag model [4], however the authors of [4] stressed that this relation is not
true in QCD because the renormalised quark part of the energy-momentum tensor has a trace anomaly. The relations
of c̄Q(t) to twist-4 generalised parton distributions (GPDs) were derived in Refs. [5, 6, 9].
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Interaction of the nucleon with gravity  

O. Teryaev called it nucleon “cosmological term” 
a) related to forces between quark and gluon subsystems /HDSon,MVP’18/
b) contribute to “gluon” and “quark” parts of  energy density (mass 

decomposition) /Lorce ’18/
c) instanton contribution to nucleon                          /HDSon,MVP’18/
d)              for Goldstone bosons /Schweitzer, MVP ‘19/

a = g,Q (gluon or quark parts)
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Three global fundamental mechanical properties of hadrons: M, J, D
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M, J, D are independent of way we localise hadron

Variations of (00) and (0l) components of metric
can be such that the Riemann tensor =0, e.g. just
going to non-inertial reference frame
That is why we can measure the mass by the shape 
of particle track in external em field, or Earth 
angular velocity with help of Foucault pendulum

Variation of (ik) components necessarily leads to
non-zero Riemann tensor =“true gravity” 
Probably that is why D-term, being as fundamental 
as M & J, escaped attention of the community

D-term is a global and fundamental quantity related to the distribution of strong forces 
(pressure and shear) inside a hadron

MVP ‘2003

Two the most important particle properties:

Unexplored property:

MVP ‘2003



Effective chiral action for nucleon and pions in external grav. field
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New LECs: interaction with curvature
/Alharazin, Djukanovic, Gegelia, MVP ’20/

based on /Alharazin, Djukanovic, Gegelia, MVP ’20/

Chiral expansion of D-term
/Alharazin, Djukanovic, Gegelia, MVP ’20/Computed previously /Belitsky, XD Ji ’02/

Computed previously /Diehl, Manashov, Schafer ’06/
we corrected their mistake. New result might be important
to revisit chiral extrapolation of lattice data!

D-term is related to interaction with space-time curvature



Effective chiral action for nucleon and pions in external grav. field
based on /Alharazin, Djukanovic, Gegelia, MVP ’20/

2

the terms containing information about the mass and the spin (the first line in Eq. (3)) are non-zero also in the
Minkowski space-time. Clearly, to access the mass and the spin it is enough to make a metric variation with zero
Riemann tensor (just choosing the non-inertial reference frame), whereas the D-term can be obtained only by the
variation with non-trivial curvature.

The values of the nucleon D-term and of the low-energy constant c8 are a priori unknown. However, as they are
related to distribution of internal forces in the nucleon, these quantities are restricted by the mechanical stability
conditions, see discussions in Refs. [5, 8, 9]. In particular, the stability conditions imply that the nucleon D-term (and
hence the constant c8) should be negative [5, 8, 9]. The first experimental information on the nucleon D-term [10–12]
indicates that D < 0. The model and the QCD lattice calculations also provide with negative values of the nucleon
D-term, see the review in Ref. [5]. In the present paper we strengthen the stability bound D < 0 using additional
information on the chiral expansion of the nucleon gravitational form factors obtained in Ref. [6].

2.To have notations coherent with the review [5] we introduce the gravitational D(t) form factor by rescaling the
form factor in Eq. (1) as: D̄(t) = mND(t). The distributions of the pressure p(r) and shear force s(r) can be
obtained in terms of D(t) through [4, 5]:
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In Refs. [5, 8, 9] it was argued that for the stability of the mechanical system the pressure and shear forces should
satisfy the following inequality:
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Using Eq. (5) we see that this stability condition equivalently can written as:
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implying that the function eD(r) is a monotonically increasing function. For large distance eD(r) ! 0, therefore one
of the consequences of the stability inequality (7) is the condition:
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for an arbitrary distance parameter R0. For large enough R0, the right hand side of above equation can be computed
in the chiral e↵ective field theory. For that, by assuming the dispersion relation for the form factor D(t) without
subtraction, one can easily obtain:
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The large R0 behaviour of the integral in this equation is governed by the small t expansion of ImD(t + i0). The
latter can be obtained using the chiral e↵ective field theory. Such expansion has been performed in Ref. [6] to the
fourth order of chiral expansion. The result for the imaginary part of D(t) has the following form:
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Im part of D(t). Is useful for dispersion relations analysis 

E. g. strong forces in nucleon periphery (chiral limit example): 
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Performing 3D Fourier transformation of these expressions we obtain the large distance behavior of the spatial distributions
in the parametrically wide region 1=Λstrong ≪ r ≪ 1=Mπ:

ρEðrÞ ¼
9g2A

64π2F2

1

r6
−
3ð10g2A=mN þ ðc2 þ 10c3ÞÞ

16π3F2

1

r7
þO

!
1

r8

"
; ð23Þ

ρJðrÞ ¼
5g2A

64π3F2

1

r5
−

9g2A
64π2F2mN

1

r6
þO

!
1

r7

"
; ð24Þ

D̃ðrÞ ¼ −
3g2AmN

128π2F2

1

r4
þ 3ð5g2A þ 4ðc2 þ 5c3ÞmNÞ

160π3F2

1

r5
þO

!
1

r6

"
: ð25Þ

Using Eq. (25) in Eq. (21) we obtain the large distance behavior of the pressure and shear force distributions:

pðrÞ ¼ −
3g2A

64π2F2

1

r6
þ ð5g2A=mN þ 4ðc2 þ 5c3ÞÞ

16π3F2

1

r7
þO

!
1

r8

"
;

sðrÞ ¼ 9g2A
64π2F2

1

r6
−
21ð5g2A=mN þ 4ðc2 þ 5c3ÞÞ

128π3F2

1

r7
þO

!
1

r8

"
: ð26Þ

The leading terms (∼1=r6) in Eq. (26) have been obtained
for the first time in Ref. [48] in the framework of the soliton
picture of the nucleon. The obtained large distance asymp-
totics can be useful for the analysis of lattice data on GFFs
of the nucleon and for deriving general constraints on the
GFFs. To illustrate the latter point we note that the large
distance behavior of the energy density, given by Eq. (23),
and of pressure and the shear force distributions, specified in
Eq. (26), satisfy the general stability conditions—ρEðrÞ > 0
and 2

