Neutrino-Nucleus scattering: structure and connections to fundamental symmetries

with input from K Mahn, K. Scholberg, S. Pastore, A. Lovato, N. Rocco, Bill Louis, ...

- Introduction
- COHERENT and stopped pion energy experiments
- Inelastic scattering at astrophysical energies (\leq 50 MeV)
- Quasielastic scattering and beyond (pion production)
- Theory and computation
- Relation to other processes:
 - Electron scattering

 - Double Beta Decay

J. Carlson (LANL)

Outline

 Beta Decay for fundamental symmetries - radiative corrections Low-energy neutrinos in dense neutron-rich matter

Neutrino Spectra and cross-sections

RMP 84,1307, (2012)

Neutrinos in Astrophysics and Fundamental Symmetries

- Double Beta Decay (Majorana neutrinos)
- Accelerator: Neutrino Mass Hierarchy, CP violation
- BSM in beta decay
- Nucleosynthesis in NS mergers, Supernovae
- Neutron Star cooling

Neutrino-Nucleus Interactions

- COHERENT: nuclear form factor
- Astrophysical energies (~50 MeV)
- Accelerator energies quasi elastic, pion and delta, ..., DIS

violation

COHERENT Experiment at SNS Low-energy neutrinos

- Observation of neutrino elastic scattering from entire nucleus \bullet
- Sensitive to the neutron distribution in the nucleus \bullet Similar to parity-violating electron scattering (PREX, CREX, ...)
- Also sensitive to Dark Matter and non-standard BSM neutrino-nucleus interactions
- Stopped pion source can also do inelastic measurements neutrino-Ar scattering for detecting supernovae neutrinos from DUNE
- Astrophysical neutrinos more generally (neutrinos impact number of neutrons available for nucleosynthesis)

Astrophysical Energy Neutrinos (< 50 MeV)

Neutrino Spectra from core-collapse SN

Limited data to date:

- Data on ¹²C from LSND, KARMEN on nu-µ scattering to specific states
- LSND used muon decay at rest (40 MeV)
- Best experiment uses electron capture (<3 MeV)
- Projects on Ar cross sections underway for DUNE detectors
- Vector currents can be constrained by electron scattering data

- JSNS² experiment uses proton target w/ Gd doping, prompt/delayed candidate sensitive to energies up to ~50 MeV
- 12C K decay at rest produces mono energetic neutrinos (236 MeV) ~5% backgrounds

Multipole decomposition of Fe cross sections at 20 and 40 MeV

 Nucleosynthesis in core-collapse supernovae and neutron star mergers depend upon neutrino cross sections (e.g. neutron to seed ratio,) Cross sections on detector materials also very important

Much more data to come: 12C, 40Ar

Accelerator Neutrino Scattering

3.0

3.0

3.0

Quasi-elastic scattering: neutrinos (and electrons)

- DUNE neutrino experiment to measure neutrino mass hierarchy, CP violation
- A great deal of new data expected, near detector at FNAL (Ar)
- Electron scattering experiments (JLAB, ...) help understand nuclear physics at scale of nucleon-nucleon separation and below (back-to-back final states, EMC effect,...)
- Nuclear theory / computation to help constrain nuclear electroweak response at QE energies

Accelerator Neutrino Experiments

DUNE

CP violation sensitivity (DUNE)

Compare to Electron Scattering

Quasi-elastic scattering: q ~ k_F

Electron Scattering: 2 response functions Neutrino/Antineutrinos: 5 response functions vector and axial vector components

Some basic Observations from Electron Scattering

Superscaling:for the same kinematics, response looksIncoherent Scattering from individualsimilar for different nuclei ($q > k_F$)nucleons not the whole picture

Superscaling in inclusive e-nucleus scattering Different nuclei at the same kinematics

Scaled longitudinal vs. transverse scattering from ¹²C

Electron Scattering (q > k_F)

Longitudinal (charge) scattering in ⁴⁰Ca

Note: Interaction moves charge

Transverse (current) scattering in ¹²C

Two-nucleon currents important in transverse response

Factorization at One (Spectral Fn) or Two-nucleon (STA) level

Can be used to begin to study exclusive final states: coupling to generators

$$) = \frac{\int d\Omega_q}{4\pi} \int \frac{dt}{2\pi} \exp[i\omega t] \langle \Psi_0 | \mathcal{O}^{\dagger}(\mathbf{q}, t') \exp[-iHt] \mathcal{O}(\mathbf{q}, t=0) \Psi_0 \rangle,$$

Anti-Neutrino (and neutrino) scattering

Neutrinos in dense neutron matter (Cooling of neutron stars)

in red (inset)

vs. density (note assuming T > Tc)

Most of the response at high energies $\sim E_F$ **Even though momentum transfer is low.**

> **Analogous to RF response in cold atoms** (Spin flip to 3rd unoccupied state) **Used to measure contact**

Ties to fundamental symmetries: CKM unitarity low energy, mixed Q

Superallowed beta decay Used to test unitarity of the CKM matrix

Inner radiative corrections to nuclear beta decay Involve connections to inclusive neutrino scattering

Idealized structure of nuclear virtual photoabsorption.

Quasielastic contrition is significant Present evaluation is a bit simplified

$$|V_{ud}^{\text{new}}| = 0.97370(14) \rightarrow |V_{ud}^{\text{new},QE}| = 0.97395(14)(16).$$

 $\rightarrow |V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 0.9989 \pm 0.0005.$

Double Beta decay and the search for lepton number violation / Majorana Neutrinos

Traditional neutrino exchange - long range (1/r) propagator Two nucleon EW currents

- Low Energy Transition:
- New contact Operator

Neutrino-nucleus interactions and fundamental symmetries

- Nuclear Physics with neutrinos is important in astrophysics
 - Nucleosynthesis and supernovae / neutron star mergers
 - Neutron star cooling
- And in Fundamental Symmetries/ BSM Physics
 - Neutrinoless double beta decay
 - CKM unitarity via super allowed beta decay
 - Accelerator neutrinos : mass hierarchy and CP violation
- Theory/computation can make valuable contributions