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The status of the chiral-invariant Nambu-Jona-Lasinio (NJL) four-fermi model is quite equivocal. It serves as the paradigm for dynamical symmetry
breaking and yet it is not renormalizable. So one looks to obtain dynamical symmetry breaking in a gauge theory instead. An early attempt was
Maskawa and Nakajima (1974). They studied the quenched (i.e. bare) photon, planar graph approximation to an Abelian gauge theory,

LQED = −1

4
FµνF

µν + ψ̄γµ(i∂µ − e0Aµ)ψ −m0ψ̄ψ. (1)

They kept the first two graphs and their iterations but not the non-planar third:

With S−1(p) = /p−B(p2) they solved the fermion propagator Schwinger-Dyson equation and obtained

B(p2) = m0 +
3α

4π

[ ∫ p2

0

dq2
q2B(q2)

p2[q2 +B2(q2)]
+

∫ ∞
p2

dq2
B(q2)

[q2 +B2(q2)]

]
, B(p2) = m

(
−p2

m2

)γθ/2
, γθ + 1 = ±

(
1− 3α

π

)1/2

, m0 =
3αm

2πγθ

Λγθ

mγθ
. (2)

Solutions to this equation depend on whether α = e20/4π is less than or greater than π/3. For α > π/3 we get m0 = 0 identically and have dynamical
symmetry breaking and a dynamical Goldstone boson. However, for α < π/3 it initially again appears that the bare mass is zero. However this time
m0 only vanishes in the limit of infinite cutoff. As noted by Baker and Johnson (1971) at the same time the multiplicative renormalization constant

Z
−1/2
θ that renormalizes ψ̄ψ diverges as Λ−γθ , so that m0ψ̄ψ is non-zero, and the chiral symmetry is broken in the Lagrangian. Despite the fact

that the Schwinger-Dyson equation now becomes homogeneous and despite the fact that one is looking at its non-trivial self-consistent solution,
there is then no Goldstone boson and this is known as the Baker-Johnson evasion of the Goldstone theorem. Conventional wisdom: One can get
dynamical symmetry breaking in a gauge theory if the coupling is big enough. But BCS is a counterexample.

But for large α (viz. > π/3) the third graph cannot be ignored. So is it valid to claim that there is a phase transition? Johnson, Baker, Wiley
(1961) found all-order quenched planar plus non-planar graph solution scales for any value of α. So phase transition at α = π/3 is just an artifact of
using a perturbative result outside of its domain of validity. Even if dress photon propagator find same result if fixed point with β(α) = 0. γθ is the
anomalous dimension of θ = ψ̄ψ. At α = π/3, γθ = −1, we have d[ψ̄ψ] = 3 + γθ = 2. Is dressed four-Fermi vertex then renormalizable? Suggested
in Mannheim (1975), proven to all orders in Mannheim (2017). But not point-coupled Nambu-Jona-Lasinio model.

NJL Model is a Mean-Field plus Residual Interaction Theory. Introduce mass term with m as a trial parameter and note m2/2g term.

INJL =

∫
d4x

[
iψ̄γµ∂µψ −

g

2
[ψ̄ψ]2 − g

2
[ψ̄iγ5ψ]2

]
=

∫
d4x

[
iψ̄γµ∂µψ −mψ̄ψ +

m2

2g

]
+

∫
d4x

[
−g

2

(
ψ̄ψ − m

g

)2

− g

2

(
ψ̄iγ5ψ

)2]
(3)

〈Ωm|
[
ψ̄ψ − m

g

]2
|Ωm〉 = 〈Ωm|

[
ψ̄ψ − m

g

]
|Ωm〉2 = 0, 〈Ωm|ψ̄ψ|Ωm〉 = −i

∫
d4k

(2π)4
Tr

[
1

/p−m+ iε

]
=
m

g
, −MΛ2

4π2
+
M3

4π2
ln

(
Λ2

M2

)
=
M

g
. (4)

Dilemma: Gauge theory renormalizable, no dynamical symmetry breaking, NJL not renormalizable but has dynamical symmetry breaking.

Solution: They cure each other.
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LQED−FF = −1

4
FµνF

µν + ψ̄γµ(i∂µ − eAµ)ψ −mψ̄ψ +
m2

2g
− g

2

(
ψ̄ψ − m

g

)2

− g

2

(
ψ̄iγ5ψ

)2
(5)

S̃−1(p) = /p−m
(
−p2 − iε

µ2

)−1/2
+ iε, Γ̃S(p, p, 0) =

(
−p2 − iε

µ2

)−1/2
. (6)

〈Ωm|ψ̄ψ|Ωm〉 = −mµ
2

4π2
ln

(
Λ2

mµ

)
=
m

g
, − µ2

4π2
ln

(
Λ2

Mµ

)
=

1

g
, M =

Λ2

µ
exp

(
4π2

µ2g

)
. (7)

Gap equation gives −g ∼ 1/lnΛ2. Thus g is negative, i.e. attractive, and becomes very small as Λ → ∞, with BCS-type essential
singularity in gap equation at g = 0. Hence dynamical symmetry breaking with weak coupling.

ε(m) =
i

2

∫
d4p

(2π)4
Tr ln

[
1− m2

p2 + iε

(
−p2 − iε

µ2

)−1]
= −m

2µ2

8π2

[
ln

(
Λ2

mµ

)
+

1

2

]
, ε̃(m) = ε(m)− m2

2g
=
m2µ2

16π2

[
ln

(
m2

M2

)
− 1

]
, (8)

ε(m) is only log divergent. Due to presence of m2/2g term, ε̃(m) is completely finite. Dynamically induce double-well potential with no fundamental
−µ2φ2 term (Mannheim 1975). We thus see the power of dynamical symmetry breaking. It reduces divergences. Moreover, since m2/2g is a
cosmological term, dynamical symmetry breaking has a control over the cosmological constant problem that an elementary Higgs field potential does
not. When coupled to conformal gravity, the cosmological constant problem is completely solved (Mannheim 2017).

Higgs-Like Lagrangian (Mannheim 1978)

LEFF = −m
2(x)µ2

16π2

[
ln

(
m2(x)

M2

)
− 1

]
+

3µ

256πm(x)
∂µm(x)∂µm(x) + .... (9)

From residual interaction with T = g + gΠg + .. = g/(g − Π) get Goldstone and Higgs bound states (Mannheim 2017) with completly finite

TP(q2) =
128πM

7µq2
=

57.446M

µq2
, q2(Goldstone) = 0, q2(Higgs) = (2.189− 0.051i)M2. (10)

Dynamical Higgs boson solves hierachy problem. Dynamical Higgs mass is close to dynamical fermion mass, but above threshold with narrow width.
In a double-well elementary Higgs field theory Higgs mass is real. Width can be used to distinguish an elementary Higgs from a dynamical one.
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