The proton mass from first principles: lattice QCD at the physical point

Martha Constantinou

Temple University

In collaboration with: C. Alexandrou, K. Hadjiyiannakou

3rd Proton Mass Workshop; Origin and Perspective

January 14, 2021

Proton Mass

Main Pillar of NAS Assessment report for EIC

Finding 1: An EIC can uniquely address three profound questions about nucleons—neutrons and protons—and how they are assembled to form the nuclei of atoms:

- How does the mass of the nucleon arise?
- How does the spin of the nucleon arise?
- What are the emergent properties of dense systems of gluons?

Lattice QCD can provide valuable input in understanding the proton mass decomposition from *first principles*

... before experimental EIC data are available

The mass is related to the Energy-Momentum Tensor (EMT) of QCD

The mass is related to the Energy-Momentum Tensor (EMT) of QCD

★ Starting point is the symmetric EMT, relevant in the fwd limit (Non-symm. part vanishes by e.o.m. of quarks and gluons)

$$T^{\mu\nu}_{sym} = \frac{1}{4} \bar{\psi} i \overleftrightarrow{D}^{(\mu} \gamma^{\nu)} \psi - F^{\mu\alpha} F^{\nu}_{\alpha} + \frac{g^{\mu\nu}}{4} F^{\alpha\beta} F_{\alpha\beta}$$

The mass is related to the Energy-Momentum Tensor (EMT) of QCD

★ Starting point is the symmetric EMT, relevant in the fwd limit (Non-symm. part vanishes by e.o.m. of quarks and gluons)

$$T^{\mu\nu}_{sym} = \frac{1}{4} \bar{\psi} i \overleftrightarrow{D}^{(\mu} \gamma^{\nu)} \psi - F^{\mu\alpha} F^{\nu}_{\alpha} + \frac{g^{\mu\nu}}{4} F^{\alpha\beta} F_{\alpha\beta}$$

of EMT:
$$T^{\mu}_{\mu} = (1 + \gamma_m) \bar{\psi} m \psi + \frac{\beta(g)}{2g} F^2$$

Trace

The mass is related to the Energy-Momentum Tensor (EMT) of QCD

★ Starting point is the symmetric EMT, relevant in the fwd limit (Non-symm. part vanishes by e.o.m. of quarks and gluons)

$$T^{\mu\nu}_{sym} = \frac{1}{4} \bar{\psi} i \overleftrightarrow{D}^{(\mu} \gamma^{\nu)} \psi - F^{\mu\alpha} F^{\nu}_{\alpha} + \frac{g^{\mu\nu}}{4} F^{\alpha\beta} F_{\alpha\beta}$$

Trace of EMT:
$$T^{\mu}_{\mu} = (1 + \gamma_m) \bar{\psi} m \psi + \frac{\beta(g)}{2g} F^2$$

Decomposition of proton matrix elements

$$\langle T^{\mu\nu}\rangle = 2P^{\mu}P^{\nu}$$

The mass is related to the Energy-Momentum Tensor (EMT) of QCD

★ Starting point is the symmetric EMT, relevant in the fwd limit (Non-symm. part vanishes by e.o.m. of quarks and gluons)

$$T^{\mu\nu}_{sym} = \frac{1}{4} \bar{\psi} i \overleftrightarrow{D}^{(\mu} \gamma^{\nu)} \psi - F^{\mu\alpha} F^{\nu}_{\alpha} + \frac{g^{\mu\nu}}{4} F^{\alpha\beta} F_{\alpha\beta}$$

★ Trace of EMT:
$$T^{\mu}_{\mu} = (1 + \gamma_m) \bar{\psi} m \psi + \frac{\beta(g)}{2g} F^2$$

Decomposition of proton matrix elements

$$\langle T^{\mu\nu} \rangle = 2P^{\mu}P^{\nu}$$

★ In rest-frame, the mass is related to the matrix elements of EMT

$$\frac{\langle T^{\mu}_{\mu} \rangle}{\langle N | N \rangle} = M, \qquad \qquad \frac{\langle T^{00} \rangle}{\langle N | N \rangle} = M$$

