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FIG. 3. Circuit implementation of the W unitary.

interest. Given the expensive procedure needed to generate
the final states a better strategy to estimate multiple observ-
ables per iteration may be needed for greater efficiency. One
option is using state reconstruction techniques developed in
quantum tomography [63,64] or devising strategies tailored to
the particular system studied and its encoding on the quantum
computer.

IV. CONCLUSIONS

We presented a complete quantum algorithm for calcu-
lating the linear response of a quantum system to external
perturbations with controllable accuracy. This is achieved by
probabilistically preparing the perturbed state (even though a
deterministic preparation with polynomial cost is in general
available) and then analyzing it by using the standard phase
estimation algorithm [44]. Our approach is efficient (scaling
is polynomial in system size and required accuracy) and
provides direct access to the final states resulting from the
perturbation, a property that potentially makes it extremely
valuable to the interpretation of ongoing and planned scatter-
ing experiments.
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APPENDIX: IMPLEMENTATION OF THE
STATE PREPARATION UNITARY

In this Appendix we describe an explicit construction of
the unitary Û γ

S from Sec. II A using standard gates. To keep
the discussion simple we implement the unitary

W =
(

cos(γ Ô) −i sin(γ Ô)

i sin(γ Ô) cos(γ Ô)

)

, (A1)

which apart from a global phase achieve the same transfor-
mation we needed Û γ

S for. The circuit implementing this gate
is represented in Fig. 3 where X indicates a Pauli σX matrix
applied to the ancilla qubit. The time evolution unitary ÛO
described in the main text can be written as

ÛO = e−iγ Ô, (A2)

and it’s controlled version appearing in the circuit above can
be obtained with known techniques (see, e.g., Ref. [65]).
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FIG. 1. Approximations of the true response function SO(ω) for
the model system described by the Hamiltonian of Eq. (5) for
different numbers of the work qubits: W = 6 (blue line), W = 8 (red
line), and W = 12 (green line). The exact response is also shown
with black dots. The inset shows the maximum error in the sample
estimate of P(y) as a function of the number of samples.

which implies in order to obtain a precision δ with probability
1 − ε we need approximately

N = ln
(

2
ε

)
1

2δ2
(16)

independent samples.
In Fig. 1 we plot the approximate response P(y) for the

model Hamiltonian Eq. (5) at three different values of W
(6,8,12). By comparing with the exact result shown as black
dots, we see that for W = 12 the effect of energy resolution
is negligible but already with W = 8 we obtain a rather ac-
curate estimate for SO(ω). Even W = 6 reproduces important
features of the response, which in experiments is convoluted
with the detector resolution. The inset shows the convergence
of the maximum error

δmax = sup
y∈[0,...,2W −1]

|hN (y) − P(y)| (17)

as a function of the sample size N . As expected the error do
not scale with the resolution $ω. Response functions relevant
for ν and e− scattering are typically smooth at high energy
and hence require small W and short propagation times.

Finally, in order to obtain a negligible bias from the state
preparation we need the parameter γ to scale as

γ ! C

√
δ

‖Ô‖
(18)

for some constant C = O(1). Note that the Hamiltonian evo-
lution implemented in Ût has to have an error εt ! γ 2‖Ô‖2

to be negligible (luckily algorithms with only logarithmic
dependence on εt are known [36,43]). This concludes the
proof of the scalings (3) and (4).

III. FINAL STATE MEASUREMENTS

In electron- or neutrino-nuclear scattering experiments
[10,49–62] one would like to infer the probability P(q,ω| %p)
that the probe transferred energy momentum (q,ω) to the nu-
cleus and simultaneously that the final state includes a nucleon
(or neutron or proton) of momentum ( %p). More concretely this
amounts to an inference procedure of the form

P(q,ω| %p) = P( %p|q,ω)
P(q,ω)

P( %p)

= P( %p|q,ω)
P(ω|q)P(q)

P( %p)
,

(19)

where P( %p) results from the experimental measure, P( %p|q,ω)
is the momentum distribution of the final states for a process
with given (q,ω) and P(q|ω) ≡ S(q,ω). The prior probability
P(q) depends on the static response of the nucleus and the
characteristic of the probe beam and can be updated given the
other ones by a Bayesian procedure. The above section ex-
plains how to obtain S(q,ω) with a given accuracy and in the
following we will show how to evaluate few-body momentum
distributions given by the final state of the algorithm above.
Note that after measuring the W ancilla qubits of Sec. II B the
main register will be left in a state |' f 〉 composed by a linear
superposition of final states corresponding to energy transfer
ω ± $ω. Imagine we want now to compute exclusive one- and
two-body momentum distributions

n1(A) = 〈' f |n̂A|' f 〉 n2(A, B) = 〈' f |n̂An̂B|' f 〉, (20)

where n̂k ≡ n̂( %pk, σk, τk ) is the number operator for a state
with momentum %pk , spin σk , and isospin τk . We can define
a unitary operator UnA = exp(−iπ n̂A) (which is efficiently
implementable) and run the circuit depicted in Fig. 2 with an
ancilla qubit. By using the idempotence of n̂A we find

P(|0〉) = 1 − n1(A) P(|1〉) = n1(A) (21)

and we can then extract the expectation value by estimating
these probabilities. Note that we may use the same procedure
with UnA,nB = exp(−iπ n̂An̂B) to estimate n2(A, B) (and possi-
bly higher body momentum distributions). We can get a better
strategy by reusing the final state of the circuit of Fig. 2 upon
measuring the ancilla in |1〉 and running it again with UnB since
the probabilities now will be

P′(|0〉) = 1 − n2(A)
n1(A)

P′(|1〉) = n2(A)
n1(A)

. (22)

Note that |' f 〉 will in general be contaminated by final state
interactions but we can access a better approximation to an
asymptotic state by evolving it in time using Ût .

