3rd Proton Mass Workshop; Origin and Perspective 14–16 Jan 2021, Argonne National Lab (virtual workshop)

# Model studies of energy-momentum tensor (EMT) and mechanical properties

**Peter Schweitzer** (University of Connecticut)

#### Outline

#### EMT form factors

- $\rightarrow$  brief overview
- $\rightarrow$  *D*-term last global unknown

#### interpretation, insights, lessons

- $\rightarrow$  mass decomposition, spin decomposition
- $\rightarrow$  matter distribution, spin distribution
- $\rightarrow$  visualization of forces
- models
  - $\rightarrow$  predict, sharpen intuition, set expectations
  - $\rightarrow$  some selected results
- conclusions

# **Definition EMT form factors, spin** $\frac{1}{2}$ (Kobzarev, Okun 1962, Pagels 1966)

$$\langle p' | \hat{\boldsymbol{T}}_{\boldsymbol{\mu\nu}}^{a} | p \rangle = \bar{u}(p') \left[ \begin{array}{c} \boldsymbol{A}^{a}(\boldsymbol{t}, \boldsymbol{\mu}^{2}) \, \frac{\gamma_{\mu} P_{\nu} + \gamma_{\nu} P_{\mu}}{2} \\ + \, \boldsymbol{B}^{a}(\boldsymbol{t}, \boldsymbol{\mu}^{2}) \, \frac{i(P_{\mu} \sigma_{\nu\rho} + P_{\nu} \sigma_{\mu\rho}) \Delta^{\rho}}{4M} \\ + \, \boldsymbol{D}^{a}(\boldsymbol{t}, \boldsymbol{\mu}^{2}) \, \frac{\Delta_{\mu} \Delta_{\nu} - g_{\mu\nu} \Delta^{2}}{4M} + \, \bar{\boldsymbol{c}}^{a}(\boldsymbol{t}, \boldsymbol{\mu}^{2}) \, M \, g_{\mu\nu} \right] \boldsymbol{u}(p)$$

•  $\hat{T}^a_{\mu\nu}$  symmetric, gauge invariant, total EMT  $\partial_\mu \hat{T}^{\mu\nu} = 0$ ,  $\bar{u}u = 2M$ 

• 
$$\sum_{a} \overline{c}^{a}(t,\mu^{2}) = 0$$
,  $A(t) = \sum_{a} A^{a}(t,\mu^{2})$ ,  $B(t)$ ,  $D(t)$  scale invariant

• constraints: mass  $\Leftrightarrow A(0) = 1 \Leftrightarrow$  quarks + gluons carry 100% of nucleon momentum

**spin**  $\Leftrightarrow$   $B(0) = 0 \Leftrightarrow$  anomalous gravitomagnetic moment of nucleon = 0 \*

**D-term**  $\Leftrightarrow$   $D(0) \equiv D \rightarrow$  unconstrained! Last global unknown!

$$2P = (p' + p)$$
  

$$\Delta = (p' - p)$$
  

$$t = \Delta^2$$
notation:  $2J^q(t) = A^q(t) + B^q(t)$   

$$D^q(t) = \frac{4}{5}d_1^q(t) = \frac{1}{4}C^q(t) \text{ or } C^q(t)$$
  

$$A^q(t) = M_2^q(t)$$

\* equivalent to  $2J(0) = A(0) + B(0) = 1 \Leftrightarrow$  spin of nucleon  $\frac{1}{2}$ 

# Definition EMT form factors, spin $\frac{1}{2}$ (Kobzarev, Okun 1962, Pagels 1966)

$$\langle p' | \hat{\boldsymbol{T}}_{\boldsymbol{\mu\nu}}^{a} | p \rangle = \bar{u}(p') \left[ \begin{array}{c} \boldsymbol{A}^{a}(\boldsymbol{t}, \boldsymbol{\mu}^{2}) \frac{P_{\mu}P_{\nu}}{M} \\ + \boldsymbol{J}^{a}(\boldsymbol{t}, \boldsymbol{\mu}^{2}) \frac{i(P_{\mu}\sigma_{\nu\rho} + P_{\nu}\sigma_{\mu\rho})\Delta^{\rho}}{2M} \\ + \boldsymbol{D}^{a}(\boldsymbol{t}, \boldsymbol{\mu}^{2}) \frac{\Delta_{\mu}\Delta_{\nu} - g_{\mu\nu}\Delta^{2}}{4M} + \bar{\boldsymbol{c}}^{a}(\boldsymbol{t}, \boldsymbol{\mu}^{2}) M g_{\mu\nu} \right] \boldsymbol{u}(p)$$