Based on sum rules (not unique)

$$\frac{\langle T^{\mu}_{\mu} \rangle}{\langle N | N \rangle} = M, \qquad \qquad \frac{\langle T^{00} \rangle}{\langle N | N \rangle} = M$$

Based on sum rules (not unique)

$$\frac{\langle T^{\mu}_{\mu} \rangle}{\langle N | N \rangle} = M, \qquad \qquad \frac{\langle T^{00} \rangle}{\langle N | N \rangle} = M$$

Trace Decomposition

see, e.g., [M. Shifman et al., Phys. Lett. 78B (1978); D. Kharzeev, Proc. Int. Sch. Phys. Fermi 130 (1996)]

Decomposition of T^{00} **in trace and traceless parts in rest frame** [X.D. Ji, Phys. Rev. Lett. 74, 1071 (1995); X. D. Ji, Phys. Rev. D 52, 271 (1995)]

Decomposition of T^{00} with pressure effects

[C. Lorce', Eur. Phys. J. C78 (2018) 2, arXiv:1706.05853]

Quark/Gluon decomposition of trace T^{μ}_{μ}

[Y. Hatta, A. Rajan, K. Tanaka, JHEP 12, 008 (2018) arXiv:1810.05116; K. Tanaka, JHEP 01, 120 (2019), arXiv:1811.07879]

Based on sum rules (not unique)

$$\frac{\langle T^{\mu}_{\mu} \rangle}{\langle N | N \rangle} = M, \qquad \qquad \frac{\langle T^{00} \rangle}{\langle N | N \rangle} = M$$

Trace Decomposition

see, e.g., [M. Shifman et al., Phys. Lett. 78B (1978); D. Kharzeev, Proc. Int. Sch. Phys. Fermi 130 (1996)]

Decomposition of T^{00} **in trace and traceless parts in rest frame** [X.D. Ji, Phys. Rev. Lett. 74, 1071 (1995); X. D. Ji, Phys. Rev. D 52, 271 (1995)]

Decomposition of T^{00} with pressure effects [C. Lorce', Eur. Phys. J. C78 (2018) 2, arXiv:1706.05853]

Quark/Gluon decomposition of trace T^{μ}_{μ}

[Y. Hatta, A. Rajan, K. Tanaka, JHEP 12, 008 (2018) arXiv:1810.05116; K. Tanaka, JHEP 01, 120 (2019), arXiv:1811.07879]

Once the EMT is decomposed into components, renormalization of the latter is necessary

$$\frac{\langle T^{00} \rangle}{\langle N | N \rangle} = M$$

[X.D. Ji, Phys. Rev. Lett. 74, 1071 (1995); X. D. Ji, Phys. Rev. D 52, 271 (1995)]

Traceless $(\overline{T}^{\mu\nu})$ & trace $(\hat{T}^{\mu\nu})$ parts of EMT:

$$T^{\mu\nu} = T^{\mu\nu}_{q} + T^{\mu\nu}_{g}, \qquad T^{\mu\nu}_{q,g} = \overline{T}^{\mu\nu}_{q,g} + \widehat{T}^{\mu\nu}_{q,g}$$

★ Trace of EMT:
$$\hat{T}^{\mu\nu} = \frac{1}{4}g^{\mu\nu} \Big[(1+\gamma_m) \bar{\psi}m\psi + \frac{\beta(g)}{2g}F^2 \Big]$$

 $\bigstar \langle T^{00} \rangle \text{ has for contributions from } \langle \hat{T}_{q}^{00} \rangle, \langle \overline{T}_{g}^{00} \rangle, \langle \hat{T}_{g}^{00} \rangle, \langle \overline{T}_{g}^{00} \rangle$

★ energy density component gives a decomposition for the mass:

$$M = \frac{\langle N | T^{00} | N \rangle}{\langle N | N \rangle} = M_m + M_q + M_g + M_a$$

[X.D. Ji, Phys. Rev. Lett. 74, 1071 (1995); X. D. Ji, Phys. Rev. D 52, 271 (1995)]

Traceless $(\overline{T}^{\mu\nu})$ & trace $(\hat{T}^{\mu\nu})$ parts of EMT:

$$T^{\mu\nu} = T^{\mu\nu}_{q} + T^{\mu\nu}_{g}, \qquad T^{\mu\nu}_{q,g} = \overline{T}^{\mu\nu}_{q,g} + \hat{T}^{\mu\nu}_{q,g}$$

