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three-family picture of the Standard Model. The fourth
experiment, which lies at the heart of modern cosmology
and particle physics, involves the search for the neutron
electric dipole moment (nEDM). This experiment would
improve sensitivity by two orders of magnitude over

the best existing searches for CP violation beyond the
Standard Model, as needed to account for the baryon
asymmetry of the universe.

The ultracold neutron (UCN) facility at Los Alamos
National Lab is the only currently operating UCN
source in North America and provides UCN densities
comparable to the world’s other sources (located in
Europe and Japan). Following the ongoing successful
UCNA experiment on the neutron beta decay
asymmetry, the facility will host the neutron lifetime
measurement UCNrt, detector development for the Nab
and UCNB experiments, the applied nuclear physics
experiment UCNS, and neutron guide and storage

cell development. A more precise determination of

the neutron decay lifetime can be used to determine
the CKM matrix element V_ with high precision in a
fashion that is relatively free of theoretical uncertainties.
Complementary precision studies using decays of rare
isotopes are being carried out at ANL using ion and
atom traps.

The Fermilab Muon Campus is being developed to

host two high-priority approved experiments that will
challenge the Standard Model. While primary support
comes from DOE-HEP, many nuclear physics groups and
international partners are playing leading roles in these
interdisciplinary experiments. The Muon g-2 Experiment
will measure the anomalous magnetic moment of the
muon to the unprecedented precision of 140 parts per
billion. The result will either confirm or refute a long-
standing discrepancy between the Standard Model and
the previous measurement. The Mu2e Experiment will
study the low-energy (essentially forbidden) process of
coherent conversion of a muon to an electron from an
atomically bound muonic atom. The goal is a four orders
of magnitude improvement in the limit of this charged-
lepton-violating process, with single event sensitivity
approaching 1 part in 10",

ADVANCED TECHNOLOGIES

Advanced Computing
Computation now plays an essential role in every area of
nuclear physics research (Sidebar 7.3). Nuclear physicists

The 2015 Long Range Plan for Nuclear Science

exploit available computational resources, ranging from
leadership-class capability computing resources, such
as Titan at OLCF and Mira at ALCF, through capacity
(mid-scale) computing resources, such as Edison at

the National Energy Research Scientific Computing
Center (NERSC) and USQCD hardware at JLab, BNL,
and Fermilab, as well as university clusters and small
local clusters and workstations. The capability resources
are allocated in programs such as INCITE and ALCC
through peer-reviewed proposals in competition with
other areas of science. Nuclear physics has obtained

an approximately constant fraction (12%) of the national
resources during the last several years. Access to
capacity computing resources at NERSC and through
the XSEDE program is also obtained through a proposal
process. In addition, the USQCD project operates its
own capacity computers, supported jointly by the DOE
Offices of Nuclear Physics and High Energy Physics. In
addition to the homogeneous machines it operates in
the form of clusters and a Blue-Gene/Q, USQCD has
invested in heterogeneous machines, primarily those
accelerated with nVidia Graphics Processing Units
(GPUs). GPU machines, through the development of very
efficient software, have proven to be effective in many
aspects of LQCD calculations.

Ten years ago, the capability, capacity, and local clusters
were essentially of the same architecture, comprised of
multiple homogeneous compute cores embedded in a
fast communication fabric. Today, and into the future, the
architectures are heterogeneous and diverse in nature.
The limits of CMOS technology and the resulting failure
to track Moore’s Law, along with the power requirements
of such technologies, make it necessary to embrace
heterogeneous architectures. Two machine architectures
are being pursued to deliver exascale computing
resources within the next 10 years. One architecture is
IBM Power-9 processors with Nvidia Volta GPUs being
procured for Lawrence Livermore National Laboratory
and Oak Ridge National Laboratory. The other is based
on the evolution of Intel Xeon-Phi accelerators and will
be deployed at Argonne National Laboratory as well as
in the next NERSC machine.

Significant software development is required to exploit
these two quite different architectures. Supported
through the SciDAC program and in collaboration with
the SciDAC Institutes, nuclear physicists collaborate

to port and to optimize the performance of the code
bases on these platforms. As an example, the Chroma
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Fig. 12. Sample visual explanations of the CNN’s classification decisions on experimental data. The top row shows the input images. The heatmaps on the bottom row indicate the
regions of the respective images that the model paid particular attention to when making its classification decisions. Areas shaded in red correspond to pixels that were weighted
more heavily in the decision, while areas shaded in blue were weighted less. From left-to-right, these examples constitute cases where the model correctly labeled a proton event,
correctly labeled a non-proton event, mistook a proton event for a non-proton event, and mistook a non-proton event for a proton event. We note that the model focuses on
regions of the point cloud that display structure when correctly identifying proton events. Its “attention” is more diffuse in the other scenarios. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
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NUCLEAR DATA COURTESY C. MORSE, BNL (DNP 2022)

(ipAddress="127.0.0.1", port=5001)

® values dict = api.filterByGroundStateHalfLife()
NNDC: new database format
2023 ‘ .F E N S D F dataframe = plot.createvViewDataFrame(values_dict)
- re ease O r dataframe[ "halflife log"] = .log2(dataframe[ "halfLife"])
- J SO N based plot.configuration.setAxisTitle("x", "log<sub>10</sub>(t<sub>1/2</sub> [s])"
plot.configuration.setAxisTitle("y", "Counts")
pyt h O n P ‘ figure=plot.createHistogram(dataframe, "halflife_ log")
e ﬂ a b ‘ eS M L plot.showFigure(figure)
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Image courtesy of Donnie Mason