•  $\hat{T}^a_{\mu\nu}$  symmetric, gauge invariant, total EMT  $\partial_\mu \hat{T}^{\mu\nu} = 0$ ,  $\bar{u}u = 2M$ 

•  $\sum_{a} \overline{c}^{a}(t,\mu^{2}) = 0$ ,  $A(t) = \sum_{a} A^{a}(t,\mu^{2})$ , J(t), D(t) scale invariant

• constraints: mass  $\Leftrightarrow A(0) = 1 \Leftrightarrow$  quarks + gluons carry 100% of nucleon momentum

**spin**  $\Leftrightarrow$   $J(0) = \frac{1}{2} \Leftrightarrow$  quarks + gluons carry 100% of nucleon spin

**D-term**  $\Leftrightarrow$   $D(0) \equiv D \rightarrow$  unconstrained! Last global unknown!

$$2P = (p' + p)$$
  

$$\Delta = (p' - p)$$
  

$$t = \Delta^2$$
notation: 
$$2J^q(t) = A^q(t) + B^q(t)$$
  

$$D^q(t) = \frac{4}{5}d_1^q(t) = \frac{1}{4}C^q(t) \text{ or } C^q(t)$$
  

$$A^q(t) = M_2^q(t)$$

non-symmetric EMT, additional form factor related to  $G_A(t) \rightarrow \mathsf{C}\mathsf{\acute{e}}\mathsf{d}\mathsf{ric}$  Lorcé

**Definition EMT form factors, spin** 0 (Kobzarev, Okun 1962, Pagels 1966)

$$\langle p' | \hat{T}^{a}_{\mu\nu} | p \rangle = 2 M \left[ A^{a}(t, \mu^{2}) \frac{P_{\mu}P_{\nu}}{M} \right]$$

+ no spin-related structure

$$+ \mathbf{D}^{a}(t, \boldsymbol{\mu}^{2}) \frac{\Delta_{\mu} \Delta_{\nu} - g_{\mu\nu} \Delta^{2}}{4M} + \bar{\boldsymbol{c}}^{a}(t, \boldsymbol{\mu}^{2}) M g_{\mu\nu} \right]$$

•  $\hat{T}^a_{\mu
u}$  symmetric, gauge invariant, total EMT  $\partial_\mu \hat{T}^{\mu
u} = 0$ 

•  $\sum_{a} \overline{c}^{a}(t,\mu^{2}) = 0$ ,  $A(t) = \sum_{a} A^{a}(t,\mu^{2})$ , D(t) scale invariant

• constraints: mass  $\Leftrightarrow A(0) = 1 \Leftrightarrow$  quarks + gluons carry 100% of nucleon momentum

**spin**  $\Leftrightarrow$  corresponding structure and form factor absent \*

**D-term**  $\Leftrightarrow$   $D(0) \equiv D \rightarrow$  unconstrained! Last global unknown!

$$2P = (p' + p)$$
  

$$\Delta = (p' - p)$$
  

$$t = \Delta^2$$
notation:  

$$D^q(t) = \frac{4}{5} d_1^q(t) = \frac{1}{4} C^q(t) \text{ or } C^q(t)$$
  

$$A^q(t) = M_2^q(t)$$
\* e.g. pion

### *D*-term on same footing as mass, spin, charge, ...

 $|N\rangle = \text{strong-interaction particle.}$  Use other forces to probe it!