This measurement procedure will need to then be repeated
a polynomial number of times for all the observables of

FIG. 2. Circuit for measuring the momentum distribution.
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FIG. 3. Left panel: the s.p. entanglement entropy (red bars) compared against the maximal entanglement value (dashed blue
line). Right panel: the mutual information for the HF s.p. states. In both cases, we have used the s.p. HF states of 8Be in the
p shell. States 1 through 6 are for neutrons and 7 through 12 are for protons.

seen immediately that the entanglement between di↵er-
ent protons and neutrons orbitals is quite strong, par-
ticularly between the lowest proton and neutron states,
presumably because the model space is so restricted. In
phenomenological approaches like the shell model, one
treats mostly states around the Fermi surface, which are
expected to be highly correlated.

III. RESULTS

We have implemented the parametrized quantum cir-
cuits reported in Fig. 2 on the available simulators and,
in some cases, on current quantum hardware. The classi-
cal minimization procedure that enters in VQE has been
carried out using di↵erent versions of gradient descent,
currently implemented in the method minimize() from
the scipy module.

A. Simulator results

The simplest problem we can run on 6 qubits is two
neutrons in the p shell, which corresponds to 6He. This is
not to say that our solution properly describes the wave
function for this weakly-bound nucleus in such a small
space. As noted in the previous section, we obtain a
very good approximation of the ground-state energy if
we consider only two parameters, as shown in Table I.
This is not necessarily surprising, since in a shell model
implementation there are only 3 states with the total
projection of Jz summing up to zero.

We have extended the calculations to other nuclei as
well, 8Be (two protons and two neutrons in the p shell)
and 20,22O (four and six neutrons respectively in the sd

shell), with all the results summarized in Table I. For
8Be system, we show the results when we include only
two-particle, two-hole configurations for the same type
of particles (protons or neutrons), adding two-particles,
two holes configurations that include proton and neu-
tron excitations at the same time (marked by an aster-
isk), and two protons and two neutrons (marked by two
asterisks), that is four particles, four holes. To under-
stand why on top of two-particle, two-hole excitations we
also need to add four-particle, four-hole configuration, we
list in Table II the amplitudes of each configuration that
has its absolute value greater than 0.1 in the exact cal-
culation. Including two particle-two hole configurations
built by excited one neutron and one neutron above the
Fermi level already significantly improve the quality of
the state. This was already hinted in Fig. 3, where some
of the most correlated orbitals are constructed from neu-
tron and proton states. Including two-particle, two-hole
operators in the anzatz (4) induces higher particle-hole
correlations, including four-particles, four-holes. How-
ever, if the sum in Eq. (4) is truncated to only two-
particles, two-holes contributions, one can see immedi-
ately in Table II that some of the significant four-particle,
four-hole configurations have a much smaller amplitude
than what would be required. Explicitly adding four-
particle, four-hole configurations significantly improves
the quality of the solution, as illustrated in Tables I and
II.

B. Hardware results

We report here results for runs on noisy simulator
and actual hardware. The first Hamiltonian used has
18 terms and the circuits in the variational ansatz de-

Single-particle entanglement (left) and mutual information for HF s.p. states
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FIG. 2. Comparison of convergence properties (a) and success
probabilities (b) for preparing the ground state for 20Ne in the
sd shell model space. We illustrate starting from the Hartree-
Fock (HF) solution constant time (red circles), Gaussian-
sampled times (purple triangles), QPFE (green squares), and
QPFE with optimized times and phases (black diamonds).
We also show with the same filed symbols the Gaussian-
sampled times, QPF and QPF with optimized times and
phases, but after the trial HF state has been projected on
J = 0. Gaussian sampling produce both positive and nega-
tive values, but since the phase is not important in this case,
we plot the running sum of absolute values of times.

for a bipartite lattice does not su↵er from a sign problem.
The ground state is J = 0 for h = 0 but can have a large
J for large magnetic couplings h. Here we consider a 2D
4x4 square lattice in periodic boundary conditions. For
simplicity we take h = 0, for finite h we would have just
an overall energy shift for each JZ subspace.

Both the total spin and the total third component of
spin are good quantum numbers for this Hamiltonian. In
total there are 216 = 65, 536 many-body states. 12,870
states have total JZ = 0, or an equal number of up and
down spins. In principle these could be isolated from
a more general state by projecting upon JZ . Here we
assume the initial state has good JZ = 0.

For the initial state here we employ the Neel state with
all spins up (down) on even (odd) sublattices of the bi-
partite lattice. This state has good JZ = 0 but does not
have good J2. The initial state has a fairly large hJ2i
and not a very accurate energy (scaled energy ⇠ 0.17)
The maximum possible J in this system is J = N/2 = 8.
To project out all the J > 0 states requires 4 iterations,
the last one would be su�cient to project out even higher
J on a bigger lattice. For this case the projection exactly
projects out eigenstates with J > 0 resulting in a state
with hJ2i = 0. The energy is lowered to E ⇡ 0.06 after
the J2 projection.