3 sðrÞ þ pðrÞ > 0, see discussion in Ref. [5].
Furthermore with help of expression for JðtÞ in Eq. (22)

we can obtain large impact-parameter behavior of the
distributions of Belinfante-improved total angular momen-
tum. The latter is defined as [46]:

hJBeliðb⊥Þ ¼ −
1

2
b⊥

∂
∂b⊥

Z
d2Δ⊥
ð2πÞ2

e−ib⊥Δ⊥Jð−Δ⊥2Þ: ð27Þ

Performing the 2D Fourier transformation we obtain the
large b⊥ asymptotics of hJBeliðb⊥Þ as:

hJBeliðb⊥Þ ¼
g2A

16π3F2

1

b4⊥
−

135g2A
2048πF2mN

1

b5⊥
þO

!
1

b6⊥

"
:

ð28Þ

This model-independent asymptotics is valid in the para-
metrically wide region 1=Λstrong ≪ b⊥ ≪ 1=Mπ and can be

CHIRAL THEORY OF NUCLEONS AND PIONS IN THE … PHYS. REV. D 102, 076023 (2020)

076023-7

Note that at nucleon periphery
dFr

dSr
=

2

3
s(r) + p(r) � 0

Many other applications:
- Soft hadron reactions in grav. field, e.g. pion gravitoproduction
- Maybe relevant for physics of LIGO mergers
- Low energy gravitoproduction can be probed in a lab,  e.g 

        non-diagonal DVCS (ongoing analysis at CLAS12, plans for EIC)
       ……………..

Useful for derivation general stability 
conditions and inequalities for strong 
forces.
Also it is important to describe large
distance interaction of quarkonia with 
the nucleon. Due to the trace anomaly
the pressure here plays important role
See talk by D. Kharzeev today.



Total p(r) and s(r), normal and tangential forces, stability conditions 

The force acting on the area element d~S = dSr~er + dS✓~e✓ + dS�~e�

dFr

dSr
=

2

3
s(r) + p(r),

dF✓

dS✓
=

dF�

dS�
= �1

3
s(r) + p(r).

Normal forces Tangential forces

Eigenvalues of stress tensor

Goeke et al.  ‘2007

Stability condition
(spatial trace of EMT does not
  contribute to the mass)

dFr

dSr
=

2

3
s(r) + p(r) � 0

Z
d3r p(r) = 0 von Laue ‘1911

Local stability condition
(Conjecture /Perevalova, Schweitzer, MVP’ 17/
similar conjectures in astrophysics /Zeldovich, Novikov’ 62, Herrera’ 98/)

D-term D(0) = � 4m

15

Z
d3r r2 s(r) = m

Z
d3r r2 p(r)  0

All calculations of the D-term in various approaches give negative value for it.

For some systems the D-term is fixed by general principles:

D(0) = �1 Goldstone bosons (pions etc.) Novikov, Shifman ‘1980
Voloshin, Zakharov’ 1980

Free fermions Donoghue et al.’ 02, Hudson, Schweitzer  ‘17D(0) = 0
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The von Laue condition can be proven in exactly the same way also in the Skyrme model [180] and bag model [197].
These models have in common that they describe the nucleon in terms of a static mean field, even though in these
models the mean fields are realized in much di↵erent ways. The generic mean field picture of the nucleon is justfied in
QCD in the large-N

c

limit [198, 199]. Thus, the connection of the von Laue condition and the virial theorem is of
more general character than the respective models: it holds in the large-N

c

limit in QCD. It is not known whether a
connection of the von Laue condition and extrema of the action can be established also in QCD with finite N

c

.
It is interesting to investigate what happens when one increases the value of the current quark masses (as it was

routinely done until recently in lattice QCD studies). In this case the hadron masses increase, while their sizes decrease.
For the EMT densities it has the following implications: the energy density in the center of the nucleon increases and
so does the pressure, see Fig. 5. This implies a more negative D-term [178].
Modifications of the D-term of the nucleon in nuclear matter were studied in [200, 201]. As the density of the

nuclear medium increases, the energy density in the center of the nucleon bound in the medium and the pressure both
decrease. The size of the system, however, grows and the D-term becomes more negative [200, 201].

Chiral perturbation theory cannot predict the value of the nucleon D-term, but it predicts its m
⇡

-dependence and
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Figure 4. EMT densities of the nucleon from the chiral quark soliton [126]. (a) Energy density T00(r), (b) densities p(r) and
s(r) of the stress tensor Tij(r), and (c) 4⇡r2p(r) where the shaded areas above and below the x-axis are exactly equal to each
other which demonstrates how the von Laue condition (31) is realized. (d) The integrand of the D-term is proportional to r

4
p(r)

and yields D < 0 upon integration. The negative sign of D emerges as a natural consequence of the “stability pattern” [126].
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Figure 5. The pion mass dependence of the nucleon EMT densities from chiral quark soliton [178] from the chiral limit up to
m⇡ of the order of magnitude of the kaon mass. (a) Energy density normalized as 4⇡r2T00(r)/m such that the curves integrate
to unity, and (b) r2p(r) which integrates to zero. (c) The pressure in the center as function of the energy density in the center.
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These models have in common that they describe the nucleon in terms of a static mean field, even though in these
models the mean fields are realized in much di↵erent ways. The generic mean field picture of the nucleon is justfied in
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limit in QCD. It is not known whether a
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It is interesting to investigate what happens when one increases the value of the current quark masses (as it was
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(dFi = TijdSj)

D(0) = �4⇡

3
� MA R4

A ⇠ �A7/3 Heavy nuclei  MVP  ‘2003

Surface tension coeff in Weizsäcker mass formula ~ 1 MeV/fm^2

Talk by P. Schweitzer



Stability conditions for low dimensional sub-systems in the nucleon 

p(n�1)D(r) = � 1

n
s(nD)(r) + p(nD)(r), s(n�1)D(r) =

n� 1

n� 2
s(nD)(r)

Generically, the dimensional reduction:

The von Laue stability conditions for n-dimensional subsystem is: 
Z

dV (nD) p(nD)(r) = 0

We can view the nucleon as a dimensional reduction of an object in higher dimensions!
AdS/QCD ? We found that the pressure in 2D subsystem of chiral soliton is governed by 2D baby 
Skyrmions.  Relations to exactly solvable 2D models?