| em:                                                                                | $\partial_{\mu}J^{\mu}_{\mathbf{em}}=0$ | $\langle N' J^{\mu}_{	ext{em}} N angle \longrightarrow G_{E}(t), \ G_{M}(t) \longrightarrow oldsymbol{Q}, \ oldsymbol{\mu}$            |
|------------------------------------------------------------------------------------|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| weak:                                                                              | PCAC                                    | $\langle N' J^{\mu}_{\mathrm{weak}} N angle \longrightarrow G_A(t), \ G_P(t) \longrightarrow g_A, \ g_p$                               |
| gravity:                                                                           | $\partial_{\mu}T^{\mu\nu}_{\rm grav}=0$ | $\langle N' T^{\mu u}_{\rm grav} N angle \longrightarrow A(t), J(t), D(t) \longrightarrow M, J, D$                                     |
| global properties: $Q_{\text{prot}}$<br>$\mu_{\text{prot}}$<br>$g_A$<br>$g_p$<br>M |                                         | = $1.602176487(40) \times 10^{-19}C$<br>= $2.792847356(23)\mu_N$<br>= $1.2694(28)$<br>= $8.06(0.55)$<br>= $938.272013(23) \text{ MeV}$ |

$$J = \frac{1}{2}$$
$$D = ?$$

 $\hookrightarrow$  D = "last" global unknown

### **Results for** D-term from theory (incomplete selection, apologies for omissions)

| particle                                                                     | D-term                                                                                   | method                                                                                                                                                       | reference                                                                                                                  |
|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| free spin-0 free spin- $\frac{1}{2}$                                         | -1<br>0                                                                                  | free Klein-Gordon<br>free Dirac theory                                                                                                                       | Pagels 1966; Hudson, PS 2017<br>Donoghue et al 2002, Hudson, PS 2018                                                       |
| pion<br>T                                                                    | -1<br>-0.97                                                                              | soft pion theorem<br>$\chi PT$ to $\mathcal{O}(E^4)$                                                                                                         | Novikov, Shifman 1980<br>Voloshin, Zakharov 1980<br>Polyakov, Weiss 1999                                                   |
| $\kappa$<br>$\eta$                                                           | -0.77<br>-0.69                                                                           | $\chi$ PT to $\mathcal{O}(E^4)$<br>$\chi$ PT to $\mathcal{O}(E^4)$                                                                                           | Donoghue, Leutwyler 1991                                                                                                   |
| σ                                                                            | -2.27                                                                                    | NJL model                                                                                                                                                    | Clöet, Freese 2019                                                                                                         |
| nucleon                                                                      | -1.5 (q)<br>-1.0 (q)<br>-3.4<br>-3.6<br>-1.1                                             | dispersion relations, at 4 GeV <sup>2</sup><br>lattice $m_{\pi} = 450 \text{ MeV}$ ; 4 GeV <sup>2</sup><br>chiral quark soliton<br>Skyrme model<br>bag model | Pasquini et al 2014<br>Göckeler et al 2004<br>Petrov et al 1998<br>Cebulla et al 2007<br>Ji et al 1997, Neubelt et al 2019 |
| Roper                                                                        | -6.7                                                                                     | bag model                                                                                                                                                    | Neubelt et al 2019                                                                                                         |
| Δ                                                                            | -2.6                                                                                     | Skyrme model                                                                                                                                                 | Perevalova et al 2016                                                                                                      |
| nucleus                                                                      | $-0.2 \times A^{7/3}$                                                                    | liquid drop model                                                                                                                                            | Polyakov 2002                                                                                                              |
| <sup>16</sup> O<br><sup>40</sup> Ca<br><sup>90</sup> Zr<br><sup>208</sup> Pb | -58<br>-610<br>-3300<br>-19700                                                           | Walecka model                                                                                                                                                | Guzey, Siddikov 2006                                                                                                       |
| $Q$ -balls excited $N^{\text{th}}$ $Q$ -cloud limit                          | $-(90-\infty)$<br>$-\operatorname{const} N^8$<br>$-\operatorname{const} / \varepsilon^2$ | non-topolog. soliton radial excitations limit $\varepsilon \to 0$                                                                                            | Mai, PS 2012<br>Cantara, Mai, PS 2016                                                                                      |