The success probability of the J = 0 projection is ap-
proximately 11%, corresponding to the fraction of the

FIG. 3. Comparison of energy projection after J2 projec-
tion for the Heisenberg model. Upper panel is total success
probability versus time and lower panel is energy versus time.
Success of the J2 projection is at approximately 0.11 which
is the t = 0 starting point for overall success.

initial state probability in the J = 0 subspace. This
could be improved with better trial states, but would
be smaller for larger lattices. The gap from the ground
state to the lowest relevant excited state is significantly
enhanced with J2 projection, from approximately 0.03 of
the total spectrum width to 0.15 of the total spectrum
width.

We then do an energy projection after obtaining the
large gap between the ground and first excited state. We
compare results for constant, Gaussian, exponential and
optimized times and phases in Fig. 3.

The plot compares results for total propagation time
up to t = ⇡/�. For the constant time case we used
steps of t = ⇡/2 or t�/⇡ = 0.14. For the Gaussian case
we chose 7 steps from a normal distribution and scaled
them to a total evolution time of t = ⇡/�. For the QPF
case with times and phases we chose times and phases
assuming a gap of 0.13 and a 0.5% initial ground state
probability, smaller and much smaller than the actual
values of 0.15 and 0.11, respectively. We find six times
and phases measurements gives the optimum result for
these parameters, adding further measurements does not
improve the result unless more is known about the initial
energy distribution. Optimizing the times and phases
produces small non-zero phases that slightly reduce the
success probability (see top panel) as in the nuclear case,
but increase the accuracy of the prepared ground state.

The algorithm presented here is very e�cient in terms
of number of auxiliary qubits, total projection time, and
success probability. It can be further optimized given
additional information on the initial state overlaps as a
function of quantum numbers and spectra, and to some
degree given noisy hardware. It may also be possible to

Time evolution required ~ 3/   (similar to QMC) 
Projection on symmetries
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(See also works by ORNL, M. Savage, …)


H1 = ∑
i

( − (
δm2

2Ei
) cos(2θν) + A)σz(i) +

δm2

2Ei
sin(θν)σx(i)

H = H1 + H2

H2 = ν∑
i<j

(1 − ̂qi ⋅ ̂qj) σi ⋅ σj

Simple mapping of spins to qubits

However, all-to-all coupling

Vacuum oscillations + MSQ +  forward scatteringν − ν

This is similar to the standard bulb model as the relative
couplings 1 − cosðθpqÞ are small.
The final Hamiltonian for the simple model we imple-

ment here can be written compactly, in units of η, as

H ¼
XN

k¼1

b⃗ ·σ⃗k þ
XN

p<q

Jpqσ⃗p · σ⃗q; ð7Þ

with the external field b⃗ ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 0.9252

p
; 0;−0.925Þ

obtained by choosing the mixing angle θv ¼ 0.195 and
pair coupling matrix Jpq ¼ ð1 − cosðθpqÞÞ. Note that in
this model we set the matter potential A in the one-body
contribution to the Hamiltonian Eq. (3) to zero.

A. Real time evolution

The major challenge in implementing the time evolution
in Eq. (2) in a quantum simulation is to find an accurate
approximation to the evolution operator UðtÞ ¼ exp½−iHt&
that can also be decomposed efficiently into local unitary
operations [17]. A simple and popular approach is to use a
first-order Trotter-Suzuki decomposition [19] of the propa-
gator leading to the approximation

U1ðtÞ ¼
YN

j¼1

e−itb⃗·σ⃗j
YN

p<q

e−itJpqσ⃗p·σ⃗q ; ð8Þ

which is correct up to an additive error ϵ ¼ Oðt2Þ. Past
experience with the Euclidean version of this evolution
operator in quantum Monte Carlo suggests that a better
approximation to the full propagator UðtÞ can be obtained
by using the exact propagators for pairs (see e.g., [20,21]).
In order to construct this alternative approximation, we first
rewrite the Hamiltonian in Eq. (7) manifestly as a sum of
ðN2Þ two-body Hamiltonians acting on each pair of qubits

H ¼
XN

p<q

"
b⃗ · ðσ⃗p þ σ⃗qÞ

N − 1
þ Jpqσ⃗k · σ⃗q

#
≔

XN

p<q

hpq: ð9Þ

We can then define an approximate propagatorU2 using the
exact pair propagator as follows

U2ðtÞ ¼
YN

p<q

e−ithpq ≔
YN

p<q

upq: ð10Þ

Note that the implementation of this operator is efficient
since each pair Hamiltonian acts nontrivially only on a
4 × 4 subset of the total Hilbert space and therefore, as
shown for instance in Refs. [22,23], can be implemented
exactly using at most 3 entangling operations. Note that the
error in this approximation still scales asOðt2Þ but nowwith
a possibly reduced prefactor. In Appendix A we present
a direct comparison between the two approximations.

Finally, the approximation order could also be improved
by symmetrizing over the ordering of operators or by
applying symmetry transformations (see e.g., [24]).
Owing to the long range of the interactions, a naive

implementation of this scheme will require either a device
with all-to-all connectivity (like trapped ion systems [25])
or an extensive use of the SWAP operation, represented in
matrix form as

SWAP ¼

0

BBB@

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

1

CCCA: ð11Þ

The effect of this operation is to exchange the state of two
qubits. One can then use this operation to bring a pair of
qubits that we want to interact close to each other by
applying a sequence of SWAP gates of order N. Since we
need to apply all possible pair interactions, we will show
that it is actually possible to carry out a complete step,
under the unitary in Eq. (10), without incurring any
overhead due to the application of the SWAP operations.
The scheme is inspired by the more general fermionic swap
network construction presented in Ref. [26].
We illustrate this idea using the diagram shown in Fig. 1

for a simple case with N ¼ 4 neutrinos. Starting from the
initial state on the left, we first apply the unitaries upq from
Eq. (10) to the odd bonds: for the N ¼ 4 case, these are the
bonds between the (1,2) and (3,4) pairs of qubits. Before
moving to the next pairs, we also apply a SWAP operation
to the same pairs we just acted upon. The resulting unitary
operation is denoted as a double line joining qubits in Fig. 1
and the net effect is that at the next step the qubits that have

