Mass Sum Rules for the Proton

(A. Metz, Temple University)

- Motivation
- Energy momentum tensor (EMT) and its renormalization
- Mass decompositions (sum rules)
- Numerics for proton mass sum rules

Based on: S. Rodini, A. Metz, B. Pasquini, JHEP 09 (2020) 067, arXiv:2004.03704
A. Metz, B. Pasquini, S. Rodini, PRD 102 (2020) 114042, arXiv:2006.11171

See also: talks by Lorcé, Rodini, Hatta,

Motivation

- For decades, community has studied proton spin sum rule (Jaffe, Manohar, 1989 / Ji, 1996)

$$
\frac{1}{2}=\frac{1}{2} \Delta \Sigma+\Delta G^{\mathrm{can}}+L_{q}^{\mathrm{can}}+L_{g}^{\mathrm{can}}=\frac{1}{2} \Delta \Sigma+L_{q}^{\mathrm{kin}}+J_{g}^{\mathrm{kin}}
$$

- In comparison, less work has been done for mass sum rule
- Yet, different mass sum rules exist
- How do mass sum rules compare to each other ? (proton mass largely due to trace anomaly, parton energies, or both ?)
- What is impact of recent developments concerning renormalization of EMT ? (Hatta, Rajan, Tanaka, 2018 / Tanaka, 2018)
- Disclaimer: No discussion of proton mass for constituent-quark-type picture (see, e.g., Roberts, Schmidt, arXiv:2006.08782 and references therein)

EMT: Definition

- Canonical EMT: Noether current of space-time translational invariance \rightarrow conserved

$$
\partial_{\mu} T_{C}^{\mu \nu}(x)=0
$$

- Symmetric (gauge invariant) EMT: definition (QCD)

$$
\begin{aligned}
& T^{\mu \nu}=T_{q}^{\mu \nu}+T_{g}^{\mu \nu} \\
& T_{q}^{\mu \nu}=\frac{i}{4} \bar{\psi} \gamma^{\{\mu \stackrel{\leftrightarrow}{D}}{ }^{\nu\}} \psi \quad\left(\gamma^{\{\mu \stackrel{\leftrightarrow}{D}}{ }^{\nu\}}=\gamma^{\mu} \stackrel{\leftrightarrow}{D}^{\nu}+\gamma^{\nu} \stackrel{\leftrightarrow}{D}{ }^{\mu}\right) \\
& T_{g}^{\mu \nu}=-F^{\mu \alpha} F_{\alpha}^{\nu}+\frac{g^{\mu \nu}}{4} F^{2}
\end{aligned}
$$

- summation over quark flavors and gluon colors understood
- renormalization of parameters of QCD Lagrangian implied
- $T_{q}^{\mu \nu}$ contains gluon field due to covariant derivative

$$
\stackrel{\leftrightarrow}{D}^{\mu}=\vec{\partial}^{\mu}-\overleftarrow{\partial}^{\mu}-2 i g A_{a}^{\mu} T_{a}
$$

EMT: Renormalization
 (Hatta, Rajan, Tanaka, 2018 / Tanaka 2018)

- Total EMT not renormalized, but individual terms $T_{i}^{\mu \nu}$ require (extra) renormalization
- Operators that mix under renormalization

$$
\begin{gathered}
\mathcal{O}_{1}=-F^{\mu \alpha} F_{\alpha}^{\nu} \quad \mathcal{O}_{2}=g^{\mu \nu} F^{2} \\
\mathcal{O}_{3}=\frac{i}{4} \bar{\psi} \gamma^{\{\mu \stackrel{\leftrightarrow}{D}}{ }^{\nu\}} \psi \quad \mathcal{O}_{4}=g^{\mu \nu} m \bar{\psi} \psi \\
T^{\mu \nu}=\mathcal{O}_{1}+\frac{\mathcal{O}_{2}}{4}+\mathcal{O}_{3}
\end{gathered}
$$

- Mixing equations

$$
\begin{aligned}
& \mathcal{O}_{1, R}=Z_{T} \mathcal{O}_{1}+Z_{M} \mathcal{O}_{2}+Z_{L} \mathcal{O}_{3}+Z_{S} \mathcal{O}_{4} \\
& \mathcal{O}_{2, R}=Z_{F} \mathcal{O}_{2}+Z_{C} \mathcal{O}_{4} \\
& \mathcal{O}_{3, R}=Z_{\psi} \mathcal{O}_{3}+Z_{K} \mathcal{O}_{4}+Z_{Q} \mathcal{O}_{1}+Z_{B} \mathcal{O}_{2} \\
& \mathcal{O}_{4, R}=\mathcal{O}_{4}
\end{aligned}
$$

