Inelastic Reactions on a Quantum Computer Gautam Rupak, Mississippi State University (MSU)

Realistic many-nucleon calculations rely on stochastic methods. These methods use the imaginary time. Scattering is a real-time process.

Physics problem: Calculate inelastic processes $a(b, \gamma)c$, a(b, c)d, ...

The issue: In nature, entanglement is a friend and $a(b,\gamma)c \leftrightarrow c(\gamma,b)a$ is negligible. Moreover, the photon has many allowed modes.

- Generic algorithm : Transition $\langle E_f | O_T | E_i \rangle$ initiated by coupling to an ancilla "photon" qubit through an X- or Y-gate. Photon counting register $|0\rangle \leftrightarrow |1\rangle$ signals transition.
- The photon energy can be tuned to drive the system to a resonance like NMR, and achieve 100% transition probability.
- **1:** Encode the system and add an extra "photon" qubit.
- **2:** Prepare the initial state as $|1\rangle \otimes |E_i\rangle$.
- **3:** Evolve initial state with $e^{-iH_T t}$.
- **4:** Measure the photon qubit.

Physics near a resonance is two-level:

"Photon" creation and annihilation

 $H_T = \mathbb{1} \otimes H + \frac{\omega}{2} (\mathbb{1} - Z) \otimes \mathbb{1} + c_0 (\phi^{\dagger} + \phi) \otimes O_T$

$$H_T^{\text{eff}} = \begin{pmatrix} E_f & \omega_1/2 \\ \omega_1/2 & E_i + \omega \end{pmatrix}, \quad \text{with} \quad \omega_1 = 2c_0 \langle E_f | O_T | E_i \rangle$$

Transition probability: $P(t) = \frac{\omega_1^2}{(E_f - E_i - \omega)^2 + \omega_1^2} \sin^2 \frac{\sqrt{(E_f - E_i - \omega)^2 + \omega_1^2}t}{2}$

Example 1: E1 dipole transition in single particle SHO levels

TABLE I. Fit parameter $\Delta \overline{E}$ and $\overline{\omega}_1$ for SHO normalized to expected oscillator frequency $\omega_0 = 8 \,\mathrm{MeV}$ and $\omega_1^{(\mathrm{th})}$, respectively. The first set of $(\Delta \overline{E}, \overline{\omega}_1)$ is from fits at $\omega = \omega_0/2$ and the second set with the superscript R is at resonance $\omega = \omega_0$.

q	$\Delta \overline{E}$	$\overline{\omega}_1$	$\Delta \overline{E}^{(R)}$	$\overline{\omega}_1^{(R)}$
1	1.000(6)	0.936(2)	0.996(8)	0.9911(6)
2	0.994(5)	0.967(4)	0.988(11)	0.9866(10)
3	0.987(3)	0.972(3)	0.976(8)	0.9834(9)
4	0.977(2)	0.966(2)	0.961(10)	0.9793(13)
5	0.965(2)	0.958(2)	0.940(10)	0.9735(16)

Example 2: Two-level systems on IBMQ (ibmq_manila)

$$0 - R_{z}(\omega_{0}\Delta t/2) + R_{x}(\omega_{1}\Delta t) + R_{z}(\omega_{0}\Delta t/2)$$

$$1 - R_{z}(-\omega\Delta t/2) + R_{z}(-\omega\Delta t/2)$$

Qubits 3 and 4 were used for 1024 measurements

Why does it work? Tuning ω near the resonance, the H_T^{eff} eigenstates $|0\rangle_x$, $|1\rangle_x$ are orthogonal to the initial state $|1\rangle$. Time evolution then efficiently mixes $|0\rangle = \frac{|0\rangle_x + |1\rangle_x}{2}$ and $|1\rangle = \frac{|0\rangle_x - |1\rangle_x}{2}$

COLLABORATORS

Ratna Khadka and Muhammad Yusf (MSU graduate students) Paulo F. Bedaque (U. Maryland, College Park)

Some Conclusions

- 1. Quantum computing might provide an advantage in real-time calculation of electro-weak processes. Efforts in this direction is important.
- 2. A generic algorithm for inelastic processes, final/excited state preparation.
- 3. Work is in progress to calculate $p(n, \gamma)d$, building from lower to higher dimensions.
- Green's function approach to calculate triton binding energy. 4.
- Initial state preparation. 5.
- Common tools for the community. 6.
- Training of graduate students in the technology of the future. Diversity in funding.

Funding Agencies

- Department of Energy, Office of Science, Nuclear Physics
- National Science Foundation, Division of Physics, Nuclear Physics