# **Notable insights**

- free spin- $\frac{1}{2}$  Dirac equation D = 0 Donoghue et al (2002), Hudson, PS 2018 D-terms of fermions of dynamical origin! (analog to prediction g = 2)
- Goldstone bosons of chiral symmetry breaking D = -1in chiral limit (pion very close to it, kaon and  $\eta$  deviate more
- *D*-term always negative! Why? except for non-interacting fermions
- *D*-terms of nuclei grow as  $A^{7/3}$  with mass number *A* DVCS amplitude ~  $A^{4/3}$ , to be tested in experiment
- even stronger growth  $D \sim \text{const} \times M^{8/3}$  with mass M for excited states in *Q*-ball system and bag model; can be tested in other models
- *D*-term sensitive to dynamics  $\rightarrow$  interesting to study!



# How to measure?

- direct probe: graviton (in principle)
- indirect probe: photon (in practice)  $\rightarrow$  generalized parton distributions **GPDs**  $\rightarrow$  generalized distribution amplitudes **GDAs**
- polynomiality  $\int \mathrm{d}x \, x \, H^q(x,\xi,t) = A^q(t) + \xi^2 D^q(t)$  $\int \mathrm{d}x \, x \, E^q(x,\xi,t) = \, B^q(t) - \xi^2 D^q(t)$



• extracting  $A^{q}(t)$ ,  $B^{q}(t)$  difficult: GPD convoluted in "Compton form factors:"

$$\mathcal{H}(\xi,t,\mu^2) = \sum_{q} e_q^2 \int \mathrm{d}x \left[ \frac{1}{x-\xi-i\varepsilon} - \frac{1}{x+\xi-i\varepsilon} \right] H^q(x,\xi,t,\mu^2) \quad \text{in LO}$$

• extracting D(t) more direct through dispersion relations beam-spin asymmetry in DVCS  $\rightsquigarrow \mathcal{Im} \mathcal{H}$  JLab, EIC  $\rightarrow Q^2$ -leverage unpolarized DVCS cross section  $\rightsquigarrow \mathcal{R}e\mathcal{H}$ 

$$\begin{aligned} \Re e \,\mathcal{H}(\xi, t, \mu^{2}) &= \frac{1}{\pi} \, \mathsf{PV} \int \! \mathrm{d}x \left[ \frac{1}{\xi - x} - \frac{1}{\xi + x} \right] \,\mathcal{I}m \,\mathcal{H}(x, t, \mu^{2}) - \Delta(t, \mu^{2}) \\ \Delta(t, \mu^{2}) &= 4 \sum_{q} e_{q}^{2} \left[ \frac{d_{1}^{q}(t, \mu^{2}) + d_{3}^{q}(t, \mu^{2}) + d_{5}^{q}(t, \mu^{2}) + \dots \right] \\ \lim_{\mu \to \infty} d_{1}^{Q}(t, \mu^{2}) &= d_{1}(t) \, \frac{N_{f}}{N_{f} + 4C_{F}} & \frac{4}{5} \, d_{1}(t) = D(t) \quad C_{F} = \frac{N_{c}^{2} - 1}{2N_{c}} \\ \lim_{\mu \to \infty} d_{1}^{q}(t, \mu^{2}) &= d_{1}(t) \, \frac{4C_{F}}{N_{f} + 4C_{F}} & \text{Teryaev hep-ph/0510031} \\ \lim_{\mu \to \infty} d_{1}^{q}(t, \mu^{2}) &= d_{1}(t) \, \frac{4C_{F}}{N_{f} + 4C_{F}} & \text{Teryaev, PRD76 (2007)} \\ \lim_{\mu \to \infty} d_{1}^{q}(t, \mu^{2}) &= 0 \text{ for } i = 2.5 \end{aligned}$$

 $\lim d_i^u(t,\mu^2) \to 0$  for  $i=3,5,\ldots$  $\mu \rightarrow \infty$ 

 $\mu$ -

PRD76 (2007) PJC52 (2007) Radyushkin, PRD83, 076006 (2011) M.V.Polyakov, PLB 555 (2003) small x