★ Trace of EMT:
$$\hat{T}^{\mu\nu} = \frac{1}{4}g^{\mu\nu} \Big[(1+\gamma_m) \bar{\psi}m\psi + \frac{\beta(g)}{2g}F^2 \Big]$$

 $\bigstar \langle T^{00} \rangle \text{ has for contributions from } \langle \hat{T}_{q}^{00} \rangle, \langle \overline{T}_{g}^{00} \rangle, \langle \hat{T}_{g}^{00} \rangle, \langle \overline{T}_{g}^{00} \rangle, \langle \overline{$

★ energy density component gives a decomposition for the mass:

"Can lattice calculate the mass distribution in the nucleon?"

"Can lattice calculate the mass distribution in the nucleon?"

Answer:

Components associated with operators calculable in lattice QCD

 σ_q : sigma-terms

<x>q: Quark momentum fraction

<x>g: Gluon momentum fraction

★ Quark mass M_m = ∑_q σ_q
★ Quark energy M_q = ³/₄ (M∑_q ⟨x⟩_q - ∑_q σ_q)
★ Gluon energy M_g = ³/₄ M⟨x⟩_g
★ Trace anomaly M_a = ^{γ_m}/₄ ∑_q σ_q - ^{β(g)}/_{4g}(E² + B²)

"Can lattice calculate the mass distribution in the nucleon?"

Answer:

Components associated with operators calculable in lattice QCD

 $M_m = \sum_q \sigma_q$ **Quark mass ★** Quark energy $M_q = \frac{3}{4} \left[M \sum_{q} \langle x \rangle_q - \sum_{q} \sigma_q \right]$ **Gluon energy** $M_g = \frac{3}{4}M\langle x \rangle_g$ **Trace anomaly** $M_a = \frac{\gamma_m}{4} \sum_{\alpha} \sigma_q - \frac{\beta(g)}{4g} (E^2 + B^2)$ Results at the physical point [C. Alexandrou et al., PRD 102, 054517 (2020), arXiv:1909.00485] [C. Alexandrou et al., PRD 101, 094513 (2020), arXiv:2003.08486]

σ_q: sigma-terms
 <x>_q: Quark momentum fraction
 <x>_g: Gluon momentum fraction

See Alexandrou's talk

C. Alexandrou et al., PRD 102, 054517 (2020) PRD 101, 094513 (2020)

C. Alexandrou et al., PRD 102, 054517 (2020) PRD 101, 094513 (2020)

 $\sigma_{u+d} = 41.6(3.8) MeV$

C. Alexandrou et al., PRD 102, 054517 (2020) PRD 101, 094513 (2020)

 $\sigma_{u+d} = 41.6(3.8) MeV$ $\sigma_s = 45.6(6.2) MeV$

 $\sigma_c = 107(22) MeV$

C. Alexandrou et al., PRD 102, 054517 (2020) PRD 101, 094513 (2020)

 $\sigma_{u+d} = 41.6(3.8) MeV$ $\sigma_{s} = 45.6(6.2) MeV$ $\sigma_{c} = 107(22) MeV$ $\langle x \rangle_{u+d}^{B} = 0.350(35)$ $\langle x \rangle_{u+d}^{B} = 0.109(20)$ $\langle x \rangle_{s}^{B} = 0.038(10)$ $\langle x \rangle_{c}^{B} = 0.008(8)$

 $\langle x \rangle_g^B = 0.407(54)$

C. Alexandrou et al., PRD 102, 054517 (2020) PRD 101, 094513 (2020)

 $\sigma_{u+d} = 41.6(3.8) MeV$ $\sigma_{s} = 45.6(6.2) MeV$ $\sigma_{c} = 107(22) MeV$ $\langle x \rangle_{u+d}^{B} = 0.109(20)$ $\langle x \rangle_{s}^{B} = 0.038(10)$ $\langle x \rangle_{c}^{B} = 0.008(8)$