- Trace (anomaly) of EMT
(Adler, Collins, Duncan, 1977 / Nielsen, 1977 / Collins, Duncan, Joglekar, 1977 / ...)

$$
T^{\mu}{ }_{\mu}=(m \bar{\psi} \psi)_{R}+\gamma_{m}(m \bar{\psi} \psi)_{R}+\frac{\beta}{2 g}\left(F^{2}\right)_{R}
$$

- Quark and gluon contribution to trace of EMT

$$
\begin{aligned}
T^{\mu}{ }_{\mu} & =\left(T_{q, R}\right)^{\mu}{ }_{\mu}+\left(T_{g, R}\right)^{\mu}{ }_{\mu} \\
\left(T_{q, R}\right)^{\mu}{ }_{\mu} & =(1+y)(m \bar{\psi} \psi)_{R}+x\left(F^{2}\right)_{R} \\
\left(T_{g, R}\right)^{\mu}{ }_{\mu} & =\left(\gamma_{m}-y\right)(m \bar{\psi} \psi)_{R}+\left(\frac{\beta}{2 g}-x\right)\left(F^{2}\right)_{R}
\end{aligned}
$$

x and y related to finite parts of renormalization constants \rightarrow choose scheme

- Different scheme choices
- MS scheme / $\overline{\mathrm{MS}}$ scheme (Hatta, Rajan, Tanaka, 2018 / Tanaka 2018)
- D1 scheme: $x=0, y=\gamma_{m}$
- D2 scheme: $x=y=0$

D-type schemes look natural

EMT and Proton Mass

- Forward matrix element of total EMT

$$
\left\langle T^{\mu \nu}\right\rangle \equiv\langle P| T^{\mu \nu}|P\rangle=2 P^{\mu} P^{\nu}
$$

- $\left\langle T^{\mu \nu}(x)\right\rangle$ neither depends on space-time point x nor on hadron spin
- Forward matrix element of $T_{i, R}^{\mu \nu}$

$$
\left\langle T_{i, R}^{\mu \nu}\right\rangle=2 P^{\mu} P^{\nu} A_{i}(0)+2 M^{2} g^{\mu \nu} \bar{C}_{i}(0)
$$

- form factors A_{i} and \bar{C}_{i} satisfy

$$
A_{q}(0)+A_{g}(0)=1 \quad \bar{C}_{q}(0)+\bar{C}_{g}(0)=0
$$

- in forward limit, matrix elements of EMT fully determined by two form factors
- any mass sum rule for the proton related to at most two independent form factors (emphasized in Lorcé, 2017)
- Trace of EMT and proton mass (here $n=\frac{1}{2 M}$, depends on normalization of state)

$$
n\left\langle T_{\mu}^{\mu}\right\rangle=M
$$

- T^{00} and proton mass (in rest frame)

$$
n\left\langle T^{00}\right\rangle=M
$$

- Working with QCD Hamiltonian

$$
\begin{gathered}
\int d^{3} \times T^{00}=\int d^{3} \times \mathcal{H}_{\mathrm{QCD}}=H_{\mathrm{QCD}} \\
\left.\frac{\left\langle H_{\mathrm{QCD}}\right\rangle}{\langle P \mid P\rangle}\right|_{\mathrm{P}=0}=M
\end{gathered}
$$

- Mass sum rules discussed below based on decomposition of $\left\langle T^{\mu}{ }_{\mu}\right\rangle$ or $\left\langle T^{00}\right\rangle$ into quark and gluon parts

Two-Term Sum Rule by Hatta, Rajan, Tanaka (Hatta, Rajan, Tanaka, JHEP 12, 008 (2018) / Tanaka, JHEP 01, 120 (2019))

- Sum rule based on decomposition of $T^{\mu}{ }_{\mu}$

$$
M=\bar{M}_{q}+\bar{M}_{g}=n\left(\left\langle\left(T_{q, R}\right)^{\mu}{ }_{\mu}\right\rangle+\left\langle\left(T_{g, R}\right)^{\mu}{ }_{\mu}\right\rangle\right)
$$

- Recall operators

$$
\begin{aligned}
& \left(T_{q, R}\right)_{\mu}^{\mu}=(1+y)(m \bar{\psi} \psi)_{R}+x\left(F^{2}\right)_{R} \\
& \left(T_{g, R}\right)_{\mu}^{\mu}=\left(\gamma_{m}-y\right)(m \bar{\psi} \psi)_{R}+\left(\frac{\beta}{2 g}-x\right)\left(F^{2}\right)_{R}
\end{aligned}
$$