Size of the forces in the nucleon. Comparison with confinement 
forces 

21

nucleon – they are distinguished by the chirality of the tangential forces. It would be interesting to understand at the
microscopic level the physical reasons for the emergence of these two di↵erent regions.
In the lattice QCD study [184] a hybrid approach based on domain wall valence quarks with 2 + 1 flavors of

improved staggered sea quarks was used. The range 0.1GeV2 < �t < 1.2GeV2 was covered for pion masses from
760MeV down to 350MeV. Depending on the chiral extrapolation method the following values were obtained which
do not include disconnected diagrams: DQ = �1.07 ± 0.25 using covariant baryon chiral perturbation theory, and
DQ = �1.68± 0.22 using heavy baryon chiral perturbation theory at the physical value of the pion mass in MS scheme
at µ2 = 4GeV2. The quark contribution to the D-term from dispersion relations [185] refers to the same µ2 and is in
the range �1.54 . DQ . �1.27 in good agreement with the lattice result. Considering that the results from chiral
models (70) show the total D-term, the dispersion relation and lattice result agree well with these models [178, 180].
The nucleon EMT form factors A(t) and B(t) were also studied in approaches based on light front wave functions

such as AdS/QCD models or spectator models [186–191, 194–196]. Such models are often based on a light-front Fock
state expansion. Typically the form factors A(t) and B(t) can be evaluated, which are simply related to the helicity
non-flip and helicity flip matrix elements of the component T̂

++

of the EMT. Being related to the stress tensor T̂
ij

the form factor D(t) naturally “mixes” good and bad light-front components and is described in terms of transitions
between di↵erent Fock state components in overlap representation. As a quantity intrinsically non-diagonal in a Fock
space, it is di�cult to study the D-term in approaches based on light-front wave-functions. This is due to the relation
of the D-term to internal dynamics: a complete description of a hadron requires the inclusion of all Fock components.

D. Size of the forces in the nucleon, and comparison with linear potential confinement forces

Very frequently, e.g. in colour tube models, the confinement forces are related to the linear potential V
conf

(r) = �r,
where � ⇠ 1GeV/fm is estimated from the slope of meson Regge trajectories. Recently the spatial distribution of the
stress tensor for a heavy quark Q̄Q pair was directly measured on the lattice: the typical size of the forces ⇠ 1GeV/fm
was confirmed [205]. Such a linear interquark potential corresponds to a constant force between quarks F = �. Our
aim is to compare this force with the forces encoded in the stress tensor.
The spherical shell of radius r in the nucleon experiences the normal force F

n

= 4⇡r2[ 2
3

s(r) + p(r)] and tangential
force F

t

= 4⇡r2[� 1

3

s(r) + p(r)]. We use the chiral quark-soliton model (�QSM) results of Ref. [126] to compute the
corresponding forces. The result is shown on Fig. 7, we see that the maximally achieved strength is five times smaller
than the confining forces in a colour tube model.

E. Spin-1 hadrons

Light vector mesons were studied in Ref. [206] using light-front wave-functions obtained from an AdS/QCD model.
For the ⇢-meson the mean square radius of the energy density was found to be hr2i

E

= 0.21 fm2. This is significantly
smaller then the mean square charge radius of ⇢+ determined to be hr2i

ch

= 0.53 fm2 in the same approach [207].
The GPDs for the deuteron were introduced in [192] and studied in details in Ref. [193]. The EMT form factors of

the deuteron were studied in Ref. [208] using a deuteron wave function from a softwall AdS/QCD model. The D-term

-0.1

 0

 0.1

 0.2

 0  0.5  1  1.5

 F(r)  [GeV fm
-1

]

r [fm]

Fn(r)

Ft(r)

Figure 7. The normal force Fn = 4⇡r2[ 23s(r) + p(r)] (solid) and tangential force Ft = 4⇡r2[� 1
3s(r) + p(r)] (doted) experienced

by a spherical shell of radius r in the nucleon computed in the �QSM.

Fn = 4⇡r2
✓
2

3
s(r) + p(r)

◆

Ft = 4⇡r2
✓
�1

3
s(r) + p(r)

◆
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the small-t behavior of D(t) [202–204]. The slope of D(t) at zero-momentum transfer diverges in the chiral limit as
D0(0) ⇠ 1/m

⇡

. This behavior is reproduced also in chiral models [126, 180].
In Section XII the mechanical radius of a hadron was defined not in terms of the slope of D(t). Applying the

definition of the mechanical radius (41) to the nucleon case, one can see on general grounds that the corresponding
mechanical radius (in contrast to D0(0) and to the charge radius of the nucleon) is finite in the chiral limit (m

⇡

! 0).
Therefore, one expects that the nucleon mechanical radius should be smaller than, say, the charge radius. Indeed, the
chiral quark soliton model predicts the mechanical radius of the proton to be about 25% smaller than its mean square
charge radius: hr2i

mech

⇡ 0.75 hr2i
charge

.
It is instructive to see details of the strong forces distribution inside the nucleon. The radial (normal) forces in

Eq. (43), are always “stretching” (directed outwards the nucleon centre) and monotonically decrease with distance from
the centre. The distribution of the tangential forces provides us with further fine details of how the strong forces keep
the nucleon together. From the stability condition (46) it is clear that the tangential force must at least once change
its direction. Studying these forces one can pose very intriguing questions about nature of strong forces – how many
times do the forces change from “stretching” to “squeezing”? What does this number mean? What does distinguish
the regions of “stretching” and “squeezing”? What do we learn about the confinement mechanism from this?
Presently we are not able to answer the above posed questions. Here we just report the results on the force

distribution in the nucleon from models. In Fig. (6) we plot the vector field of the �-component of the tangential force
(the 2D vector vector field 4⇡r2T

ij

e�
j

) inside the nucleon9 obtained from EMT densities from the chiral quark soliton
model [126].

One clearly sees that at a distance of r ⇡ 0.5 fm from the nucleon centre the tangential force changes its direction,
and turns from “stretching” to “squeezing”. Thus, we see that there are two qualitatively di↵erent regions inside the

Figure 6. Visualisation of the �-component of the tangential force (the 2D vector vector field 4⇡r2Tije
�
j ) distribution in the

nucleon from the chiral quark soliton model. The radius of the disc on the figure is 1.5 fm, the colour legend gives the absolute
value of the tangential force in GeV/fm.

