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Motivation

• For decades, community has studied proton spin sum rule

(Jaffe, Manohar, 1989 / Ji, 1996)
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• In comparison, less work has been done for mass sum rule

• Yet, different mass sum rules exist

• How do mass sum rules compare to each other ?

(proton mass largely due to trace anomaly, parton energies, or both ?)

• What is impact of recent developments concerning renormalization of EMT ?

(Hatta, Rajan, Tanaka, 2018 / Tanaka, 2018)

• Disclaimer: No discussion of proton mass for constituent-quark-type picture

(see, e.g., Roberts, Schmidt, arXiv:2006.08782 and references therein)



EMT: Definition

• Canonical EMT: Noether current of space-time translational invariance→ conserved

∂µ T
µν
C (x) = 0

• Symmetric (gauge invariant) EMT: definition (QCD)
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– summation over quark flavors and gluon colors understood

– renormalization of parameters of QCD Lagrangian implied

– T
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EMT: Renormalization
(Hatta, Rajan, Tanaka, 2018 / Tanaka 2018)

• Total EMT not renormalized, but individual terms T
µν
i require (extra) renormalization

• Operators that mix under renormalization
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• Mixing equations

O1,R = ZTO1 + ZMO2 + ZLO3 + ZSO4

O2,R = ZFO2 + ZCO4

O3,R = ZψO3 + ZKO4 + ZQO1 + ZBO2

O4,R = O4



• Trace (anomaly) of EMT

(Adler, Collins, Duncan, 1977 / Nielsen, 1977 / Collins, Duncan, Joglekar, 1977 / ...)

T
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µ = (mψ̄ψ)R + γm (mψ̄ψ)R + β
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• Quark and gluon contribution to trace of EMT
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x and y related to finite parts of renormalization constants→ choose scheme

• Different scheme choices

– MS scheme / MS scheme (Hatta, Rajan, Tanaka, 2018 / Tanaka 2018)

– D1 scheme: x = 0, y = γm
– D2 scheme: x = y = 0

D-type schemes look natural



EMT and Proton Mass

• Forward matrix element of total EMT

〈T µν 〉 ≡ 〈P |T µν |P 〉 = 2P
µ
P
ν

– 〈T µν(x) 〉 neither depends on space-time point x nor on hadron spin

• Forward matrix element of T
µν
i,R

〈T µνi,R 〉 = 2P
µ
P
ν
Ai(0) + 2M

2
g
µν
C̄i(0)

– form factors Ai and C̄i satisfy

Aq(0) + Ag(0) = 1 C̄q(0) + C̄g(0) = 0

– in forward limit, matrix elements of EMT fully determined by two form factors

– any mass sum rule for the proton related to at most two independent form factors

(emphasized in Lorcé, 2017)



• Trace of EMT and proton mass (here n = 1
2M , depends on normalization of state)

n 〈T µµ 〉 = M

• T 00
and proton mass (in rest frame)

n 〈T 00 〉 = M

• Working with QCD Hamiltonian∫
d

3
xT

00
=

∫
d

3
xHQCD = HQCD

〈HQCD 〉
〈P |P 〉

∣∣∣
P=0

= M

• Mass sum rules discussed below based on decomposition of 〈T µµ 〉 or 〈T 00 〉
into quark and gluon parts



Two-Term Sum Rule by Hatta, Rajan, Tanaka
(Hatta, Rajan, Tanaka, JHEP 12, 008 (2018) / Tanaka, JHEP 01, 120 (2019))

• Sum rule based on decomposition of T
µ
µ

M = M̄q + M̄g = n
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• Using D-type schemes

(Tq,R)
µ
µ

∣∣
D1

= (1 + γm)(mψ̄ψ)R (Tg,R)
µ
µ

∣∣
D1

= β
2g (F

2
)R

(Tq,R)
µ
µ

∣∣
D2

= (mψ̄ψ)R (Tg,R)
µ
µ

∣∣
D2

= γm(mψ̄ψ)R + β
2g (F

2
)R



Two-Term Sum Rule by Lorcé
(Lorcé, EPJC 78, 120 (2018))

• Sum rule based on decomposition of T
00

M = Uq + Ug = n
(
〈T 00

q,R 〉+ 〈T 00
g,R 〉

)

• Renormalized operators discussed below

• Relation to EMT form factors for two-term sum rules

Ui = M
(
Ai(0) + C̄i(0)

)
M̄i = M

(
Ai(0) + 4C̄i(0)

)
– Ui 6= M̄i obviously

– Uq + Ug = M̄q + M̄g because C̄q(0) + C̄g(0) = 0

• Two-term sum rules have one independent term



(Modified) Four-Term Sum Rule by Ji
(Ji, PRL 74, 1071 (1995) and PRD 52, 271 (1995) / our papers)