 $\langle x \rangle_g^B = 0.407(54)$

★ Mixing between quark and gluon contributions to $\langle x \rangle$

$$\sum_{q} \langle x \rangle_{q}^{R} = Z_{qq} \sum_{q} \langle x \rangle_{q}^{B} + Z_{qg} \langle x \rangle_{g}^{B} \qquad \langle x \rangle_{g}^{R} = Z_{gg} \langle x \rangle_{g}^{B} + Z_{gq} \sum_{q} \langle x \rangle_{q}^{B}$$

C. Alexandrou et al., PRD 102, 054517 (2020) PRD 101, 094513 (2020)

 $\sigma_{c} = 107(22) \, MeV$ $\langle x \rangle_{u+d}^{B} = 0.350(35) \qquad \qquad \langle x \rangle_{u+d}^{B} = 0.109(20)$ $\langle x \rangle_{s}^{B} = 0.038(10)$ $\langle x \rangle_{c}^{B} = 0.008(8)$

 $\langle x \rangle_g^B = 0.407(54)$

Mixing between quark and gluon contributions to $\langle x \rangle$

$$\sum_{q} \langle x \rangle_{q}^{R} = Z_{qq} \sum_{q} \langle x \rangle_{q}^{B} + Z_{qg} \langle x \rangle_{g}^{B} \qquad \langle x \rangle_{g}^{R} = Z_{gg} \langle x \rangle_{g}^{B} + Z_{gq} \sum_{q} \langle x \rangle_{q}^{B}$$
$$= 0.359(30) \quad \langle x \rangle_{d} = 0.188(19) \qquad \langle x \rangle_{s} = 0.052(12) \qquad \langle x \rangle_{c} = 0.019(9) \qquad \langle x \rangle_{g} = 0.427(92)$$

 $\langle x \rangle_{\mu}$

C. Alexandrou et al., PRD 102, 054517 (2020) PRD 101, 094513 (2020)

Mixing between quark and gluon contributions to $\langle x \rangle$

$$\sum_{q} \langle x \rangle_{q}^{R} = Z_{qq} \sum_{q} \langle x \rangle_{q}^{B} + Z_{qg} \langle x \rangle_{g}^{B} \qquad \langle x \rangle_{g}^{R} = Z_{gg} \langle x \rangle_{g}^{B} + Z_{gq} \sum_{q} \langle x \rangle_{q}^{B}$$
$$\langle x \rangle_{u} = 0.359(30) \qquad \langle x \rangle_{d} = 0.188(19) \qquad \langle x \rangle_{s} = 0.052(12) \qquad \langle x \rangle_{c} = 0.019(9) \qquad \langle x \rangle_{g} = 0.427(92)$$

Momentum sum rule satisfied!

Proton Mass Budget

Proton Mass Budget

Available contributions:

quark mass (σ-terms)

Proton Mass Budget

- quark mass (σ-terms)
- quark energy (σ-terms & <x>q)

Proton Mass Budget

- quark mass (σ-terms)
- quark energy (σ-terms & <x>q)
- gluon energy (<x>g)

Proton Mass Budget

- quark mass (σ-terms)
- quark energy (σ-terms & <x>q)
- gluon energy (<x>g)
- trace anomaly

Proton Mass Budget

- quark mass (σ-terms)
- quark energy (σ-terms & <x>q)
- gluon energy (<x>g)
- trace anomaly

Currently not available

"Can one calculate the anomaly contribution on the lattice?"

"Can one calculate the anomaly contribution on the lattice?"

Theoretical & Technical challenges

Disconnected contribution (signal-to-noise ratio suppressed)

Presence of mixing with operators that are BRST variations and that vanish by the e.o.m.
 (Full EMT: 10 renormalization functions)
 (Trace: 3-operator mixing under renormalization in the continuum)

"Can one calculate the anomaly contribution on the lattice?"

Theoretical & Technical challenges

Disconnected contribution (signal-to-noise ratio suppressed)

Presence of mixing with operators that are BRST variations and that vanish by the e.o.m.
 (Full EMT: 10 renormalization functions)
 (Trace: 3-operator mixing under renormalization in the continuum)

Answer:

Direct calculation of trace anomaly not available

"Can one calculate the anomaly contribution on the lattice?"