9 See also recent lattice calculations of the spatial distribution of forces for the heavy quark Q̄Q pair in Ref. [205]. The formalism provided
here paves a way to perform analogous studies on the lattice for hadrons.

Compare with the linear potential force of ~1 GeV/fm !

What does it imply for pictures of the confinement?

�2 � D(0) � �4

Values of D-term for the nucleon:

Chiral Quark Soliton model Goeke et al.  ‘2007Boffi, Radici,  Schweitzer ‘2001

DQ(0) ⇡ �1.56 at µ = 4 GeV2 Dispersion relations Pasquini, Vanderhaeghen, MVP ‘2014

stretching squeezing

Goeke et al.  ‘2007
Large Nc nucleon =
chiral soliton
Detailed discussion in
P. Schweitzer talk today



Accessing D(t) in hard exclusive processes
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γ
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π0
(P)

π0
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γ
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γ
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Figure 1. (a) A natural but impractical probe of EMT form factors is scattering o↵ gravitons. (b) Hard-exclusive reactions like
deeply virtual Compton scattering (DVCS) provide a realistic way to access EMT form factors through GPDs. Here one of the
relevant tree-level diagrams is shown. (c) Information on the EMT structure of particles not available as targets, such as e.g. ⇡0,
can also be accessed from studies of generalized distribution amplitudes (GDAs) which are an “analytic continuation” of GPDs
to the crossed channel. The shown reaction �

⇤
� ! ⇡

0
⇡

0 (and analog for other hadrons) can be studied in e

+
e

� collisions.

VI. THE LAST GLOBAL UNKNOWN PROPERTY OF A HADRON

The D-term is sometimes referred to as the “last unknown global property.” To explain what this means we recall
that the structure of hadrons, the bound states of strong interactions, is most conveniently probed by exploring
the other fundamental forces: electromagnetic, weak, and (in principle) gravitational interactions. The particles
couple to these interactions via the fundamental currents Jµ

em

, Jµ

weak

, Tµ⌫

grav

which are conserved (in case of weak
interactions we deal with partial conservation of the axial current, PCAC). The matrix elements of these currents are
described in terms of form factors which contain a wealth of information on the probed particle. The undoubtedly most
fundamental information corresponds to the form factors at zero momentum transfer. For the nucleon, these are the
“global properties:” electric charge Q, magnetic moment µ, axial coupling constant g

A

, induced pseudo-scalar coupling
constant g

p

, mass M , spin J , and the D-term D. These properties, being related to external conserved currents, are
scale- and scheme-independent in QCD. All global properties are in principle on equal footing and well-known, see
Table I, with one exception: the D-term.

em: @µJ
µ
em = 0 hN 0|Jµ

em|Ni �! Q = 1.602176487(40)⇥ 10�19C
µ = 2.792847356(23)µN

weak: PCAC hN 0|Jµ
weak|Ni �! gA = 1.2694(28)

gp = 8.06(55)

gravity: @µT
µ⌫
grav = 0 hN 0|Tµ⌫

grav |Ni �! m = 938.272013(23)MeV/c

2

J = 1
2

D = ?

Table I. The global properties of the proton defined in terms of matrix elements of the conserved currents associated with
respectively electromagnetic, weak, and gravitational interaction. Notice the weak currents include the partially conserved axial
current, and gA or gp are strictly speaking defined in terms of transition matrix elements in the neutron �-decay or muon-capture.
The values of the properties are from the particle data book [107] and [108] (for gp) except for the unknown D-term.

In some cases (e.g. free particles, Goldstone bosons) the value of the D-term is fixed by general principles (see
discussions below). For other particles the D-term is not fixed and it reflects the internal dynamics of the system
through the distribution of forces. In strongly interacting systems the D-term is sensitive to correlations in the system.
For example, the baryon D-term behaves as ⇠ N2

c

whereas all other global observables (mass, magnetic moments, axial
charge, etc.) behave at most as ⇠ N

c

in the large N
c

limit. For a large nucleus the D-term shows also anomalously
fast increase with the atomic mass number D ⇠ A7/3.

Unfortunately the Mellin moments are not observable in model independent way.  However, D(t)
is related to subtraction constant in dispersion relations for amplitudes (observables!)

H(⇠, t) =

Z 1

�1
dx

✓
1

⇠ � x� i0
� 1

⇠ + x� i0

◆
H(x, ⇠, t)

ReH(⇠, t) = �(t) +
1

⇡
vp

Z 1

0
d⇠0 ImH(⇠0, t)

✓
1

⇠ � ⇠0
� 1

⇠ + ⇠0

◆

�(t) =
4

5

X

q

e2q Dq(t) +
X

q

e2q dq3(t) + ...

D(t) is more easy access than J(t). It is possible model independent extraction of D(t) in contrast to J(t)

MVP ‘2003 (small-x DR)
Teryaev ‘2005
Anikin, Teryaev ‘2007
Diehl, Ivanov ‘2007

Z 1

�1
dx xHa(x, ⇠, t) = Aa(t) + ⇠2Da(t) ,

Z 1

�1
dx xEa(x, ⇠, t) = 2Ja(t)�Aa(t)� ⇠2Da(t) .

X. D. Ji ’96

DVCS amplitude at LO (directly measurable!)
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The KM15 fit Eq. (75) corresponds to the negative D-term of DQ = �2.0 at µ2 = 4 GeV2 with about 20% statistical
uncertainty and unestimated systematic one. The result of the KM15 fit [20] corresponding to Eqs. (75,76) is shown in
Fig. 10 in comparison with theoretical predictions and other fits to DVCS data.

Recently an analysis of the JLab data [90, 101]12 was reported [222] where an experimental information on the quark
contribution to the D-term was also extracted. Additionally, the pressure distribution in the proton was presented in
Ref. [222]. Below we compare the theoretical predictions with the data on the form factor, and not with the pressure
distribution of [222] as the latter was obtained under model assumptions which are still missing clear justification.

