Quantum Computing in NP: Nuclear Structure and Dynamics

A. Baroni, A. Roggero, I. Stetcu, J.C.

Promise of Quantum Computing: Scattering and Dynamics

Linear Response is a natural early application Short time evolution contains a lot of information Minimal Requirements on auxiliary qbits

In response & spin models doing what we can now and planning for QC

State Preparation on QC: variational for Shell Model

Single-particle entanglement (left) and mutual information for HF s.p. states

Coherent Neutrino Evolution

B. Hall, J. Martin, A. Baroni, A. Roggero, H. Duan, V. Cirigliano, J.C. (See also works by ORNL, M. Savage, ...)

Vacuum oscillations + MSQ + \nu - \nu forward scattering

Simple mapping of spins to qubits However, all-to-all coupling

5000

12 spins: 8 up and 4 down in flavor basis H₂ decays w/ time

Previously calculations in mean-field approximation

Register for LRP meeting on Quantum Computing Jan 31-Feb 1; Santa Fe Hilton See details on IQuS web site under workshops Link for registration

Simple 2 beam model with quench (static H) & initial product state Enough symmetries that we can do 100's of spins

$$\frac{H}{\mu} = \frac{\Omega}{2} \vec{B} \cdot (\vec{J}_{A} - \vec{J}_{B}) + \frac{2}{N} \vec{J}_{A} \cdot \vec{J}_{B},$$
$$\Delta H^{2} = c_{1}N + c_{0}.$$

$$c_0 = \frac{N_{\rm A} N_{\rm B}}{4N^2} (1 - (\hat{n}_{\rm A} \cdot \hat{n}_{\rm B}))^2,$$

$$c_1 = c_{1,2}\Omega^2 + c_{1,1}\Omega + c_{1,0}.$$

Initial state energy distributions

Accuracy of mean field Works well for large N

More 'realistic' dynamical model (B. Balantekin)

Avoided level crossing More general dynamics

Large Gap / Adiabatic evolution Spectral swap / Dynamical phase transition