### first insights from experiment

•  $\pi^0$ :  $\gamma \gamma^* \to \pi^0 \pi^0$  in  $e^+e^-$  Bell data: Masuda et al, PRD 93 (2016)  $D^Q_{\pi^0} \approx -0.7$  at  $\langle Q^2 \rangle = 16.6 \text{ GeV}^2$  Kumano, Song, Teryaev, PRD97 (2018) chiral symmetry: total  $D_{\pi^0} \approx -1$  (gluons contribute the rest)



proton: Burkert, Elouadrhiri, Girod, Nature 557, 396 (2018)
 JLab data: PRL100 (2008) & PRL115 (2015)
 beam-spin asym.→ImH unpol. cross sect.→ReH





 $\Delta(t, \mu^2) \rightarrow D^Q(t)$  model-dependent (very first attempt) K. Kumerički, **Nature** 570, 7759 (2019) proof of principle: method works

scale dependence of  $\Delta(t,\mu^2) \rightarrow D^Q(t,\mu^2)$ explore  $Q^2$  range at **EIC** 

What will we learn from D(t)?

### first insights from experiment

•  $\pi^0$ :  $\gamma \gamma^* \to \pi^0 \pi^0$  in  $e^+e^-$  Bell data: Masuda et al, PRD 93 (2016)  $D^Q_{\pi^0} \approx -0.7$  at  $\langle Q^2 \rangle = 16.6 \text{ GeV}^2$  Kumano, Song, Teryaev, PRD97 (2018) chiral symmetry: total  $D_{\pi^0} \approx -1$  (gluons contribute the rest)



proton: Burkert, Elouadrhiri, Girod, Nature 557, 396 (2018)
 JLab data: PRL100 (2008) & PRL115 (2015)
 beam-spin asym.→ImH unpol. cross sect.→ReH





 $\Delta(t, \mu^2) \rightarrow D^Q(t)$  model-dependent (very first attempt) K. Kumerički, **Nature** 570, 7759 (2019) proof of principle: method works

scale dependence of  $\Delta(t,\mu^2) \rightarrow D^Q(t,\mu^2)$ explore  $Q^2$  range at **EIC** 

What will we learn from D(t)?

### what can we learn from EMT form factors?

- 3D density interpretation in Breit frame  $\Delta^{\mu} = (0, \vec{\Delta})$  and  $t = -\vec{\Delta}^2$
- static EMT  $T_{\mu\nu}(\vec{r}) = \int \frac{\mathrm{d}^{3}\vec{\Delta}}{2E(2\pi)^{3}} e^{-i\vec{\Delta}\cdot\vec{r}} \langle P'|\hat{T}_{\mu\nu}|P\rangle$  M.V.Polyakov, PLB 555 (2003) 57
- analog to electric form factor, with the same reservation Sachs, PR126 (1962) 2256

$$\begin{aligned} \mathbf{G}_{E}(t) &= \int d^{3}\vec{r} \, \boldsymbol{\rho}_{E}(r) \, e^{-i\vec{\Delta} \, \vec{r}} & \text{for proton} \\ &= 1 + \frac{1}{6} \, t \, \underbrace{\langle r_{ch}^{2} \rangle}_{\approx (0.8... \, \text{fm})^{2}} + \dots \, \rightarrow \text{mean square charge radius } \langle r_{ch}^{2} \rangle = \int d^{3}\vec{r} \, r^{2} \boldsymbol{\rho}_{E}(\vec{r}) = 6 \, G_{E}^{\,\prime}(0) \end{aligned}$$

• important: we cannot measure the charge (or other) density inside the nucleon we can measure form factors(!) and we can interpret them(!)