Theoretical & Technical challenges

Disconnected contribution (signal-to-noise ratio suppressed)

Presence of mixing with operators that are BRST variations and that vanish by the e.o.m.
 (Full EMT: 10 renormalization functions)
 (Trace: 3-operator mixing under renormalization in the continuum)

Answer:

The set of the set of

★ Possibility to access trace anomaly indirectly from sum rules

$$M_a = \frac{M}{4} - \sum_q \frac{\sigma_q}{4} \qquad \qquad M_a = M - \sum_{i=m,q,g} M_i$$

Proton Mass Budget

Approach A Proton Mass Budget

$$M_{a} = \frac{M_{p}}{4} - \sum_{q} \frac{\sigma_{q}}{4} \sim 19.83(0.07)\%$$
$$M_{p} = M_{m} + M_{q} + M_{g} + M_{a} = 103.39(8.09)\%$$

Proton Mass Budget

Approach B

$$M_a = M_p - \sum_{i=m,q,g} M_i \sim 16.45(8.09) \%$$

T

M_a compatible but different systematic uncertainties
 Uncertainties of trace anomaly term depend on the sum rule

'ת'

[C. Lorce', EPJ. C78 (2018) 2] [L. Harland-Lang et al., EPJ. C 75 (2015)] [M. Hoferichter et al., PRL 115 (2015)]

- ★ Lattice and pheno data give similar picture
- **\star** The tension in the sigma terms affects M_m
- ★ Contributions are of similar order

"ונ'

Lorcé's Decompositions

$$\frac{\langle T^{00} \rangle}{\langle N | N \rangle} = M$$

[C. Lorce', Eur. Phys. J. C78 (2018) 2, arXiv:1706.05853]

Consider a EMT decomposition:

$$T^{\mu\nu} = T^{\mu\nu}_q + T^{\mu\nu}_g$$

$$T_q^{\mu\nu} = \frac{1}{4} \bar{\psi} i \overleftrightarrow{D}^{(\mu} \gamma^{\nu)} \psi \qquad \qquad T_g^{\mu\nu} = -F^{\mu\alpha} F_{\alpha}^{\nu} + \frac{g^{\mu\nu}}{4} F^{\alpha\beta} F_{\alpha\beta}$$

[C. Lorce[´], Eur. Phys. J. C78 (2018) 2, arXiv:1706.05853]

Consider a EMT decomposition:

$$T^{\mu\nu} = T^{\mu\nu}_q + T^{\mu\nu}_g$$

$$T_q^{\mu\nu} = \frac{1}{4} \bar{\psi} i \overleftrightarrow{D}^{(\mu} \gamma^{\nu)} \psi \qquad \qquad T_g^{\mu\nu} = -F^{\mu\alpha} F_{\alpha}^{\nu} + \frac{g^{\mu\nu}}{4} F^{\alpha\beta} F_{\alpha\beta}$$

Matrix elements of each component in the fwd limit:

$$\langle N | T_{q,g}^{\mu\nu}(0) | N \rangle = 2P^{\mu}P^{\nu}A_{q,g}(0) + 2M^2 g^{\mu\nu}\overline{C}_{q,g}(0)$$

[C. Lorce[´], Eur. Phys. J. C78 (2018) 2, arXiv:1706.05853]

Consider a EMT decomposition:

$$T^{\mu\nu} = T^{\mu\nu}_q + T^{\mu\nu}_g$$

$$T_q^{\mu\nu} = \frac{1}{4} \bar{\psi} i \overleftrightarrow{D}^{(\mu} \gamma^{\nu)} \psi \qquad \qquad T_g^{\mu\nu} = -F^{\mu\alpha} F_{\alpha}^{\nu} + \frac{g^{\mu\nu}}{4} F^{\alpha\beta} F_{\alpha\beta}$$

Matrix elements of each component in the fwd limit:

$$\langle N | T_{q,g}^{\mu\nu}(0) | N \rangle = 2P^{\mu}P^{\nu}A_{q,g}(0) + 2M^2 g^{\mu\nu}\overline{C}_{q,g}(0)$$

$$\left(\begin{array}{l} \langle T^{\mu\nu} \rangle = 2P^{\mu}P^{\nu} \\ \text{Sum rules} \end{array} \right)$$
$$A_q(0) + A_g(0) = 1$$
$$\bar{C}_q(0) + \bar{C}_g(0) = 0$$