FIG. 1. Pictorial representation of the swap network used in our
simulation in the case of N ¼ 4 neutrinos.
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Previously calculations in mean-field approximation

Simple 2 beam model with quench (static H) 
& initial product state 

Enough symmetries that we can do 100’s of spins

plays an important role in the evolution of the system. For
specific initial states near the extremes of the spectra,
phenomena such as dynamical phase transitions may be
present [30]. For this all-to-all Hamiltonian interaction, as
we show below, the full spectrum has a range that is
proportional to N while the width of the energy distribution
of an initial product state is proportional to

ffiffiffiffi
N

p
while the

energy level spacing for a given total J3 is approximately
constant for largeN. The energy level spacing summed over
all J3 is proportional to 1=N. This behavior is also seen in a
typical spin models with short-range interactions. In this
subsection we discuss the moments of the two-beammodel,
but these can be easily computed for more general cases.
We will proceed by calculating the expectation values of

the first two moments, and the third and fourth central
moments, of the initial condition in the spectrum of the
Hamiltonian. The expectation value of the Hamiltonian is

hHi ¼ N
4

"
ΩB⃗ ·

#
n̂A

NA

N
− n̂B

NB

N

$
þ 2n̂A · n̂B

NANB

N2

%
:

ð7Þ

The expectation value of hH2i can be computed by
expanding the terms in the square of the Hamiltonian, and
the surviving terms in the variance arise only from terms
with repeated spin indices; for operator products applied on

different spin components of the state the expectation value
of the product is the same as the product of the expectation
values. In general terms with more repeated spin indices
will produce lower powers of N in the nth central moment
of the Hamiltonian. The variance can be written in the form

ΔH2 ¼ c1N þ c0: ð8Þ

The term c0 has the form

c0 ¼
NANB

4N2
ð1 − ðn̂A · n̂BÞÞ2; ð9Þ

which vanishes when n̂A ¼ n̂B since this state is an
eigenstate of total spin. We also note that it contains no
term proportional to Ω, therefore it stems only from the
ν − ν interaction term in the Hamiltonian. As the one body
term alone cannot generate interparticle correlation effects,
if c0 dominates the variance for some finite value of N, we
expect to be in the regime in which many-body effects will
be significant due to the finite size. It is therefore important
to study the ratio c0=ðc1NÞ as this will control the size of N
where mean-field-like behavior (which works directly in
the N → ∞ limit) can possibly emerge. Critically, if c1
vanishes for some choice of parameters, we expect that
there exists no value of N such that the many-body and
mean field solutions will agree.
Next we find that c1 is a second order polynomial in Ω.

The second order term comes from the square of the one-
body term, the zeroth order from the square of the two-body
term, and the first order from the product of the two. We
write the variance as

c1 ¼ c1;2Ω2 þ c1;1Ωþ c1;0: ð10Þ

For arbitrary initial polarizations we find that the coeffi-
cients are

c1;2 ¼
1

16

"
NA

N
jB⃗ × n̂Aj2 þ

NB

N
jB⃗ × n̂Bj2

%
; ð11Þ

c1;1 ¼
NANB

4N2
B⃗ · ðn̂B − n̂AÞð1þ n̂A · n̂BÞ; ð12Þ

and c1;0 ¼
NANB

4N2
ð1 − ðn̂A · n̂BÞ2Þ: ð13Þ

If c1 is to vanish identically, then it must be the case that
either each of the c1;i coefficients must equal zero inde-
pendently, or Ω must take some special value such that the
Ω polynomial vanishes. The zeros of the c1 polynomial in
Ω are found with a straightforward application of the
quadratic formula, and we find that the discriminant
(c21;1 − 4c1;2c1;0) is always negative for any choice of
polarizations (n̂A=B) or population fraction NA=N. This

FIG. 1. Histogram of the number of energy states of the many-
body Hamiltonian (blue) in the JA ¼ NA=2, JB ¼ NB=2 sub-
space forN ¼ 3600 spins. Energy bins have a width of 10 in units
of μ. The energy distribution corresponds to the choice of energy
asymmetry (Ω) and population fraction for case 2 the bipolar
mode solution as specified in Table I. Also shown are three initial
conditions projected over the energy spectrum (red, pink, and
cyan histograms). The red histogram corresponds to an initial
polarization in energy space which results in bipolar oscillations
in the large N limit (case 2 in Table I). Similarly, the pink
corresponds to an initial polarization which results in collective
precession of the flavor polarization vectors in the large N limit
(case 2 in Table II). Finally, the cyan represents randomly chosen
polarizations for the n̂A=B unit vectors (case 6 in Table III).
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plays an important role in the evolution of the system. For
specific initial states near the extremes of the spectra,
phenomena such as dynamical phase transitions may be
present [30]. For this all-to-all Hamiltonian interaction, as
we show below, the full spectrum has a range that is
proportional to N while the width of the energy distribution
of an initial product state is proportional to

ffiffiffiffi
N

p
while the

energy level spacing for a given total J3 is approximately
constant for largeN. The energy level spacing summed over
all J3 is proportional to 1=N. This behavior is also seen in a
typical spin models with short-range interactions. In this
subsection we discuss the moments of the two-beammodel,
but these can be easily computed for more general cases.
We will proceed by calculating the expectation values of

the first two moments, and the third and fourth central
moments, of the initial condition in the spectrum of the
Hamiltonian. The expectation value of the Hamiltonian is

hHi ¼ N
4

"
ΩB⃗ ·

#
n̂A

NA

N
− n̂B

NB

N

$
þ 2n̂A · n̂B

NANB

N2

%
:

ð7Þ

The expectation value of hH2i can be computed by
expanding the terms in the square of the Hamiltonian, and
the surviving terms in the variance arise only from terms
with repeated spin indices; for operator products applied on

different spin components of the state the expectation value
of the product is the same as the product of the expectation
values. In general terms with more repeated spin indices
will produce lower powers of N in the nth central moment
of the Hamiltonian. The variance can be written in the form

ΔH2 ¼ c1N þ c0: ð8Þ

The term c0 has the form

c0 ¼
NANB

4N2
ð1 − ðn̂A · n̂BÞÞ2; ð9Þ

which vanishes when n̂A ¼ n̂B since this state is an
eigenstate of total spin. We also note that it contains no
term proportional to Ω, therefore it stems only from the
ν − ν interaction term in the Hamiltonian. As the one body
term alone cannot generate interparticle correlation effects,
if c0 dominates the variance for some finite value of N, we
expect to be in the regime in which many-body effects will
be significant due to the finite size. It is therefore important
to study the ratio c0=ðc1NÞ as this will control the size of N
where mean-field-like behavior (which works directly in
the N → ∞ limit) can possibly emerge. Critically, if c1
vanishes for some choice of parameters, we expect that
there exists no value of N such that the many-body and
mean field solutions will agree.
Next we find that c1 is a second order polynomial in Ω.

The second order term comes from the square of the one-
body term, the zeroth order from the square of the two-body
term, and the first order from the product of the two. We
write the variance as

c1 ¼ c1;2Ω2 þ c1;1Ωþ c1;0: ð10Þ

For arbitrary initial polarizations we find that the coeffi-
cients are

c1;2 ¼
1

16

"
NA

N
jB⃗ × n̂Aj2 þ

NB

N
jB⃗ × n̂Bj2

%
; ð11Þ

c1;1 ¼
NANB

4N2
B⃗ · ðn̂B − n̂AÞð1þ n̂A · n̂BÞ; ð12Þ

and c1;0 ¼
NANB

4N2
ð1 − ðn̂A · n̂BÞ2Þ: ð13Þ

If c1 is to vanish identically, then it must be the case that
either each of the c1;i coefficients must equal zero inde-
pendently, or Ω must take some special value such that the
Ω polynomial vanishes. The zeros of the c1 polynomial in
Ω are found with a straightforward application of the
quadratic formula, and we find that the discriminant
(c21;1 − 4c1;2c1;0) is always negative for any choice of
polarizations (n̂A=B) or population fraction NA=N. This

FIG. 1. Histogram of the number of energy states of the many-
body Hamiltonian (blue) in the JA ¼ NA=2, JB ¼ NB=2 sub-
space forN ¼ 3600 spins. Energy bins have a width of 10 in units
of μ. The energy distribution corresponds to the choice of energy
asymmetry (Ω) and population fraction for case 2 the bipolar
mode solution as specified in Table I. Also shown are three initial
conditions projected over the energy spectrum (red, pink, and
cyan histograms). The red histogram corresponds to an initial
polarization in energy space which results in bipolar oscillations
in the large N limit (case 2 in Table I). Similarly, the pink
corresponds to an initial polarization which results in collective
precession of the flavor polarization vectors in the large N limit
(case 2 in Table II). Finally, the cyan represents randomly chosen
polarizations for the n̂A=B unit vectors (case 6 in Table III).
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plays an important role in the evolution of the system. For
specific initial states near the extremes of the spectra,
phenomena such as dynamical phase transitions may be
present [30]. For this all-to-all Hamiltonian interaction, as
we show below, the full spectrum has a range that is
proportional to N while the width of the energy distribution
of an initial product state is proportional to

ffiffiffiffi
N

p
while the

energy level spacing for a given total J3 is approximately
constant for largeN. The energy level spacing summed over
all J3 is proportional to 1=N. This behavior is also seen in a
typical spin models with short-range interactions. In this
subsection we discuss the moments of the two-beammodel,
but these can be easily computed for more general cases.
We will proceed by calculating the expectation values of

the first two moments, and the third and fourth central
moments, of the initial condition in the spectrum of the
Hamiltonian. The expectation value of the Hamiltonian is

hHi ¼ N
4
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The expectation value of hH2i can be computed by
expanding the terms in the square of the Hamiltonian, and
the surviving terms in the variance arise only from terms
with repeated spin indices; for operator products applied on

different spin components of the state the expectation value
of the product is the same as the product of the expectation
values. In general terms with more repeated spin indices
will produce lower powers of N in the nth central moment
of the Hamiltonian. The variance can be written in the form

ΔH2 ¼ c1N þ c0: ð8Þ

The term c0 has the form

c0 ¼
NANB

4N2
ð1 − ðn̂A · n̂BÞÞ2; ð9Þ

which vanishes when n̂A ¼ n̂B since this state is an
eigenstate of total spin. We also note that it contains no
term proportional to Ω, therefore it stems only from the
ν − ν interaction term in the Hamiltonian. As the one body
term alone cannot generate interparticle correlation effects,
if c0 dominates the variance for some finite value of N, we
expect to be in the regime in which many-body effects will
be significant due to the finite size. It is therefore important
to study the ratio c0=ðc1NÞ as this will control the size of N
where mean-field-like behavior (which works directly in
the N → ∞ limit) can possibly emerge. Critically, if c1
vanishes for some choice of parameters, we expect that
there exists no value of N such that the many-body and
mean field solutions will agree.
Next we find that c1 is a second order polynomial in Ω.