#### • reservation:

2D densities: exact partonic probability densities, Burkardt 2000, for all particles 3D densities: not exact, mechanical response functions ( $\neq$  probabilities!) valid for  $r \gtrsim \lambda_{Compt} = \frac{\hbar}{mc}$ , relativistic corrections

reservation known since Sachs (1962). Discussed in detail e.g. in: Belitsky & Radyushkin, Phys. Rept. 418, 1 (2005), Sec. 2.2.2 X.-D. Ji, PLB254 (1991) 456 (Skyrme model, not a big effect) G. Miller, PRC80 (2009) 045210 (toy model, dramatic effect) Hudson, PS PRD **96** (2017) 114013 (not a big effect) Jaffe, e-Print: 2010.15887 (most recent)

#### illustration of reservation

 $\mathcal{L} = \frac{1}{2} (\partial_{\mu} \Phi) (\partial^{\mu} \Phi) - \frac{1}{2} m^2 \Phi^2$  free point-like spin-0 particle Hudson, PS 2017

•  $A(t) = -D(t) = 1 \rightarrow$  energy density:

$$T_{00}(\vec{r}) = m^2 \int \frac{\mathrm{d}^3 \Delta}{E(2\pi)^3} e^{-i\vec{\Delta}\vec{r}} \left[ A(t) - \frac{t}{4m^2} (A(t) + D(t)) \right] = \frac{m}{\sqrt{1 - \vec{\nabla}^2/(4m^2)}} \,\delta^{(3)}(\vec{r})$$
  
in Breit frame  $E = E' = \sqrt{m^2 + (\vec{\Delta}/2)^2}$ 

- expected result  $T_{00}(\vec{r}) = m \, \delta^{(3)}(\vec{r})$  for  $m \to \infty \ldots m$  large with respect to what?
- let's give particle a finite size R:  $T_{00}(\vec{r})_{\text{true}} \stackrel{\text{e.g.}}{=} m \frac{e^{-r^2/R^2}}{\pi^{3/2} R^3}$  (i.e. "smeared out"  $\delta$ -function)  $\langle r_E^2 \rangle = \langle r_E^2 \rangle_{\text{true}} \left( 1 + \delta_{\text{rel}} \right)$  with  $\delta_{\text{rel}} = \frac{1}{2m^2 R^2} \ll 1$  (it is  $\langle r_E^2 \rangle_{\text{true}} = \frac{3}{2} R^2$  here)

numerically pion, kaon, nucleon, deuterium,  $4He_{5\times10^{-4}}$ ,  $2^{20}Ne_{6\times10^{-6}}$ ,  $5^{6}Fe_{5\times10^{-7}}$ ,  $1^{32}Xe_{6\times10^{-8}}$ ,  $2^{20}Ne_{5\times10^{-7}}$ ,  $5^{5}Fe_{5\times10^{-7}}$ ,  $1^{32}Xe_{6\times10^{-8}}$ ,  $2^{20}Ne_{5\times10^{-8}}$ ,  $2^{20}Ne_{5\times10^{-7}}$ ,  $2^{20}Ne_{5\times10^{-8}}$ ,  $2^{20}Ne_{5\times10^$ 

• for nucleon in large- $N_c$  limit  $(M \sim N_c, R \sim N_c^0) \rightarrow \delta_{rel} \sim \frac{1}{N_c^2} \ll 1$ " $1/N_c$  only small parameter in QCD at all energies" (S. Coleman, Aspects of Symmetry)  $\Rightarrow$  formulae correct, interpretation subject to small corrections static EMT  $T_{\mu\nu}(\vec{r}) = \int \frac{\mathrm{d}^{3}\vec{\Delta}}{2E(2\pi)^{3}} e^{-i\vec{\Delta}\vec{r}} \langle P'|\hat{T}_{\mu\nu}|P\rangle$ 

$$\int d^3r \ T_{00}(\vec{r}) = M \quad \text{known}$$
$$\int d^3r \ \varepsilon^{ijk} s_i r_j T_{0k}(\vec{r}, \vec{s}) = \frac{1}{2} \quad \text{known}$$
$$-\frac{2}{5} M \int d^3r \ \left(r^i r^j - \frac{r^2}{3} \delta^{ij}\right) \ T_{ij}(\vec{r}) \equiv D \quad \text{new!}$$

• stress tensor 
$$T_{ij}(ec{r}) = oldsymbol{s}ig( oldsymbol{r}) \Big( rac{r_i r_j}{r^2} - rac{1}{3} \,\delta_{ij} \Big) + oldsymbol{p}ig( oldsymbol{r} ig) \,\delta_{ij}$$