The EMT FFs can be related to the components of Ji's picture:

$$A_{q}(0) = \sum_{f} \langle x \rangle_{f}, \quad A_{g}(0) = \langle x \rangle_{g}, \quad \bar{C}_{q}(0) = (1 + \gamma_{m}) \frac{\sigma_{u+d+s+c}}{4M} - \frac{\langle x \rangle_{u+d+s+c}}{4}, \quad \bar{C}_{g}(0) = -\bar{C}_{q}(0)$$

[C. Lorce[´], Eur. Phys. J. C78 (2018) 2, arXiv:1706.05853]

Consider a EMT decomposition:

$$T^{\mu\nu} = T^{\mu\nu}_q + T^{\mu\nu}_g$$

$$T_q^{\mu\nu} = \frac{1}{4} \bar{\psi} i \overleftrightarrow{D}^{(\mu} \gamma^{\nu)} \psi \qquad \qquad T_g^{\mu\nu} = -F^{\mu\alpha} F_{\alpha}^{\nu} + \frac{g^{\mu\nu}}{4} F^{\alpha\beta} F_{\alpha\beta}$$

★ Matrix elements of each component in the fwd limit:

$$\langle N | T_{q,g}^{\mu\nu}(0) | N \rangle = 2P^{\mu}P^{\nu}A_{q,g}(0) + 2M^2 g^{\mu\nu}\overline{C}_{q,g}(0)$$

$$\begin{pmatrix} \langle T^{\mu\nu} \rangle = 2P^{\mu}P^{\nu} \\ \text{Sum rules} \end{pmatrix}$$
$$A_q(0) + A_g(0) = 1$$
$$\bar{C}_q(0) + \bar{C}_g(0) = 0$$

The EMT FFs can be related to the components of Ji's picture:

$$A_{q}(0) = \sum_{f} \langle x \rangle_{f}, \quad A_{g}(0) = \langle x \rangle_{g}, \quad \bar{C}_{q}(0) = (1 + \gamma_{m}) \frac{\sigma_{u+d+s+c}}{4M} - \frac{\langle x \rangle_{u+d+s+c}}{4}, \quad \bar{C}_{g}(0) = -\bar{C}_{q}(0)$$

$$A_{q}(0) + A_{g}(0) = 1 \checkmark$$

[C. Lorce', Eur. Phys. J. C78 (2018) 2, arXiv:1706.05853]

Thermodynamic potentials using the energy component $T_{a,o}^{00}$: (effective coupled two-fluid picture, combinations of internal energies and pressure-volume works U: internal energy (kinetic & potential) **Sum rules** W: pressure-volume work) $M = U_q + U_g$ $W_q + W_g = 0$

$$U_{q,g} = M \left[A_{q,g}(0) + \overline{C}_{q,g}(0) \right], \quad W_{q,g} = -M \overline{C}_{q,g}(0)$$

energy density and pressure kept separately

[C. Lorce[´], Eur. Phys. J. C78 (2018) 2, arXiv:1706.05853]

Thermodynamic potentials using the energy component T⁰⁰_{q,g}:
 (effective coupled two-fluid picture, combinations of internal energies and pressure-volume works
 U: internal energy (kinetic & potential)

W: pressure-volume work)

$$U_{q,g} = M \left[A_{q,g}(0) + \overline{C}_{q,g}(0) \right], \quad W_{q,g} = -M \overline{C}_{q,g}(0)$$

Sum rules $M = U_q + U_g$ $W_q + W_g = 0$

energy density and pressure kept separately

★ Ji's components ($T_{q,g}^{00} = \hat{T}_{q,g}^{00} + \overline{T}_{q,g}^{00}$) interpreted as internal energy (effective coupled four-fluid picture)

$$\mathcal{W}_m = -M_m, \quad \mathcal{W}_q = \frac{1}{3} \left(M_q + \frac{12M_m}{4 + \gamma_m} \right), \quad \mathcal{W}_g = \frac{M_g}{3}, \quad \mathcal{W}_a = -M_a$$