In Ref. [222] the dispersion relations subtraction constant �(t) (see Eq. (72) for the definition) at the normalisation
point of µ2 = 1.5 GeV2 was presented on their Fig. 4 [223]. The main di↵erence of the analysis in [222] with that in
[20] is the much smaller systematic uncertainties in the former. This di↵erence calls for a clarification.
The DQ(t) form factor obtained from the analysis of [222] with help of Eq. (76) is also shown in Fig. 10 where for

comparison we include the results for the D-term form factor from dispersion relations [185], lattice QCD [184] and
models [126, 174, 180].
The dispersion relation study of Ref. [185] used information on pion parton distribution functions which fixes the

overall normalization of the form factor: in Fig. 10 the result for DQ(t) is shown which is normalized as DQ = �1.56.
The results from the dispersion relations and lattice QCD show the quark contribution to DQ(t) and refer to the scale
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Figure 10. The D

Q(t) form factor obtained from the KM15 fit [20] in comparison to D

Q(t) obtained form Je↵erson Lab analysis
[222], to calculations from dispersion relations [185], lattice QCD [184], and results from the bag [174], chiral quark soliton [126]
and Skyrme [180] model. The JLab data [222] refers to the normalisation point of µ2 = 1.5 GeV2, KM15 fit, dispersion relations
and lattice results show the contribution of quarks to the D-term at the QCD scale of 4GeV2. The bag and Skyrme models show

the total D-term which is renormalization scale independent. The result from chiral quark soliton refers to the low normalisation point

of µ

2 ' 0.4 GeV

2

12 These data are included in the experimental database of Ref. [20]

Recent analysis of CLAS data
• CLAS result

based on: Girod et al PRL 100 (2008) 162002, Jo et al PRL 115 (2015) 212003

Burkert, Elouadrhiri, Girod, Nature 557, 396 (2018) ← Latifa (Monday)

see talk: V. Burkert, SPIN 2016 in Urbana-Champaign, Sep. 2016
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D-term = subtraction term in
fixed-t dispersion relations for ADVCS

Teryaev hep-ph/0510031

Anikin, Teryaev, PRD76, 056007 (2007)

Diehl and Ivanov, EPJC52, 919 (2007)

Radyushkin, PRD83, 076006 (2011)

subtraction term ∼ d1 + d3 + d5 + . . .
the di → 0 for i > 1 with Q2 →∞

assumed d3, d5, . . . small compared to d1
working assumption (do better → future data)

chiral quark-soliton dq3/d
q
1 = 0.3, dq5/d

q
1 = 0.1

Kivel, Polyakov, Vanderhaeghen, PRD63 (2001)

Dq(t) = 4
5
dq1(t)

⇒ CLAS, KM-fits, dispersion relations, models, lattice: D-term negative & sizeable!

(double-checking if same normalization in analysis and calculations) Exciting! What do we learn?

1) D-term negative and sizeable
2) Agrees with chiral quark soliton model
      DR calculations

The systematic uncertainty needs more detailed
estimate!

Details in [K. Kumericki, Nature 570 (2019)]
and in [Dutrieux, Lorce et al. (2021)]



 gravitational D-form factor is related to “elastic properties” of the nucleon, and gives access to 
details of strong forces inside the nucleon.

 D(0) (the D-term) is the last unexplored global (in the same sense as mass and spin) property of 
the nucleon 

 First experimental results for D(t) of the nucleon and of the pion are obtained. It is negative, as 
expected from stability conditions.

 Cbar(t) (“nucleon cosmological term” ) FF is important to understand forces between quark and 
gluon subsystems inside hadrons. Instanton picture of QCD vacuum predicts small positive value of 
the FF.  That corresponds to compression forces experienced by quark subsystem (at variance with 
lattice results) 

Conclusions

Outlook

 knowledge of the D-term can be important to understand hadron interaction in gravitational field 
relevant to BH or NS mergers (LIGO events). 

 the pressure distribution inside hadrons important to understand the physics of quarkonia 
interaction with the nucleon and the physics of hadro-charmonia (LHCb pentaquarks, tetraquarks 
with hidden charm) 

 several theoretical issues - relation between pressure and energy density (elastic waves in 
hadrons?), analogies with cosmology, hadrons as projection of higher dimensional objects, relations to 
exactly solvable 2D models, etc.   

Gegelia, MVP  in preparation

Eides, Petrov, MVP ‘2016, Perevalova, Schweitzer, MVP ‘2017,
Panteleeva, Perevalova, Schweitzer, MVP ‘2018
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Mechanical radius and surface tension 

dFr

dSr
=

2

3
s(r) + p(r) � 0

Positive quantity - allows to define the mechanical radius

hr2imech =

R
d3r r2

⇥
2
3s(r) + p(r)

⇤
R
d3r

⇥
2
3s(r) + p(r)

⇤ =
6D(0)

R 0
�1 dt D(t)

Note that mech radius is NOT the slope of D(t) 

For a liquid drop

p(r) = p0✓(r �R)� p0R

3
�(r �R), s(r) = ��(r �R),

relation to stability: EMT conservation ⇔ ∂µT̂µν = 0 ⇔ ∇iTij(r⃗ ) = 0

↪→ necessary condition for stability

∫ ∞

0

dr r2 p(r) = 0 (von Laue, 1911)

D = −
16π

15
m

∫ ∞

0

dr r4s(r) = 4πm

∫ ∞

0

dr r4 p(r) → shows how internal forces balance

let’s gain intuition from models:

• liquid drop model of nucleus

s(r)
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-1

 0

 1

 2

 3

 0  1  

  p(r) & s(r)  in units of p0

r in R0   

liquid drop

p(r)
s(r)

radius RA = R0A1/3, mA = m0A

surface tension γ = 1
2
p0RA, s(r) = γ δ(r −RA)

pressure p(r) = p0Θ(RA − r)− 1
3
p0RA δ(r −RA)

D-term D = −4π
3
mA γ R4

A ≈ −0.2A7/3

M.V.Polyakov PLB555 (2003);

tested in Walecka model Guzey, Siddikov (2006)

p0 = 2�/R
Relation between pressure in the drop and the surface
tension Lord Kelvin ‘1858

p(0) =

Z 1

0
dr

2s(r)

r

dFr

dSr
=

2

3
s(r) + p(r) = p0✓(r �R)Hence for a liquid drop

mechanical radius has the intuitive clear value

For general systems one can obtain the generalisation of the Kelvin relation

s(r) can be called surface tension for the system



Mechanical radius and surface tension 

The surface tension energy
Z

d3r s(r) = � 3

8m

Z 0

�1
dt D(t)

This energy must be less than the total energy of the system
Z

d3r s(r)  m this implies

hr2imech � �9D/(4m2)
we checked that for stable systems (stable solitons) is always satisfied.
Violated for unstable systems!

hr2imech ⇡ 0.75 hr2icharge in chiral soliton picture of the nucleon

Shear forces distribution s(r) is important for forming the shape of the hadron. 
For s(r)=0 the hadron corresponds to homogeneous, isotropic fluid. Hence has infinite
mechanical radius.  Non-zero s(r) is responsible for hadron structure formation!