 $egin{array}{c} s(r) & {
m related to distribution of shear forces} \\ p(r) & {
m distribution of pressure inside hadron} \end{array} egin{array}{c} o & {
m `mechanical properties''} \end{array}$ 

• relation to stability: EMT conservation  $\Leftrightarrow \partial^{\mu} \hat{T}_{\mu\nu} = 0 \Leftrightarrow \nabla^{i} T_{ij}(\vec{r}) = 0$   $\hookrightarrow$  necessary condition for stability  $\int_{0}^{\infty} dr \ r^{2} p(r) = 0$  (von Laue, 1911)  $D = -\frac{16\pi}{15} m \int_{0}^{\infty} dr \ r^{4} s(r) = 4\pi m \int_{0}^{\infty} dr \ r^{4} p(r) \rightarrow$  related to internal forces

#### consequences from EMT conservation

- EMT conservation  $\partial^{\mu} \hat{T}_{\mu\nu} = 0 \implies \text{static EMT } \nabla^{i} T_{ij} = 0$  $\rightarrow \frac{2}{3} s'(r) + \frac{2}{r} s(r) + p'(r) = 0$
- interesting insight: imagine we would have s(r) = 0
  - $\rightarrow$  then p'(r) = 0 and p(r) = constant (boring situation) s(r) is responsible for structure, important(!) Polyakov, Lorcé

• integrate 
$$\int_0^\infty dr \ r^3 \left(\frac{2}{3} s'(r) + \frac{2}{r} s(r) + p'(r)\right) = 0$$
$$\rightarrow \int_0^\infty dr \ r^2 p(r) = 0 \quad \text{von Laue condition 1911}$$

#### mechanical radius

- $T_{ij}(\vec{r}) = s(r) \left( \frac{r_i r_j}{r^2} \frac{1}{3} \delta_{ij} \right) + p(r) \delta_{ij} = \text{symmetric } 3 \times 3 \text{ matrix } \rightarrow \text{ diagonalize:}$   $\frac{2}{3} s(r) + p(r) = \text{ normal force (eigenvector } \vec{e_r})$  $-\frac{1}{3} s(r) + p(r) = \text{ tangential force } (\vec{e_{\theta}}, \vec{e_{\phi}}, \text{ degenerate for spin 0 and } \frac{1}{2})$
- mechanical stability  $\Leftrightarrow$  normal force directed towards outside  $\Leftrightarrow T^{ij}e_r^j dA = \underbrace{\left[\frac{2}{3}s(r) + p(r)\right]}_{>0}e_r^i dA \Rightarrow D < 0 \text{ (proof!)} \text{ Perevalova et al (2016)}$

• define: 
$$\langle r^2 \rangle_{\text{mech}} = \frac{\int d^3 r \ r^2 [\frac{2}{3} \ s(r) + p(r)]}{\int d^3 r \ [\frac{2}{3} \ s(r) + p(r)]} = \frac{6D(0)}{\int_{-\infty}^0 \mathrm{d}t \ D(t)}$$
 "anti-derivative" VS  $\langle r_{\text{ch}}^2 \rangle_p = \frac{6G'_E(0)}{G_E(0)}$ 

advantages:

in chiral limit  $\langle r^2 \rangle_{mech}$  finite vs  $\langle r_{ch}^2 \rangle$  divergent (better concept) neutron  $\langle r^2 \rangle_{mech}$  same as proton(!) vs  $\langle r_{ch}^2 \rangle = -0.11 \, \text{fm}^2 \neq$  neutron size unknown

 $\bullet$  prediction: nucleon  $\langle r^2 
angle_{
m mech} pprox 0.75 \, \langle r^2_{
m ch} 
angle$  in chiral quark soliton model

#### visualization of concepts in models

liquid drop model of nucleus



radius  $R_A = R_0 A^{1/3}$ ,  $m_A = m_0 A$ 

surface tension 
$$\gamma=rac{1}{2}p_0R_A$$
,  $s(r)=\gamma\,\delta(r-R_A)$ 

pressure  $p(r) = p_0 \Theta(R_A - r) - \frac{1}{3}p_0 R_A \delta(r - R_A)$ 

D-term 
$$D=-rac{4\pi}{3}\,m_A\,\gamma\,R_A^4pprox -0.2\,A^{7/3}$$

M.V.Polyakov PLB555 (2003)

chiral quark soliton model of nucleon



 $\rightarrow$  negative sign of  $D \Leftrightarrow$  stability (necessary condition)