• Sum rule based on decomposition of T
00

into traceless part and trace part

T
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– main difference between Ji’s and our work is calculation of T̄
µν

– we use same T̂
µν

for trace part and for defining traceless part T̄
µν

(otherwise T̄
µν

actually not traceless)

– decomposition of T
µν

(that is, definition of T̂
µν

) not unique,

but this is no problem, provided that the same T̂
µν

is used when computing T̄
µν



• Decomposition into quark and gluon parts
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– summing four terms provides mass

M = n
(
〈H′q〉+ 〈H′m〉+ 〈H′g〉+ 〈H′a〉

)



• Form suitable linear combinations of H′q,m,g,a to obtain “nice” terms Hq,m,g,a

– one must satisfy

Hq +Hm +Hg +Ha = H′q +H′m +H′g +H′a

– M expressed in terms of linear combinations Hq,m,g,a

M = n
(
〈Hq〉+ 〈Hm〉+ 〈Hg〉+ 〈Ha〉

)
= Mq +Mm +Mg +Ma

• Final form of sum rule

Hq = (ψ
†
iD ·αψ)R quark kinetic plus potential energy

Hm = (mψ̄ψ)R quark mass term

Hg = 1
2(E

2
+ B

2
)R gluon energy

– three (instead of four) nontrivial terms only

– sum rule has two independent terms



• Comparison with Ji’s original work (Ji, 1995)(
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– sum rules differ by terms in red (1
4 of trace anomaly at operator level)

– difference due to difference in traceless part T̄
00

• Comparison with Lorcé’s two-term decomposition (Lorcé, 2017)
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– modified Ji sum rule can be considered refinement of two-term sum rule by Lorcé



Overview: Comparison of Sum Rules

• Two-term decomposition of 〈T µµ 〉 (in D2 scheme)

M = M̄q + M̄g = n
(〈
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〉
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• Two-term decomposition of 〈T 00 〉
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• Three-term decomposition of 〈T 00 〉
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• Relation between matrix elements〈
(ψ
†
iD ·αψ)R + 1

2(E
2
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〉
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〉
– one can speak about contribution from trace anomaly or from parton energies

– a sum rule with contributions from trace anomaly and parton energies

does not appear naturally

– relation between matrix elements confirmed in recent calculation for hydrogen atom

(Sun, Sun, Zhou, arXiv:2012.09443)

– relation between matrix elements, not between operators



Numerical Results

• First input: parton momentum fractions ai, related to traceless parton operators
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• Second input: quark mass term
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– direct input on trace anomaly (from experiment and/or LQCD) would be useful

• Example: modified Ji sum rule in terms of ai and b
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• Momentum fractions from CT18NNLO parameterization (at µ = 2 GeV)

aq = 0.586± 0.013 ag = 1− aq = 0.414± 0.013

• Quark mass term from sigma terms

σu+σd = σπN =
〈P | m̂ (ūu+ d̄d) |P 〉

2M
σs =

〈P |ms s̄s |P 〉
2M

σc =
〈P |mc c̄c |P 〉

2M

– Scenario A: sigma terms from phenomenology

(Alarcon et al, 2011, 2012 / Hoferichter et al, 2015)

σπN
∣∣
ChPT

= (59± 7)MeV σs
∣∣
ChPT

= (16± 80)MeV

– Scenario B: sigma terms from lattice QCD

(Alexandrou et al, 2019)

σπN
∣∣
LQCD

= (41.6± 3.8)MeV σs
∣∣
LQCD

= (39.8± 5.5)MeV

σc
∣∣
LQCD

= (107± 22)MeV

– main difference between scenarios: including or not σc



• Scheme dependence, for modified Ji sum rule (at µ = 2 GeV)

– considerable numerical scheme dependence

– qualitatively, similar results for other sum rules

– scheme dependence no new phenomenon



• Numerics for sum rule by Hatta, Raban, Tanaka (MS scheme)

– perturbative expansion very stable (applies for all sum rules, and for all schemes)

– M̄q can become negative

• Numerics for two-term sum rule by Lorcé (MS scheme)

– very roughly, quark and gluon energies contribute equally to proton mass

– in MS scheme, contribution from gluon energy somewhat larger



• Numerics for modified Ji sum rule (MS scheme)

– Mg = Ug → discussion for gluon part like for sum rule by Lorcé

– Mq dominates over Mm, but feature less significant if σc included

– precise determination of Mm important for proton mass decomposition

– contribution of Mm is ∼ 8% for Scenario A, ∼ 20% for Scenario B

→ (much) larger than ∼ 1% which is frequently attributed to Higgs mechanism