The second order term comes from the square of the one-
body term, the zeroth order from the square of the two-body
term, and the first order from the product of the two. We
write the variance as

c1 ¼ c1;2Ω2 þ c1;1Ωþ c1;0: ð10Þ

For arbitrary initial polarizations we find that the coeffi-
cients are

c1;2 ¼
1

16

"
NA

N
jB⃗ × n̂Aj2 þ

NB

N
jB⃗ × n̂Bj2

%
; ð11Þ

c1;1 ¼
NANB

4N2
B⃗ · ðn̂B − n̂AÞð1þ n̂A · n̂BÞ; ð12Þ

and c1;0 ¼
NANB

4N2
ð1 − ðn̂A · n̂BÞ2Þ: ð13Þ

If c1 is to vanish identically, then it must be the case that
either each of the c1;i coefficients must equal zero inde-
pendently, or Ω must take some special value such that the
Ω polynomial vanishes. The zeros of the c1 polynomial in
Ω are found with a straightforward application of the
quadratic formula, and we find that the discriminant
(c21;1 − 4c1;2c1;0) is always negative for any choice of
polarizations (n̂A=B) or population fraction NA=N. This

FIG. 1. Histogram of the number of energy states of the many-
body Hamiltonian (blue) in the JA ¼ NA=2, JB ¼ NB=2 sub-
space forN ¼ 3600 spins. Energy bins have a width of 10 in units
of μ. The energy distribution corresponds to the choice of energy
asymmetry (Ω) and population fraction for case 2 the bipolar
mode solution as specified in Table I. Also shown are three initial
conditions projected over the energy spectrum (red, pink, and
cyan histograms). The red histogram corresponds to an initial
polarization in energy space which results in bipolar oscillations
in the large N limit (case 2 in Table I). Similarly, the pink
corresponds to an initial polarization which results in collective
precession of the flavor polarization vectors in the large N limit
(case 2 in Table II). Finally, the cyan represents randomly chosen
polarizations for the n̂A=B unit vectors (case 6 in Table III).
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time-evolution incurs a considerable increase of the sim-
ulation cost. This problem can be circumvented using
algorithms to perform simulations in the interaction picture
(see e.g. [26]) and we plan to leverage this technology in
future work. We assume that the presence of any other
charged leptons is negligible.
Determining the flavor evolution of the dense neutrino

gas, even under the assumptions of homogeneity and
isotropy, is prohibitively difficult. For an arbitrary initial
condition describing the initial flavor states of N neutrinos,
the time evolution of 2N complex amplitudes must be
tracked consistently. In the following work we will study
the flavor dynamics of a system which is approximated as
two “beams” of neutrinos. In this approximation, there are
only two distinct velocities vA and vB, so we can extract the
geometric factor 1 − vi · vj from the neutrino-neutrino
coherent forward scattering potential. We also assume that
within each beam there are monochromatic neutrinos such
that we only retain two distinct vacuum oscillation frequen-
cies, ωA and ωB.
With the momentum geometry and energies specified,

we will work in the frame which rotates about the B⃗ axis
with frequency

ðωA þ ωBÞ
2

such that we drop the component of the vacuum oscillation
Hamiltonian which is common to both beams. The two
body Hamiltonian is characterized by the strength

μ ¼
ffiffiffi
2

p
GFN
V

ð1 − vA · vBÞ; ð2Þ

and we will measure all other energies and times in units
of μ. We thus define Ω ¼ ðωA − ωBÞ=μ and express the
two-beam Hamiltonian for the quantum many-body prob-
lem in units of μ as

H
μ
¼ Ω

2
B⃗ · ðJ⃗A − J⃗BÞ þ

2

N
J⃗A · J⃗B; ð3Þ

where J⃗A=B ¼
P

i∈A=B σ⃗i=2. We note that the Hamiltonian
in Eq. (3) is integrable and a complete solution could, in
principle, be obtained using the Bethe ansatz [18,25,27].
Having normalized all energies to the characteristic scale of
the neutrino-neutrino forward scattering term, we set μ ¼ 1
thereby suppressing explicit dependence on μ throughout
the rest of this work.

III. INITIAL PRODUCT STATES AND ENERGY
MOMENTS

The initial conditions we will study are product states of
the individual spins with aligned spins within each beam.
This is a highly simplified case of a more realistic initial

state in which, for example, oscillations are suppressed by
the large matter density near the surface of a protoneutron
star, but the decoupling regime at the surface will be energy
and flavor dependent. It has the advantage of making it easy
to compare the evolution of the mean-field and many-body
case starting from the same initial state. The symmetries in
this initial state can also be exploited to treat the many-body
dynamics very efficiently.
We write our initial state as

jΨi ¼ jn̂Ai⊗NA jn̂Bi⊗NB : ð4Þ

The unit vectors n̂A=B are parametrized by azimuthal and
polar angles θA=B and ϕA=B, and the individual single
particle states are written in terms of these angles as

jn̂A=Bi ¼ cos
"
θA=B
2

#
jν1iþ sin

"
θA=B
2

#
eiϕA=B jν2i; ð5Þ

where jν1i and jν2i are the mass eigenstates of the single
neutrino vacuum Hamiltonian.
This initial condition is highly symmetric, and as such it