- Using D-type schemes

$$
\begin{array}{ll}
\left.\left(T_{q, R}\right)^{\mu}{ }_{\mu}\right|_{\mathrm{D} 1}=\left(1+\gamma_{m}\right)(m \bar{\psi} \psi)_{R} & \left.\left(T_{g, R}\right)_{\mu}^{\mu}\right|_{\mathrm{D} 1}=\frac{\beta}{2 g}\left(F^{2}\right)_{R} \\
\left.\left(T_{q, R}\right)^{\mu}{ }_{\mu}\right|_{\mathrm{D} 2}=(m \bar{\psi} \psi)_{R} & \left.\left(T_{g, R}\right)_{\mu}^{\mu}\right|_{\mathrm{D} 2}=\gamma_{m}(m \bar{\psi} \psi)_{R}+\frac{\beta}{2 g}\left(F^{2}\right)_{R}
\end{array}
$$

Two-Term Sum Rule by Lorcé
 (Lorcé, EPJC 78, 120 (2018))

- Sum rule based on decomposition of T^{00}

$$
M=U_{q}+U_{g}=n\left(\left\langle T_{q, R}^{00}\right\rangle+\left\langle T_{g, R}^{00}\right\rangle\right)
$$

- Renormalized operators discussed below
- Relation to EMT form factors for two-term sum rules

$$
\begin{aligned}
U_{i} & =M\left(A_{i}(0)+\bar{C}_{i}(0)\right) \\
\bar{M}_{i} & =M\left(A_{i}(0)+4 \bar{C}_{i}(0)\right)
\end{aligned}
$$

- $U_{i} \neq \bar{M}_{i}$ obviously
$-U_{q}+U_{g}=\bar{M}_{q}+\bar{M}_{g}$ because $\bar{C}_{q}(0)+\bar{C}_{g}(0)=0$
- Two-term sum rules have one independent term

(Modified) Four-Term Sum Rule by Ji

 (Ji, PRL 74, 1071 (1995) and PRD 52, 271 (1995) / our papers)- Sum rule based on decomposition of T^{00} into traceless part and trace part

$$
\begin{aligned}
& T^{\mu \nu}=\underbrace{\bar{T}^{\mu \nu}}_{\text {traceless part }}+\underbrace{\hat{T}^{\mu \nu}}_{\text {trace part }} \\
& \hat{T}^{\mu \nu}=\frac{1}{4} g^{\mu \nu} T_{\alpha}^{\alpha} \\
& \bar{T}^{\mu \nu}=T^{\mu \nu}-\hat{T}^{\mu \nu}
\end{aligned}
$$

- main difference between Ji's and our work is calculation of $\bar{T}^{\mu \nu}$
- we use same $\hat{T}^{\mu \nu}$ for trace part and for defining traceless part $\bar{T}^{\mu \nu}$ (otherwise $\bar{T}^{\mu \nu}$ actually not traceless)
- decomposition of $T^{\mu \nu}$ (that is, definition of $\hat{T}^{\mu \nu}$) not unique, but this is no problem, provided that the same $\hat{T}^{\mu \nu}$ is used when computing $\bar{T}^{\mu \nu}$
- Decomposition into quark and gluon parts

$$
\begin{gathered}
T_{i}^{\mu \nu}=\bar{T}_{i}^{\mu \nu}+\hat{T}_{i}^{\mu \nu} \\
\mathcal{H}_{q}^{\prime}=\bar{T}_{q, R}^{00}=\left(\psi^{\dagger} i \boldsymbol{D} \cdot \boldsymbol{\alpha} \psi\right)_{R}+(m \bar{\psi} \psi)_{R}-\frac{1+y}{4}(m \bar{\psi} \psi)_{R}-\frac{x}{4}\left(F^{2}\right)_{R} \\
\mathcal{H}_{m}^{\prime}=\hat{T}_{q, R}^{00}=\frac{1+y}{4}(m \bar{\psi} \psi)_{R}+\frac{x}{4}\left(F^{2}\right)_{R} \\
\mathcal{H}_{g}^{\prime}=\bar{T}_{g, R}^{00}=\frac{1}{2}\left(E^{2}+B^{2}\right)_{R}+\frac{y-\gamma_{m}}{4}(m \bar{\psi} \psi)_{R}-\frac{1}{4}\left(\frac{\beta}{2 g}-x\right)\left(F^{2}\right)_{R} \\
\mathcal{H}_{a}^{\prime}=\hat{T}_{g, R}^{00}=\frac{\gamma_{m}-y}{4}(m \bar{\psi} \psi)_{R}+\frac{1}{4}\left(\frac{\beta}{2 g}-x\right)\left(F^{2}\right)_{R}
\end{gathered}
$$