Interestingly the pressure anisotropy (shear forces distribution) plays an essential role in 
astrophysics, see the review [Herrera:1997plx] on the role of pressure  asymmetry  for self-
gravitating systems in astrophysics and cosmology. 



Nucleon “cosmological term”.
Interaction of the gluon and quark subsystems inside the nucleon  

hp0|T a
µ⌫(0)|pi = ū0


Aa(t)

PµP⌫

MN
+ Ja(t)

i P{µ�⌫}⇢�
⇢

2MN
+Da(t)

�µ�⌫ � gµ⌫�2

4MN
+MN c̄a(t)gµ⌫

�
u

In QCD: @µT
Q
µ⌫ = �g  ̄Gµ⌫�µ @µT

g
µ⌫ = �1

2
tr (G⌫↵ [D�, G�↵])

@µ(T
Q
µ⌫ + T g

µ⌫) = 0 due to EOM [D�, G�↵] = ja↵t
a with ja↵ = �g  ̄�↵t

a 

@µT
Q
µ⌫ = Ga

µ⌫ jaµ Expression for the Lorentz force experienced by a quark
in external gluon field. We may expect that Cbar(t) is
related to forces between quark and gluon subsystems.

��MN c̄Q(t) ū0u = hp0|ig ̄G�↵�↵ |pi



Interaction of the gluon and quark subsystems inside the nucleon  

with eDa

(r) =
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d
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3 e�i�r Da

(��2

). Note that the form factor c̄a(t) contributes only to
the pressure inside the nucleon.

For the total (quarks+gluons) stress tensor T
ij

= TQ

ij

+ T g

ij

the stability (equilibrium)
condition is @Tij(r)

@rj
= 0, for the quark part of the stress tensor the equation reads:

@TQ

ij

(r)

@r
j

+ f
i

(r) = 0. (5.5)

This equation can be interpreted (see e.g §2 of [28]) as equilibrium equation for quark
internal stress and external force (per unit of the volume) f

i

(r) from the side of the gluons.
This gluon force can be computed in terms of EMT form factor c̄Q(t) as:

f
i

(r) = M
N

@

@r
i

Z
d3�

(2⇡)3
e�i�r c̄Q(��2

) (5.6)

Due to spherical symmetry this force (per unit of volume) is directed along unit vector
n
i

= r
i

/r. For the case of monotonically decreasing with distance Fourier transform of
c̄Q(t) (in practice for c̄Q(0) > 0) the corresponding force (5.6) is directed towards the
nucleon centre, therefore we call it squeezing (compression) force. For opposite sign the
corresponding force is stretching. The results of previous sections imply that the gluon
forces squeeze (compress) the quark subsystem.

Integrating Eq. (5.6) over some volume we obtain the force acting on this volume from
side of gluons. Taking a spherical ball of the radius R we can easily obtain that the total
gluon force which squeezes (compresses) the quarks has the value:

F (R) = 8⇡M
N

Z
R

0

dr r

Z
d3�

(2⇡)3
�
e�i�r � e�i�nR

�
c̄Q(��2

) (5.7)

The total squeezing gluon force acting on quarks in the nucleon is equal to F
total

= F (1):

F
total

=

2M
N

⇡

Z
0

�1

dtp
�t

c̄Q(t). (5.8)

The estimates of the nucleon c̄Q(t) in previous sections can be parametrised by a simple
dipole Ansatz (4.5). With this Ansatz we obtain that the total squeezing (compression)
gluon force acting on the quark subsystem in the nucleon is:

F
total

= c̄
quark

M
N

⇤ ' 5.9 · 10�2

GeV

fm

. (5.9)

This force can be compared with typical size of forces inside the quark subsystem. The
latter in the nucleon are of order ⇠ 0.2 GeV/fm [3], i.e. intersystems force is about 3 times
smaller. Also this force is about 15 times smaller than the confinement force ⇠ 1 GeV/fm
commonly associated with the string tension. So, we have an interesting physics picture –
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Landau, Lifshitz, vol. 7

Cbar(t) FF important to know what are (compressing or stretching) forces experienced by quarks
from side of gluons inside the nucleon. Size of this forces?



The nucleon’s “cosmological term” from instantons.

Instantons form a dilute liquid in the QCD vacuum. They provide a mechanism of spontaneous 
breakdown of chiral symmetry in QCD. Shuryak ‘1982

Diakonov, Petrov ‘1983

��MN c̄Q(t) ū0u = hp0|ig ̄G�↵�↵ |pi
Computed in QCD vacuum using the method of Diakonov, Weiss, 

MVP ‘1996
Balla, Weiss, 
MVP ‘1997

c̄Q(t) =
c̄quark

(1� t/⇤2)2
c̄Q(0) = c̄quark ' 1.4 · 10�2.c̄quark ⇠ 1

6

⇢̄4

R̄4
ln

✓
R̄

⇢̄

◆
We  found a strong suppression by the instanton packing fraction

H.-D. Son, MVP ‘2018

We obtained small and positive value at a low normalisation point of ~0.5 GeV^2. 
This corresponds to rather small compression forces experienced by quarks!
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it looks like the two systems almost decouple. 
Justification of Teryaev’s equipartition conjecture ?