NUCLEAR THEORY

e Correlations and predictions
e Estimations and causations
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NUCLEAR THEORY: UNCERTAINTY QUANTIFICATION

Mach. Learn.: Sci. Technol. 2 (2021) 015002
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quantification in deep learning algorithms
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UNIQUE CHALLENGES / OPPORTUNITIES IN LE-NP

- uniquely structured data
- "multimessenger” data sources
- distributed systems



STEPS TOWARDS WIDESPREAD CAPABILITIES

- data standards
- open source code
- tfollowing best practices
+ standards
+ documentation
+ fully-working examples
- collaboration with Al scientists



BIG-PICTURE ADVANCEMENTS IN Al

Large models trained on massive amounts of data
- large language models

- image-based models
- Image-text pairs

- transformer models

Would require:

- (more) open access, data sharing
- computational resources (GPUs)
- easy intertface with packages

- collaboration



ENABLING ADVANCEMENT OF OUR
SCIENCE WITH Al/ML

- EDUCATION EFFORTS
- INTERDISCIPLINARY COLLABORATIONS




EDUCATION EFFORTS

Pipeline: students enter graduate

school with strong computational

skills
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J-TJPP

JOINT TASK FORCE ON

UNDERGRADUATE
PHYSICS PROGRAMS

"Both graduates and their employers report that
preparation for positions available to those with
physics training could be significantly improved.
Studies of physics graduates conclude that their
technical skills should be expanded to address a
wider and deeper knowledge of computational
analysis tools..."

J-TUPP Report: "Preparing Physics Students for the

21st Century Careers”

PICUP

PARTNERSHIP FOR INTEGRATION OF COMPUTATION INTO UNDERGRADUATE PHYSICS

2023 Excellence in Physics Education
Award Recipient

Citation:

"For developing an active, inclusive, and supportive
community of physics educators dedicated to integrating
computation into their instruction, creating, reviewing,
and disseminating instructional materials, and generating
knowledge of computation in physics curricula and of
effective practices.”



EDUCATION EFFORTS

Establish annual education efforts to
build an Al literate workforce

INSTITUTE for

NUCLEAR THEORY Theory Alliance

FACILITY FOR RARE ISOTOPE BEAMS

The Abdus Salam

International Centre
(CTP for Theoretical Physics
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(Virtual Event) Workshop on Computational Nuclear Science and Engineering
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INTERDISCIPLINARY COLLABORATION AND
FUNDING

Collaboration
e Al scientists
e Experts in adjacent tields

Funding

e |nterdisciplinary positions

e Research and development
e Production and deployment




INTERDISCIPLINARY COLLABORATION

EFngage meaningfully with the Al
research community

I TensorFlow

@ DeepMind O P.y TO rC h

PHYSICAL REVIEW LETTERS 12§, 121601 (2020)

Equivariant Flow-Based Sampling for Lattice Gauge Theory

Gurtej Kanwar ,1 Michael S. Albergo ,2 Denis Boyda ,1 Kyle Cra,nmer,2 Daniel C. Hackett ,1

Sébastien Racaniére:,3 Danilo Jimenez Rezende ,3 and Phiala E. Shanahan'
'Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
*Center for Cosmology and Particle Physics, New York University, New York, New York 10003, USA
3DeepMind Technologies Limited, 5 New Street Square, London EC4A 3TW, United Kingdom



INTERDISCIPLINARY COLLABORATION

Engage meaningtully with the Al
research community

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)
Survey Track

A Survey of Machine Learning-Based Physics Event Generation

Yasir Alanazi', Nobuo Sato?, Pawel Ambrozewicz?, Astrid Hiller-Blin?,
Wally Melnitchouk?, Marco Battaglieri’, Tianbo Liu® and Yaohang Li'

IDepartment of Computer Science, Old Dominion University, Norfolk, Virginia 23529, USA
2Jefferson Lab, Newport News, Virginia 23606, USA
3Key Laboratory of Particle Physics and Particle Irradiation (MOE), Institute of Frontier and

Interdisciplinary Science, Shandong University, Qingdao, Shandong 266237, China
yalan001 @odu.edu, {nsato, pawel, ahblin, wmelnitc, battagli} @jlab.org, liutb@sdu.edu.cn,
yaohang @cs.odu.edu

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

Simulation of Electron-Proton Scattering Events by a Feature-Augmented
and Transformed Generative Adversarial Network (FAT-GAN)

Yasir Alanazi', Nobuo Sato?, Tianbo Liu?, Wally Melnitchouk?, Pawel Ambrozewicz?, N

Florian Hauenstein®? , Michelle P. Kuchera*, Evan Pritchard*, Michael Robertson®,
Ryan Strauss®, Luisa Velasco® and Yaohang Li!
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Machine Learning and the Physical.Sciences

Workshop at the 36th conference on Neural Infermation Processing Systems (NeurlPS)
December 3,2022

ICML

ICLR

Infernational Conference

Intfernational Conference On On Machine Leorning

Learning Representations
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