- summing four terms provides mass

$$
M=n\left(\left\langle\mathcal{H}_{q}^{\prime}\right\rangle+\left\langle\mathcal{H}_{m}^{\prime}\right\rangle+\left\langle\mathcal{H}_{g}^{\prime}\right\rangle+\left\langle\mathcal{H}_{a}^{\prime}\right\rangle\right)
$$

- Form suitable linear combinations of $\mathcal{H}_{q, m, g, a}^{\prime}$ to obtain "nice" terms $\mathcal{H}_{q, m, g, a}$ - one must satisfy

$$
\mathcal{H}_{q}+\mathcal{H}_{m}+\mathcal{H}_{g}+\mathcal{H}_{a}=\mathcal{H}_{q}^{\prime}+\mathcal{H}_{m}^{\prime}+\mathcal{H}_{g}^{\prime}+\mathcal{H}_{a}^{\prime}
$$

- M expressed in terms of linear combinations $\mathcal{H}_{q, m, g, a}$

$$
M=n\left(\left\langle\mathcal{H}_{q}\right\rangle+\left\langle\mathcal{H}_{m}\right\rangle+\left\langle\mathcal{H}_{g}\right\rangle+\left\langle\mathcal{H}_{a}\right\rangle\right)=M_{q}+M_{m}+M_{g}+M_{a}
$$

- Final form of sum rule

$$
\begin{aligned}
\mathcal{H}_{q} & =\left(\psi^{\dagger} i \boldsymbol{D} \cdot \boldsymbol{\alpha} \psi\right)_{R} & & \text { quark kinetic plus potential energy } \\
\mathcal{H}_{m} & =(m \bar{\psi} \psi)_{R} & & \text { quark mass term } \\
\mathcal{H}_{g} & =\frac{1}{2}\left(E^{2}+B^{2}\right)_{R} & & \text { gluon energy }
\end{aligned}
$$

- three (instead of four) nontrivial terms only
- sum rule has two independent terms
- Comparison with Ji's original work (Ji, 1995)

$$
\begin{aligned}
\left(\mathcal{H}_{q}\right)_{[\mathrm{Ji}]} & =\left(\psi^{\dagger} i \boldsymbol{D} \cdot \boldsymbol{\alpha} \psi\right)_{R} \\
\left(\mathcal{H}_{m}\right)_{[\mathrm{Ji}]} & =\left(1+\frac{\gamma_{m}}{4}\right)(m \bar{\psi} \psi)_{R} \\
\left(\mathcal{H}_{g}\right)_{[\mathrm{Ji}]} & =\frac{1}{2}\left(E^{2}+B^{2}\right)_{R} \\
\left(\mathcal{H}_{a}\right)_{[\mathrm{Ji}]} & =\frac{\beta}{8 g}\left(F^{2}\right)_{R}
\end{aligned}
$$

- sum rules differ by terms in red ($\frac{1}{4}$ of trace anomaly at operator level)
- difference due to difference in traceless part \bar{T}^{00}
- Comparison with Lorcé's two-term decomposition (Lorcé, 2017)

$$
\begin{gathered}
M=U_{q}+U_{g}=n\left(\left\langle T_{q, R}^{00}\right\rangle+\left\langle T_{g, R}^{00}\right\rangle\right) \\
T_{q, R}^{00}=(m \bar{\psi} \psi)_{R}+\left(\psi^{\dagger} i \boldsymbol{D} \cdot \boldsymbol{\alpha} \psi\right)_{R} \\
T_{g, R}^{00}=\frac{1}{2}\left(E^{2}+B^{2}\right)_{R}
\end{gathered}
$$

- modified Ji sum rule can be considered refinement of two-term sum rule by Lorcé

Overview: Comparison of Sum Rules

- Two-term decomposition of $\left\langle T_{\mu}^{\mu}\right\rangle$ (in D2 scheme)

$$
M=\bar{M}_{q}+\bar{M}_{g}=n\left(\left\langle(m \bar{\psi} \psi)_{R}\right\rangle+\left\langle\gamma_{m}(m \bar{\psi} \psi)_{R}+\frac{\beta}{2 g}\left(F^{2}\right)_{R}\right\rangle\right)
$$