Lorce's Pressure-volume work decomposition

two-fluid picture

- Decomposition of lattice data gives the same picture as phenomenology
- ★ Equal contributions to the mass from the internal quark and gluon energies
- $\leftarrow U_{g}, W_{g}$ use sum rule:

$$\overline{C}_g(0) + \overline{C}_q(0) = 0$$

[C. Lorce', EPJ. C78 (2018) 2] [L. Harland-Lang et al., EPJ. C 75 (2015)] [M. Hoferichter et al., PRL 115 (2015)]

		$O(\alpha_s^1)$	$O(\alpha_s^2)$	$O(\alpha_s^3)$
Scenario A	U_q	0.384 ± 0.035	0.383 ± 0.036	0.384 ± 0.036
	U_g	0.554 ± 0.035	0.556 ± 0.036	0.555 ± 0.036
Scenario B	U_q	0.420 ± 0.016	0.420 ± 0.017	0.421 ± 0.017
	U_g	0.518 ± 0.016	0.518 ± 0.017	0.517 ± 0.017

[A. Metz, B. Pasquini, S. Rodini, arXiv:2006.11171]

Ji's Pressure-volume work decomposition

four-fluid picture

- ★ Lattice and pheno data give similar picture
- **Total "quark" contribution (** W_{g} , W_{m} **) similar to total "gluon" contribution (** W_{a} , W_{g} **)**
- \star W_{a} , W_{g} receive input from sum rule
- $\blacktriangleright \Sigma W_q = 0$ by construction

ר'

[C. Lorce', EPJ. C78 (2018) 2] [L. Harland-Lang et al., EPJ. C 75 (2015)] [M. Hoferichter et al., PRL 115 (2015)]

Hatta-Rajan-Tanaka

Decomposition

HRT Decomposition

★ [Y. Hatta, A. Rajan, K. Tanaka, JHEP 12, 008 (2018) arXiv:1810.05116; K. Tanaka, JHEP 01, 120 (2019), arXiv:1811.07879]

 \star Separation of quark and gluon parts of trace part of EMT, $T^{\mu}_{\mu;q,g}$

$$T^{\mu}_{\mu;q} = (1 + c_1^{\text{MS}}) \, m\overline{\psi}\psi + c_2^{\text{MS}} F^{\alpha\beta}F_{\alpha\beta}$$
$$T^{\mu}_{\mu;q} = (\gamma_{\mu} - c_1^{\text{MS}}) \, m\overline{\psi}\psi + \left(\frac{\beta(g)}{2g} - c_2^{\text{MS}}\right) F^{\alpha\beta}F_{\alpha\beta}$$

$$U_{q,g} = M \left[A_{q,g}(0) + 4\overline{C}_{q,g}(0) \right]$$

 Gluon contributions is dominant (in support of the argument that gluons are responsible for the mass)

"Can lattice calculate the mass distribution in the nucleon?"

'T

TMD Topical Collaboration

DOE Early Career Award (NP) Grant No. DE-SC0020405

"Can lattice calculate the mass distribution in the nucleon?"

- **Mass components are local 2-parton operators calculable in LQCD**
- Successful calculation of nucleon sigma terms, quark and gluon momentum fractions

'ת'

TMD Topical Collaboration

DOE Early Career Award (NP) Grant No. DE-SC0020405

"Can lattice calculate the mass distribution in the nucleon?"

- **Mass components are local 2-parton operators calculable in LQCD**
- Successful calculation of nucleon sigma terms, quark and gluon momentum fractions

"Can one calculate the anomaly contribution on the lattice?"

'ת'

TMD Topical Collaboration

DOE Early Career Award (NP) Grant No. DE-SC0020405

"Can lattice calculate the mass distribution in the nucleon?"

- **Mass components are local 2-parton operators calculable in LQCD**
- Successful calculation of nucleon sigma terms, quark and gluon momentum fractions

"Can one calculate the anomaly contribution on the lattice?"

- ★ Well-defined operator, but complicated renormalization pattern, and suppressed signal-to-noise ratio
- **Sum rules very useful to extract trace anomaly indirectly**

DOE Early Career Award (NP) Grant No. DE-SC0020405

M. Constantinou, Proton Mass Workshop 2021