DEIA in Nuclear Astrophysics A Summary from the JINA Horizons White Paper

Hendrik Schatz Michigan State University Joint Institute for Nuclear Astrophysics

arXiv:2205.07996v1 [nucl-ex] 16 May 2022

A New White Paper for Nuclear Astrophysics

Horizons: Nuclear Astrophysics in the 2020s and Beyond

H Schatz^{1,2,3}, A D Becerril Reyes^{2,3}, A Best^{4,5}, E F Brown^{1,2,6,3}, K Chatziioannou^{7,8}, K A Chipps^{9,10}, C M Deibel¹¹, R Ezzeddine^{12,3}, D K Galloway^{13,14,15}, C J Hansen^{16,17,18}, F Herwig^{19,3}, A P Ji^{20,21}, M Lugaro^{22,23,13}, Z Meisel^{24,3}, D Norman²⁵, J S Read²⁶, L F Roberts²⁷, A Spyrou^{1,2,3}, I Tews²⁸, F X Timmes^{29,3}, C Travaglio³⁰, N Vassh³¹, C Abia³², P Adsley³³, S Agarwal^{34,3}, M Aliotta³⁵, W Aoki^{36,37}, A Arcones^{38,39}, A Aryan⁴⁰, A Bandyopadhyay⁴⁰, A Banu⁴¹, D W Bardayan^{42,3}, J Barnes⁴³, A Bauswein³⁹, T C Beers^{42,3}, J Bishop⁴⁴, T Boztepe⁴⁵, B Côté^{19,22,3}, M E Caplan⁴⁶, A E Champagne^{47,48}, J A Clark^{49,3}, M Couder^{42,3}, A Couture⁵⁰, S E de Mink^{51,52}, S Debnath⁵³, R J deBoer⁵⁴, J den Hartogh²², P Denissenkov^{19,3}, V Dexheimer⁵⁵, I Dillmann^{56,19,3}, J E Escher⁵⁷, M A Famiano^{34,3,58}, R Farmer⁵¹, R Fisher⁵⁹, C Fröhlich^{60,3}, A Frebel⁶¹, C Fryer⁶², G Fuller⁶³, A K Ganguly⁶⁴, S Ghosh⁶⁰, B K Gibson⁶⁵, T Gorda^{66,67}, K N Gourgouliatos⁶⁸, V Graber^{69,70}, M Gupta⁷¹, W Haxton^{72,73}, A Heger^{13,14,74,3}, W R Hix^{9,10}, W C G Ho⁷⁵, E M Holmbeck^{76,3}, A A Hood⁴⁴, S Huth^{66,77}, G Imbriani⁴, R G Izzard⁷⁸, R Jain^{1,2,3}, H Jayatissa⁷⁹, Z Johnston^{1,3}, T Kajino^{36,37,80}, A Kankainen⁸¹, G G Kiss⁸², A Kwiatkowski^{56,19}, M La Cognata⁸³, A M Laird⁸⁴, L Lamia^{85,83,86}, P Landry⁸⁷, E Laplace^{88,52}, K D Launey¹¹, D Leahy⁸⁹, G Leckenby^{31,90}, A Lennarz^{31,91}, B Longfellow⁵⁷, A E Lovell²⁸, W G Lynch^{1,2}, S M Lyons^{92,3}, K Maeda⁹³, E Masha⁹⁴, C Matei⁹⁵, J Merc^{96,97}, B Messer^{98,10}, F Montes^{2,3}, A Mukherjee^{99,100}, M Mumpower^{28,62,3}, D Neto¹⁰¹, B Nevins^{1,2,3}, W G Newton¹⁰², L Q Nguyen⁵⁴, K Nishikawa¹⁰³, N Nishimura^{104,105}, F M Nunes^{2,1}, E O'Connor¹⁰⁶, B W O'Shea^{6,1,2,3}, W-J Ong^{57,3}, S D Pain^{9,10}, M A Pajkos^{1,6,3}, M Pignatari^{22,107,108}, R G Pizzone⁸³, V M Placco²⁵, T Plewa¹⁰⁹, B Pritychenko¹¹⁰, A Psaltis^{38,108}, D Puentes^{1,2}, Y-Z Qian¹¹¹, D Radice^{112,113,114}, D Rapagnani^{4,5}, B M Rebeiro^{115,116}, R Reifarth¹⁶, A L Richard^{57,2}, N Rijal², I U Roederer^{117,3}, J S Rojo¹¹⁸, J S K¹¹⁹, Y Saito^{90,56}, A Schwenk^{66,77,120}, M L Sergi^{85,83}, R S Sidhu^{39,120,35}, A Simon⁵⁴, T Sivarani¹²¹, Á Skúladóttir^{122,123}, M S Smith⁹, A Spiridon¹²⁴, T M Sprouse^{28,62}, S Starrfield²⁹, A W Steiner^{125,9}, F Strieder¹²⁶, I