- two scale-independent terms
- Two-term decomposition of $\left\langle T^{00}\right\rangle$

$$
M=U_{q}+U_{g}=n\left(\left\langle(m \bar{\psi} \psi)_{R}+\left(\psi^{\dagger} i \boldsymbol{D} \cdot \boldsymbol{\alpha} \psi\right)_{R}\right\rangle+\left\langle\frac{1}{2}\left(E^{2}+B^{2}\right)_{R}\right\rangle\right)
$$

- two scale-dependent terms
- Three-term decomposition of $\left\langle T^{00}\right\rangle$
$M=M_{q}+M_{m}+M_{g}=n\left(\left\langle(m \bar{\psi} \psi)_{R}\right\rangle+\left\langle\left(\psi^{\dagger} i \boldsymbol{D} \cdot \boldsymbol{\alpha} \psi\right)_{R}\right\rangle+\left\langle\frac{1}{2}\left(E^{2}+B^{2}\right)_{R}\right\rangle\right)$
- one scale-independent term, and two scale-dependent terms
- Relation between matrix elements

$$
\left\langle\left(\psi^{\dagger} i \boldsymbol{D} \cdot \boldsymbol{\alpha} \psi\right)_{R}+\frac{1}{2}\left(E^{2}+B^{2}\right)_{R}\right\rangle=\left\langle\gamma_{m}(m \bar{\psi} \psi)_{R}+\frac{\beta}{2 g}\left(F^{2}\right)_{R}\right\rangle
$$

- one can speak about contribution from trace anomaly or from parton energies
- a sum rule with contributions from trace anomaly and parton energies does not appear naturally
- relation between matrix elements confirmed in recent calculation for hydrogen atom (Sun, Sun, Zhou, arXiv:2012.09443)
- relation between matrix elements, not between operators

Numerical Results

- First input: parton momentum fractions a_{i}, related to traceless parton operators

$$
\frac{3}{2} M^{2} a_{q}=\left\langle\bar{T}_{q, R}^{00}\right\rangle \quad \frac{3}{2} M^{2} a_{g}=\left\langle\bar{T}_{g, R}^{00}\right\rangle \quad\left(a_{q}+a_{g}=1\right)
$$

- Second input: quark mass term

$$
2 M^{2} b=\left(1+\gamma_{m}\right)\left\langle(m \bar{\psi} \psi)_{R}\right\rangle \rightarrow 2 M^{2}(1-b)=\frac{\beta}{2 g}\left\langle\left(F^{2}\right)_{R}\right\rangle
$$

- direct input on trace anomaly (from experiment and/or LQCD) would be useful
- Example: modified Ji sum rule in terms of a_{i} and b

$$
\begin{aligned}
& M_{q}=\frac{3}{4} M a_{q}+\frac{1}{4} M\left(\frac{(y-3) b}{1+\gamma_{m}}+x(1-b) \frac{2 g}{\beta}\right) \\
& M_{m}=M \frac{b}{1+\gamma_{m}} \\
& M_{g}=\frac{3}{4} M a_{g}+\frac{1}{4} M\left[\frac{\left(\gamma_{m}-y\right) b}{1+\gamma_{m}}+\left(1-x \frac{2 g}{\beta}\right)(1-b)\right]
\end{aligned}
$$

- Momentum fractions from CT18NNLO parameterization (at $\mu=2 \mathrm{GeV}$)

$$
a_{q}=0.586 \pm 0.013 \quad a_{g}=1-a_{q}=0.414 \pm 0.013
$$

- Quark mass term from sigma terms

$$
\sigma_{u}+\sigma_{d}=\sigma_{\pi N}=\frac{\langle P| \hat{m}(\bar{u} u+\bar{d} d)|P\rangle}{2 M} \quad \sigma_{s}=\frac{\langle P| m_{s} \bar{s} s|P\rangle}{2 M} \quad \sigma_{c}=\frac{\langle P| m_{c} \bar{c} c|P\rangle}{2 M}
$$

- Scenario A: sigma terms from phenomenology
(Alarcon et al, 2011, 2012 / Hoferichter et al, 2015)

$$
\left.\sigma_{\pi N}\right|_{\mathrm{ChPT}}=\left.(59 \pm 7) \mathrm{MeV} \quad \sigma_{s}\right|_{\mathrm{ChPT}}=(16 \pm 80) \mathrm{MeV}
$$