accesses only a tiny fraction of the eigenstates of the total
many body Hamiltonian. We observe that the number of
energy states with nonzero overlap with this initial con-
dition scales at most as ∼N3=2 rather than exponentially in
N, which we will justify in the following paragraphs. We
will express the initial condition in the angular momentum
basis jJA;MAi of each block of spins such that

jΨi ¼
X

MA;MB

cMA;MB
jJA;MAi ⊗ jJB;MBi: ð6Þ

We also see that the Hamiltonian keeps invariant the
individual squared angular momentum of each block,
J2A=B, and the total ê3 projection J3 ¼ MA þMB (i.e. the

projection into B⃗ ¼ −ê3 in the mass basis) and that in this
choice of basis the many-body Hamiltonian is tridiagonal.
The initial condition is a state with maximal J2A and J2B, so
we therefore only need to determine with which total
angular momentum projection J3 subspaces our initial state
has appreciable nonzero overlap, and we can then effi-
ciently diagonalize those subspaces due to their tridiagonal
structure using the subroutine eigh_tridiagonal
provided by SciPy [28] (see also [29]). Furthermore, from
the conserved quantities of the Hamiltonian and the
structure of the general form of our initial condition
[Eq. (6)] we observe that the dimensionality of the
accessible Hilbert space scales at most as N2. In Fig. 1
we show the total distribution of energy eigenstates as a
histogram for all possible J3 subspaces of the Hamiltonian
with JA=B ¼ NA=B=2.
In this subsection, we compute the energy distribution of

the initial product state in terms of moments of the
Hamiltonian calculated with respect to our initial state.
For our time-independent Hamiltonian, energy conservation
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plays an important role in the evolution of the system. For
specific initial states near the extremes of the spectra,
phenomena such as dynamical phase transitions may be
present [30]. For this all-to-all Hamiltonian interaction, as
we show below, the full spectrum has a range that is
proportional to N while the width of the energy distribution
of an initial product state is proportional to

ffiffiffiffi
N

p
while the

energy level spacing for a given total J3 is approximately
constant for largeN. The energy level spacing summed over
all J3 is proportional to 1=N. This behavior is also seen in a
typical spin models with short-range interactions. In this
subsection we discuss the moments of the two-beammodel,
but these can be easily computed for more general cases.
We will proceed by calculating the expectation values of

the first two moments, and the third and fourth central
moments, of the initial condition in the spectrum of the
Hamiltonian. The expectation value of the Hamiltonian is

hHi ¼ N
4

"
ΩB⃗ ·

#
n̂A

NA

N
− n̂B

NB

N

$
þ 2n̂A · n̂B

NANB

N2

%
:

ð7Þ

The expectation value of hH2i can be computed by
expanding the terms in the square of the Hamiltonian, and
the surviving terms in the variance arise only from terms
with repeated spin indices; for operator products applied on

different spin components of the state the expectation value
of the product is the same as the product of the expectation
values. In general terms with more repeated spin indices
will produce lower powers of N in the nth central moment
of the Hamiltonian. The variance can be written in the form

ΔH2 ¼ c1N þ c0: ð8Þ

The term c0 has the form

c0 ¼
NANB

4N2
ð1 − ðn̂A · n̂BÞÞ2; ð9Þ

which vanishes when n̂A ¼ n̂B since this state is an
eigenstate of total spin. We also note that it contains no
term proportional to Ω, therefore it stems only from the
ν − ν interaction term in the Hamiltonian. As the one body
term alone cannot generate interparticle correlation effects,
if c0 dominates the variance for some finite value of N, we
expect to be in the regime in which many-body effects will
be significant due to the finite size. It is therefore important
to study the ratio c0=ðc1NÞ as this will control the size of N
where mean-field-like behavior (which works directly in
the N → ∞ limit) can possibly emerge. Critically, if c1
vanishes for some choice of parameters, we expect that
there exists no value of N such that the many-body and
mean field solutions will agree.
Next we find that c1 is a second order polynomial in Ω.

The second order term comes from the square of the one-
body term, the zeroth order from the square of the two-body
term, and the first order from the product of the two. We
write the variance as

c1 ¼ c1;2Ω2 þ c1;1Ωþ c1;0: ð10Þ

For arbitrary initial polarizations we find that the coeffi-
cients are

c1;2 ¼
1

16

"
NA

N
jB⃗ × n̂Aj2 þ

NB

N
jB⃗ × n̂Bj2

%
; ð11Þ

c1;1 ¼
NANB

4N2
B⃗ · ðn̂B − n̂AÞð1þ n̂A · n̂BÞ; ð12Þ

and c1;0 ¼
NANB

4N2
ð1 − ðn̂A · n̂BÞ2Þ: ð13Þ

If c1 is to vanish identically, then it must be the case that
either each of the c1;i coefficients must equal zero inde-
pendently, or Ω must take some special value such that the
Ω polynomial vanishes. The zeros of the c1 polynomial in
Ω are found with a straightforward application of the
quadratic formula, and we find that the discriminant
(c21;1 − 4c1;2c1;0) is always negative for any choice of
polarizations (n̂A=B) or population fraction NA=N. This