#### balance of forces

- question: how do the forces balance inside the nucleon?
- answer in model: strong cancellation of repulsive forces due to quark core, and attractive forces from pion cloud (soliton field)

compare to  $V_{\text{conf}}(r) \approx k r$  with  $k \approx 1 \text{ GeV/fm}$  forces inside nucleon  $\ll$  string tension

• in principle answer from QCD: forces due to quarks and gluons

experiment (JLab, EIC)

lattice Shanahan, Detmold 2019  $\mu = 2 \text{ GeV}, \ m_{\pi} = 450(5) \text{ MeV}$ 

account for role of  $\overline{c}^a(t,\mu)$ Polyakov, Son JHEP 09 (2018) 156



in chiral quark soliton model chiral symmtry breaking  $\checkmark$ realization of QCD in large- $N_c \checkmark$ good model (but it is a model) Goeke et al, PRD75 (2007) **Skyrme model** nucleon,  $\Delta$ , large- $N_c$  artifacts Witten 1979

• in large  $N_c$  baryons = rotational excitations of soliton with  $S = I = \frac{1}{2}, \frac{3}{2}, \frac{3}{2},$ 



 $\Rightarrow$  particles with positive D unphysical!!!

$$Q\text{-balls } \mathcal{L} = \frac{1}{2} (\partial_{\mu} \Phi^*) (\partial^{\mu} \Phi) - V, \ V = A (\Phi^* \Phi) - B (\Phi^* \Phi)^2 + C (\Phi^* \Phi)^3$$
  
global U(1) symmetry, solution  $\Phi(t, \vec{r}) = e^{i\omega t} \phi(r)$ 

• ground state properties for large Q-ball



• excitations: N = 0 ground state, N = 1 first excited state, etc. Volkov, Wohnert 2002; Mai, PS 2012 charge density exhibits N shells, p(r) exhibits (2N + 1) zeros



#### bag model Neubelt, Sampino, Hudson, Tezgin, PS, PRD101 (2020) 034013

- free quarks + boundary condition, formulated in large- $N_c$
- $T^{\mu\nu}(r) = T^{\mu\nu}_{\text{quarks}}(r) + T^{\mu\nu}_{\text{bag}}(r)$

 $T^{\mu\nu}_{\text{bag}}(r) = B \Theta(R-r) g^{\mu\nu}$  binding effect ("mimics gluons" Jaffe & Ji 1991)

• all densities defined with  $\Theta$ -functions, assume non-zero values at r = R



- only exception: the normal force =  $\frac{2}{3}s(r) + p(r) > 0$  for r < R, becomes exactly zero at r = R
- this is how one determines the radius of a neutron star: solve Tolman-Oppenheimer-Volkoff equations with an "equation of state" where "radial pressure"  $\frac{2}{3}s(r) + p(r)$  turns negative, define "end of the system"
- excitated states different pattern than Q-balls: p(r) has one node (here 3163th excited state) but  $D \sim \text{const} \times M^{8/3}$  bag & Q-balls deeper reason?



### Summary & Outlook

- $\bullet$  GPDs, GDAs  $\ \rightarrow$  form factors of energy momentum tensor
- D-term: last unknown global property. Important to know!
- D-term of fermions: generated dynamically (free Dirac theory D = 0)
- theory: D negative (Goldstone bosons, models, lattice, disersion relations)
- early phenomenological results: proton (JLab) DVCS,  $\pi^0$  (Belle  $\gamma^* \gamma \rightarrow \pi^0 \pi^0$ )
- interpretation: pressure, forces (and more)
- application: visualization of forces!
- mechanical radius: true size of hadrons (especially neutron!)
- proof that D < 0 (based on mechanical concepts)
- connection to thermodynamics, pressure, temperature, transport phenomena?

Thank you!

• only small selection of topics