Sultana^{127,3}, R Surman^{54,3}, T Szücs⁸², A Tawfik¹²⁸, F Thielemann^{129,39}, L Trache¹²⁴, R Trappitsch^{130,108}, M B Tsang², A Tumino^{131,83}, S Upadhyayula³¹, J O Valle Martínez¹³², M Van der Swaelmen¹²³, C Viscasillas Vázquez¹³³, A Watts⁵², B Wehmeyer^{22,134}, M Wiescher^{42,35,3}, C Wrede^{1,2}, J Yoon^{135,3}, R G T Zegers^{1,2,3}, M A Zermane¹³⁶, M Zingale¹³⁷ Organized by JINA, IReNA Partner Networks

- 579 participants JINA Horizon Horizon Meeting December 2020
- White Paper: 165 co-authors from 20 countries
- Includes:
 - Scientific vision
 - DEIA vision
 - Needs of early career scientists
 - Importance of centers
 - Importance of (international) collaboration
- Accepted for Publication at JPG– available for scientists on arXiv:2205.07996

5	Neutron Stars and Dense Matter		
	5.1	Introduction	38
	5.2	Open Questions	39
	5.3	How did we get here?	39
	5.4	What needs to be done?	42
	5.5	What do we need?	44
6	Diversity in Nuclear Astrophysics		
	6.1	Introduction	45
	6.2	Open Questions	46
	6.3	How Did We Get Here?	46
	6.4	What Needs To Be Done?	50
	0 5		

IReNA NSF AccelNet Network of Networks

Integration of DEIA and Science on Equal Footing

- Treated DEIA on equal footing with the science as an essential goal for the field to be successful.
 - Invited talk
 - Breakout session
 - White paper section
- DEIA is different
 - We were mostly not experts (with some exceptions, e.g. Dara Norman from Nori Lab)
 - Its personal: people in the room are personally affected
 - Everybody has to engage
 - Chose breakout into small groups and collected written thoughts from each group
- Success can be defined at different levels
 - Treating it on equal footing at the meeting gave it the visibility, seriousness, and priority it needs and fosters broad buy-in
 - Same for it being its own section in the white paper lots of discussion also during writing
 - Integration can hopefully serve as a model

... but what does it say?

How Did we Get Here: State of the Field

- Some progress with gender representation
 - Women participation at conferences in nuclear astrophysics has reached ~30% (41% of Horizon Speakers were women)
 - JINA had 38% women grad students
- Nuclear astrophysics
 - Interdisciplinarity is a benefit can learn from other fields
 - Internationality is a benefit we can learn and we can impact other communities (where we do send students/postdocs for example)
 - Centers like JINA can play an important role in facilitating this exchange and disseminating/impacting a large part of the community
- Diversity record on minorities in nuclear physics (and nuclear astrophysics) is dismal
 - Fraction of Black students among physics bachelors dropped from 1999 to 2020 from 4.8 to 3.1%
 - This numbers make it look better than it is as vast majority of degrees are awarded by a few HBCUs (so most other US universities have close to zero students)
 - Fraction of physics doctorates awarded to Black students has dropped below 1%

What Needs to be Done?

- Treat diversity goals on an equal footing with scientific goals
- Committed leadership
- Provide incentives to promote DEIA goals
 - Promotion, funding (funding agencies)
- Address barriers (they are there, otherwise we would have population level numbers)
- Address bias
- Retention
 - Recruiting makes no sense if retention is not addressed
 - Sense of belonging in field, department, ...
 - Affirm identity as scientist at early career stage,
 - Investment in resources for students
- Outreach
 - Ensure marginalized communities are reached
 - Address barriers for participation (e.g. internet access, computing access)

What Needs to be Done? Role of Centers?

- Centers and Networks like JINA or the newly proposed CeNAM play an important role
- Codes of Conduct
 - Not just focused on illegal activities, discrimination, harassment but expectation
 of inclusive and welcoming environment, respectful interactions, no bullying,
 - Tracking code of conduct violations
- Open access to data, resources, knowledge, and ideas
 - Centers can facilitate this greatly
- Online access to meetings
 - Centers organize large numbers of meetings and can experiment, spearhead new approaches to integrate online access
- Buy-in
 - Centers and large collaborations reach a large part of the community
 - Centers bring together people from different disciplines
- Mentoring
 - Centers can facilitate multi-institutional mentoring networks
- Training
 - Centers and large collaborations reach a large part of the community
- Collect and monitor metrics

Led by M. Lugaro (Hungary), C. Hampton (US) Originated in ChETEC parter network IReNA a NSF AccelNet Network of Networks disseminated across the world

Women Scientists Who Made Nuclear Astrophysics

Summary

- Progress has been achieved in gender diversity but we are nowhere near to where we need to be
- The track record of the field in diversity in other underrepresented groups is dismal
- Interdisciplinary, multi-institutional, and international centers can make important contributions
- We need broad community buy-in and a concerted effort to make DEIA goals a priority for all members of the field, on equal footing with the scientific goals.
 - While recognizing the differences discussions need to be mindful and safe
- We need to transition from identifying what should be done to making and sustaining actual changes through equity-minded approaches that acknowledge the differing needs of individuals.
 - All members of the community have a role to play.
 - Individual actions in these roles may range from individual and personal to using influence to establish inclusive policies and procedures in their collaborations, departments and universities.