FIG. 1. Histogram of the number of energy states of the many-
body Hamiltonian (blue) in the JA ¼ NA=2, JB ¼ NB=2 sub-
space forN ¼ 3600 spins. Energy bins have a width of 10 in units
of μ. The energy distribution corresponds to the choice of energy
asymmetry (Ω) and population fraction for case 2 the bipolar
mode solution as specified in Table I. Also shown are three initial
conditions projected over the energy spectrum (red, pink, and
cyan histograms). The red histogram corresponds to an initial
polarization in energy space which results in bipolar oscillations
in the large N limit (case 2 in Table I). Similarly, the pink
corresponds to an initial polarization which results in collective
precession of the flavor polarization vectors in the large N limit
(case 2 in Table II). Finally, the cyan represents randomly chosen
polarizations for the n̂A=B unit vectors (case 6 in Table III).
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mean-field behavior for each N and parameter set. In this
figure, color denotes the choice of physical parameters,
tabulated by case number (# column) in Tables I–III.
Square markers represent bipolar mode solutions, circle
markers represent precession mode solutions, and dia-
monds represent randomly chosen parameters. We note
that there is a categorical difference in solution behavior in
the regime in which c0=c1N ≫ 1, and the case such that
c0=c1N ≪ 1. For all cases in which c0=c1N ≫ 1, the
deviation between many-body and mean-field solutions
is approximately maximal on our solution interval, but

when c0=c1N approaches 0.1 there is a knee in the
deviation of the solutions past which increasing N results
in improving agreement between the many-body and mean-
field approaches. Thus we observe that the ratio condition
c0=c1 ≈ N can be used as a heuristic for determining the
number of spins which must be included to observe mean-
field-like behavior emerge in full many-body calculations,
however these curves are not identical so further refine-
ments on a per-calculation-basis are still required to
demonstrate full convergence of one-body observables.
We also note the qualitative differences in the con-

vergence behaviors of the three categories of flavor
oscillations. Bipolar mode oscillations are characterized
by large values of c0=c1 due both to the smallness of
sin2ð2θÞ in the denominator of this ratio and the limit
placed on Ω by the inequality of Eq. (22). Precession
mode solutions display a wide range of values for c0=c1
determined by the collective precession frequency Ωc.
When the initial polarizations, population fractions and
vacuum oscillation frequency are chosen at random, the

FIG. 4. Each marker indicates the largest difference between
the many-body (MB) and mean-field (MF) polarization vectors
for a choice of solution mode (marker shapes), and each color
represents a choice of parameter set tabulated in one of the
Tables I–III. Squares represent bipolar mode solutions, circles
represent collective precession modes, and diamonds represent
solutions for randomly chosen parameters. The multiplicity of
markers is due to increasing values of N, with increasing N from
right to left in a given marker shape and color.

TABLE II. Parameters utilized in collective precession mode
solutions to both the many-body and mean-field EOMs. Param-
eters were chosen to span a wide range of Ωc, but were otherwise
taken arbitrarily. They are presented with seven significant
figures. As in the bipolar case, the table is ordered by ascending
values of c0=c1.

No. NA=N Ω θA ϕA θB ϕB c0=c1

1 0.51 1.2 0.5978067 0.0 0.2175694 0.0 0.0902
2 0.45 1.5 1.050692 0.0 0.2942370 0.0 0.482
3 0.51 0.2 1.443493 0.0 1.248403 0.0 5.32
4 0.48 0.9 2.012938 0.0 1.079368 0.0 3.34 × 102

5 0.27 1.37 1.568292 0.0 0.3723205 0.0 6.70 × 103

6 0.33 1.2 1.618388 0.0 0.5131689 0.0 3.40 × 105

7 0.52 0.75 2.051478 0.0 1.286571 0.0 1.25 × 106

TABLE I. Parameters utilized in bipolar mode solutions to both
the many-body and mean-field EOMs. Ne=N and Ω were chosen
arbitrarily but satisfy the inequality in Eq. (22). Finally, the table
is ordered by ascending values of c0=c1.

No. Ne=N Ω θA ϕA θB ϕB c0=c1
1 0.5 0.5 π − 0.4 π 0.4 0.0 1.06 × 102

2 0.55 1.5 π − 0.1 π 0.1 0.0 1.77 × 102

3 0.5 0.5 π − 0.2 π 0.2 0.0 4.05 × 102

4 0.25 0.5 π − 0.1 π 0.1 0.0 1.20 × 103

5 0.55 0.33 π − 0.1 π 0.1 0.0 3.65 × 103

6 0.75 0.18 π − 0.1 π 0.1 0.0 9.29 × 103

7 0.5 0.5 π − 0.002 π 0.002 0.0 4.00 × 106

TABLE III. Parameters chosen at random (except case 6 for
which only the polarization angles were chosen at random.
The population fractions and Ω were chosen to match cases 1
and 2 in the bipolar and precession modes, respectively). We
chose Ω ∈ ð−3.0; 3.0Þ, NA=N ∈ ð0; 1.0Þ, each polar angle
θA=B ∈ ð0; πÞ, and each azimuthal angle ϕA=B ∈ ð0; 2πÞ, and
values are specified with four significant figures. As in the
previous two solution categories, this table is ordered by
ascending values of c0=c1.

No. NA=N Ω θA ϕA θB ϕB c0=c1

1 0.66 −1.396 2.920 4.854 2.386 2.027 0.115
2 0.81 0.3134 1.972 4.179 2.771 5.550 0.277
3 0.18 −1.859 0.4564 1.451 1.278 4.236 0.280
4 0.49 1.464 0.8108 3.545 0.3045 0.1005 0.342
5 0.83 2.371 2.339 2.258 1.133 3.828 0.356
6 0.45 1.5 1.881 4.263 2.175 2.174 0.485
7 0.29 2.032 1.996 0.6419 0.5526 3.708 1.62
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