Prepared for submission to JHEP

Nucleon gravitational form factors from instantons:

forces between quark and gluon subsystems

Maxim V. Polyakova,b Hyeon-Dong Sonb
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Petersburg Nuclear Physics Institute,
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D-44780 Bochum, Germany
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Abstract: Using the instanton picture of the QCD vacuum we compute the nucleon
c̄Q(t) form factor of the quark part of the energy momentum tensor (EMT). This form
factor describes the non-conservation of the quark part of EMT and contributes to the
quark pressure distribution inside the nucleon. Also it can be interpreted in terms of
forces between quark and gluon subsystems inside the nucleon. We show that this form
factor is parametrically small in the instanton packing fraction. Numerically we obtain for
the nucleon EMT a small value of c̄Q(0) ' 1.4 · 10�2 at the low normalisation point of
⇠ 0.4 GeV2. This smallness implies interesting physics picture – the forces between quark
and gluon mechanical subsystems are smaller than the forces inside each subsystem. The
forces from side of gluon subsystem squeeze the quark subsystem – they are compression
forces. Additionally, the smallness of c̄Q(t) might justify Teryaev’s equipartition conjecture.
We estimate that the contribution of c̄Q(t) to the pressure distribution inside the nucleon
is in the range of 1� 20% relative to the contribution of the quark D-term.
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No Goldstone boson “cosmological term” 
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Mechanical properties of particles Maxim V. Polyakov

and shear forces also ensures that all relations for the force distributions discussed in the section
IX and Appendix of [4] are satisfied automatically.

For a particle of arbitrary spin we can introduce more general tensor quantities:

M

k1...kn

n

=
Z

d

3
r r

n

Y

k1...kn

n

Q00(r), (15)

which correspond to 2n-multipoles of the energy distribution, obviously M0 = M. Note, that only
even n are allowed by the P-parity conservation. Eq. (15) can be reformulated as the multipole
expansion of the energy density :

Q00(r) = Â
n=0,2,...

e
n

(r)Q̂k1...kn

n

Y

k1...kn

n

, (16)

where Q̂

k1...kn

n

is the 2n-pole spin operator and e
n

(r) is the corresponding 2n-pole energy density.
Analogously, for an arbitrary spin particle we can introduce a set of dimensionless tensors of

rank n+2:

D

ikk1k2...kn

n

=� 4
M

Z
d

3
r (Mr)n

Y

k1k2...kn

n

Qik(r). (17)

Again, only even n are allowed by the P-parity and D

ik

0 = 0 due to the stability condition (9). For
particles with spin J = 0, 1

2 only D

ikk1k2
2 is non-zero and can be expressed through the D-term (3):

D

ikk1k2
2 =

✓
d ik1d kk2 +d kk1d ik2 � 2

3
d ikd k1k2

◆
D. (18)

The tensor observables (17) can be related to GPDs, see e.g. the discussion for spin-1 hadrons in
recent paper [15].

Gravitational form factors of Goldstone bosons

Goldstone bosons of a spontaneously broken symmetry in any theory play crucial role in dy-
namics of the theory. For example, the phenomenon of spontaneous breakdown of the chiral sym-
metry in the strong interaction is crucial for the description of the mass spectrum and dynamics in
QCD.

The Goldstone bosons of spontaneously broken chiral symmetry are (almost) massless spin-0
particles and therefore the D-term cannot be defined in terms of static stress tensor, see (3). For
Goldstone bosons we define the D-term in Lorentz covariant way, in terms of EMT form factors:

hp

0|Qµn
a

(0)|pi= 2P

µ
P

n
A

a(t)+
1
2
�
DµDn �hµnD2�

D

a(t)+2 f

2
p hµn

c̄

a(t) (19)

Here P = (p

0+ p)/2, D = p

0 � p and fp is the pion decay constant which has dimension of mass
and sets the mass scale in the effective theory. We introduced the form factors for individual quark
and gluon EMTs. The total EMT is conserved

∂µQµn = 0, Qµn = Â
q

Qµn
q

+Qµn
g

, (20)
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hence Â
a=q,g c̄

a(t) = 0. The quark form factor c̄

Q(t) = Â
a=u,d,s,... c̄

a(t) = �c̄

g(t), describes the
non-conservation of EMT for individual quark and gluon pieces. This form factor is important
to determine the pressure forces distribution in a hadron individually for quarks and gluons, and
to study the forces between quark and gluon subsystems in hadrons¶ (see recent discussions in
[17, 18, 8, 9]).

The form factors in eq. (19) at zero momentum transfer can be fixed by the soft pion theorem:

lim
p

0µ!0
hp

0|Qµn
Q

(x)|pi= 0. (21)

This theorem leads to the relation among form factors:
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p hµn
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This equation is satisfied if the EMT form factors of massless Goldstone boson are related to each
other by:

D

Q(0) =�A

Q(0), c̄

Q(0) = 0. (23)

From the first equality we obtain immediately the value of the D-term of the pion in the chiral
limit D = �1 [19]. Our result that c̄

Q(0) = 0 for Goldstone bosons is valid for arbitrary QCD
normalisation point.

Nucleon’s seismology?

Up to now we consider the energy density Q00(r) and distribution of forces encoded in the
stress tensor Qik(r) separately. It would be interesting to establish connection between these quan-
tities, this would be a step towards an understanding of the equation of state inside a hadron. If
we treat the interior of a hadron as an elastic medium and boldly identify elastic moduli K and µ
(see §4 of [16]) with the pressure and shear forces distributions as K = p(r) and 2µ = s(r), we can

¶The stability equation for the quark part of the stress tensor has the form:

∂Qik

Q

(r)

∂ r

k

+ f

i(r) = 0.

This equation can be interpreted (see e.g §2 of [16]) as the equilibrium equation for quark internal stress and external
force (per unit of the volume) f

i(r) acting on quark subsystem from the side of the gluons. This gluon force can be
computed in terms of EMT form factor c̄

Q(t) as [18]:

f

i(r) = M

∂
∂ r

i

Z
d

3D
(2p)3 e

�iD·r
c̄

Q(�D2).

The total squeezing (stretching) gluon force acting on quarks in the nucleon is equal to [18]:

Ftotal =
2M

p

Z 0

�•

dtp
�t

c̄

Q(t).