- Scenario B: sigma terms from lattice QCD (Alexandrou et al, 2019)

$$
\begin{aligned}
\left.\sigma_{\pi N}\right|_{\mathrm{LQCD}} & =\left.(41.6 \pm 3.8) \mathrm{MeV} \quad \sigma_{s}\right|_{\mathrm{LQCD}}=(39.8 \pm 5.5) \mathrm{MeV} \\
\left.\sigma_{c}\right|_{\mathrm{LQCD}} & =(107 \pm 22) \mathrm{MeV}
\end{aligned}
$$

- main difference between scenarios: including or not σ_{c}
- Scheme dependence, for modified Ji sum rule (at $\mu=2 \mathrm{GeV}$)

		MS	$\overline{\mathrm{MS}}_{1}$	$\overline{\mathrm{MS}}_{2}$	D 1	D 2
Scenario A	M_{m}	0.075 ± 0.080				
	M_{g}	0.555 ± 0.036	0.669 ± 0.047	0.686 ± 0.048	0.502 ± 0.035	0.507 ± 0.029
	M_{q}	0.234 ± 0.006	0.135 ± 0.003	0.120 ± 0.003	0.286 ± 0.006	0.272 ± 0.008
Scenario B	M_{m}	0.187 ± 0.023				
	M_{g}	0.517 ± 0.017	0.617 ± 0.020	0.631 ± 0.020	0.465 ± 0.017	0.479 ± 0.015

- considerable numerical scheme dependence
- qualitatively, similar results for other sum rules
- scheme dependence no new phenomenon
- Numerics for sum rule by Hatta, Raban, Tanaka (MS scheme)

		$O\left(\alpha_{s}^{1}\right)$	$O\left(\alpha_{s}^{2}\right)$	$O\left(\alpha_{s}^{3}\right)$
	\bar{M}_{q}	-0.113 ± 0.102	-0.120 ± 0.105	-0.115 ± 0.107
Scenario A	\bar{M}_{g}	1.051 ± 0.102	1.057 ± 0.105	1.053 ± 0.107
Scenario B	\bar{M}_{q}	0.032 ± 0.030	0.030 ± 0.031	0.035 ± 0.030
	\bar{M}_{g}	0.906 ± 0.030	0.908 ± 0.030	0.903 ± 0.030

- perturbative expansion very stable (applies for all sum rules, and for all schemes)
- \bar{M}_{q} can become negative
- Numerics for two-term sum rule by Lorcé (MS scheme)

		$O\left(\alpha_{s}^{1}\right)$	$O\left(\alpha_{s}^{2}\right)$	$O\left(\alpha_{s}^{3}\right)$
Scenario A	U_{q}	0.384 ± 0.035	0.383 ± 0.036	0.384 ± 0.036
	U_{g}	0.554 ± 0.035	0.556 ± 0.036	0.555 ± 0.036
Scenario B	U_{q}	0.420 ± 0.016	0.420 ± 0.017	0.421 ± 0.017
	U_{g}	0.518 ± 0.016	0.518 ± 0.017	0.517 ± 0.017

- very roughly, quark and gluon energies contribute equally to proton mass
- in MS scheme, contribution from gluon energy somewhat larger
- Numerics for modified Ji sum rule (MS scheme)

		$O\left(\alpha_{s}^{1}\right)$	$O\left(\alpha_{s}^{2}\right)$	$O\left(\alpha_{s}^{3}\right)$
	M_{q}	0.311 ± 0.043	0.310 ± 0.043	0.309 ± 0.044
Scenario A	M_{m}	0.073 ± 0.080	0.073 ± 0.079	0.074 ± 0.080
	M_{g}	0.554 ± 0.035	0.556 ± 0.036	0.555 ± 0.036
	M_{q}	0.237 ± 0.006	0.235 ± 0.006	0.234 ± 0.006
Scenario B	M_{m}	0.183 ± 0.023	0.184 ± 0.022	0.187 ± 0.023
	M_{g}	0.518 ± 0.016	0.518 ± 0.017	0.517 ± 0.017

- $M_{g}=U_{g} \rightarrow$ discussion for gluon part like for sum rule by Lorcé
- M_{q} dominates over M_{m}, but feature less significant if σ_{c} included
- precise determination of M_{m} important for proton mass decomposition
- contribution of M_{m} is $\sim 8 \%$ for Scenario A, $\sim 20 \%$ for Scenario B \rightarrow (much) larger than $\sim 1 \%$ which is frequently attributed to Higgs mechanism