Estimates in the instanton model of the QCD vacuum in Ref. [18] show that this force is squeezing and have rather small
size of Ftotal ' 6 ·10�2 GeV/fm.
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Soft Goldstone (pion in the chiral limit) theorem:

EMT ffs for Goldstone boson (pion in the chiral limit):



Accessing p(r) and s(r) in hard exclusive processes

Simplifying assumptions (for present state of art of the experiment):

1) d3(t),  d5(t), … much smaller than D(t). It is so at large normalisation scale.
2) Flavour singlet D(t) is dominant. Justified in large Nc limit. Can be relaxed for more precise data.

24

XIX. FIRST EXPERIMENTAL RESULTS

Recently first information on the D-terms of the proton and the neutral pion became available from phenomenological
analyses of experimental data. In this section we review what is currently known.

A. Nucleon

The D-term was shown to be of importance for the phenomenological description of hard-exclusive reactions [17–20],
see also the reviews [28, 29] and references there in. The D-term can be accessed in DVCS with help of fixed-t

dispersion relations [32–35], for the LO DVCS Compton form factor H(⇠, t) =
R
1

�1

dx( 1

⇠�x�i0

� 1

⇠+x�i0

) H(x, ⇠, t) one
obtains

ReH(⇠, t) = �(t) +
1

⇡
p.v.

Z
1

0

d⇠0 ImH(⇠0, t)

✓
1

⇠ � ⇠0
� 1

⇠ + ⇠0

◆
. (72)

The corresponding subtraction constant �(t) in the leading QCD order is related to the D-term in the following way:

�(t) = 2

Z
1

�1

dz
D(z, t)

1� z
, (73)

with D(z, t) having the following expansion in the Gegenbauer polynomials C3/2

n

(z):

D(z, t) = (1� z2)
1X

k=1

⇥
e2
u

du
2k�1

(t) + e2
d

dd
2k�1

(t)
⇤
C

3/2

2k�1

(z), (74)

where e
q

is the electric charge of the quark with flavour q. In the above equation we neglected contributions of strange
and heavy quarks. The EMT form factor Dq(t) = 4

5

dq
1

(t). We remind that the quantities considered here (dq
1

(t),
D(z, t), etc.) depend on the QCD normalisation point µ2. We do not write explicitly this dependence for brevity. The
QCD evolution equations for the quark and gluon D-term are the same as for the second Mellin moments of the quark
and gluon parton distributions.
The first experimental access to the subtraction constant �(t, µ2) based on the most complete database of DVCS

results was obtained in [20] (KM15 fit) in the form:

�(t, µ2) = � C

(1� t/M2

C

)
2

, (75)

with parameters C = 2.768 and M
C

= 1.204 GeV at the QCD normalisation point of µ2 = 4 GeV2. The statistical
uncertainty of the parameters are of order 20� 30% [220], but the authors of Ref. [20] refrained from publishing the
precise value of the statistical error bars due to large systematic uncertainties (see the discussion of this point in
relation to the D-term in Ref. [221]) 11.

We can relate the LO subtraction constant �(t, µ) to the EMT form factor DQ(t, µ2) = Dd(t, µ2) +Dd(t, µ2) using
the following simplifying assumptions:

• only the first coe�cient dq
1

(t) of the Gegenbauer expansion (74) is taken account. In the asymptotic limit of
infinitely large renormalization scale µ all dq

i

(t) for i > 1 vanish, except for dq
1

(t) which determines the asymptotic
form of GPDs [24] and is related to the EMT form factor Dq(t) = 4

5

dq
1

(t);

• dominance of the flavour singlet combination of the quark D-term du
1

⇡ dd
1

⇡ dQ/2. This can be justified by in
the limit of large number of colours, see Eq. (71).

Under these assumptions we obtain:

DQ(t) =
4

5

1

2(e2
u

+ e2
d

)
�(t) =

18

25
�(t). (76)

11 We are grateful to Kresimir Kumerički for discussion of this point.

Experiment and phenomenology

• HERMES proceeding NPA711, 171 (2002); Airapetian et al PRD 75, 011103 (2007)

φ (rad)

A
C

HERMES preliminary
-0.3

-0.25
-0.2

-0.15
-0.1

-0.05
0

0.05
0.1

0.15
0.2

-3 -2 -1 0 1 2 3

beam charge asymmetry
dotted line: VGG model without D-term (ruled out)
dashed line: VGG model + positive D-term (ruled out)
dashed-dotted: VGG model + negative D-term (yeah!)
Frank Ellinghaus, NPA711, 171 (2002)

model-dependent statement (!)
Belitsky, Müller, Kirchner, NPB629 (2002) 323

• fits by Kresimir Kumerički, Dieter Müller et al: D < 0 needed! model-independent evidence!

DVCS parametrizations from:
Kumerički, Müller, NPB 841 (2010) 1,

Kumerički, Müller, Murray, Phys. Part. Nucl. 45 (2004) 723

Kumerički, Müller, EPJ Web Conf. 112 (2016) 01012.

Fig. 9 from ECT∗ workshop proceeding 1712.04198

statistical uncertainty of D in KMM12: ∼ 50%,

statistical uncertainty of D in KM15: ∼ 20%.

unestimated systematic uncertainty

Kresimir Kumerički private communication

The first determination of D(t) from DVCS 
Kumericki, Mueller Nucl. Phys. B841 (2010) 1

KM10, statistical accuracy 60%

KM12, statistical accuracy 50%

KM15, statistical accuracy 20%

The D-term is negative, statistical accuracy is increasing
 with new data added.

The systematic uncertainty remains unestimated !
Details in K. Kumericki paper Nature 570 (2019) 



numerical results for the normal and tangential force fields
as functions of r, which are illustrated in Fig. 6. Concerning
the normal force fields in the nucleon and Σc, which
are drawn in the left and right upper panels of Fig. 6,
respectively, the level-quark contributions are positive

definite whereas the Dirac-continuum parts are negative
definite. However, the magnitude of the level parts is
stronger than that of the Dirac-continuum parts, which
leads to the fact that the normal force fields are positive
definite. This implies that Fr are directed outward. On the

FIG. 9. In the upper panel, the infinitesimal force fields dFðr;θ;ϕÞ defined in Eq. (21) are visualized as the arrows, which will be used in
the 3D visualization of the strong force fields in Figs. 10, 11, and the lower panel of Fig. 9. In the lower left and right panels, the 3D
visualization of the strong force fields (F) for the nucleon and Σc are, respectively, illustrated.
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