Technical developments for fundamental symmetry measurements

Outline

- Cyclotron Radiation Emission Spectroscopy
 - Project 8
 - He6-CRES collaboration; + Penning trap
- Ion traps
 - Mass measurements
 - Correlation measurements at ANL, ND and TAMU
- Atom traps
 - (un)polarized angular distributions with TRINAT
 - Sterile neutrinos with HUNTER
- Quantum sensors
 - ✤ EC using the BeEST
- No time for EDMs, neutrons, T-violating searches, …

Cyclotron Radiation Emission

D. Melconian

Nuclear Structure Town Meeting – ANL Nov 15 2022

Cyclotron Radiation Emission

Nuclear Structure Town Meeting – ANL

CRES to measure tritium end-point

D. M. Asner, et al., Phys. Rev. Lett. 114, 162501 (2015)

D. Melconian

Nuclear Structure Town Meeting – ANL Nov 15 2022

CRES to measure tritium end-point

β -decay correlations

Quick reminder:

$$b = \frac{-2\Re e(C_S^*C_V + C_S'^*C_V')}{|C_V|^2 + |C_V'|^2 + |C_S|^2 + |C_S'|^2} = 0??$$

D. Melconian

Nuclear Structure Town Meeting – ANL

He6-CRES: MeV-scale β spectra

He6-CRES collaboration based at UW to adapt CRES technique to measure b_{Fierz}

[∗] ⁶He (GT), ¹⁹Ne (F/GT) and ¹⁴O (F); $β^{\pm}$ opposite sign in b_{Fierz}

D. Melconian

Nuclear Structure Town Meeting – ANL

Nov 15 2022

AM TEXAS A&M

He6-CRES: MeV-scale β spectra

He6-CRES collaboration based at UW to adapt CRES technique to measure b_{Fierz}

[∗] ⁶He (GT), ¹⁹Ne (F/GT) and ¹⁴O (F); $β^{\pm}$ opposite sign in b_{Fierz}

- Much larger bandwidth needed compared to Project 8
- Other modes, harmonics, wall effects

First CRES signals seen

Identify event start frequencies.

Build a frequency spectrum.

D. Melconian

Nuclear Structure Town Meeting – ANL

Nov 15 2022

TEXAS A&M

First CRES signals seen

D. Melconian

Nuclear Structure Town Meeting – ANL

What is the future of CRES?

- Project 8 making great progress. Scale-up challenging
- He6-CRES measured signals from ⁶He and ¹⁹Ne β decay for the first time
 - ₩ W. Byron *et al.*, arxiv:2209.02870 (2022)
 - ***** Decay cell \rightarrow Penning trap, avoid wall effects

Requiring waveguides is restrictive, but CRES offers a unique way to precisely measure electron energies

D. Melconian

Nov 15 2022

None hi

the wall

Paul and Penning traps

- Ion traps are now a standard technology in NP, but:
 - ***** Technological developments \rightarrow improved mass precision
 - Expanding range of applications
 - β - α - α correlations @ ANL (beta decay Paul trap)
 - β - ν correlation studies @ Notre Dame (St. Benedict) and @ TAMU (TAMUTRAP)
 - Coupling to the CRES technique (He6 collaboration)
- Lots of activity in the field of quantum computing (says someone very far removed from that area!)
 - Like us, qubits want fine control and long stability times

Mass measurements with Penning traps

- TOF-ICR the workhorse for many years
- Phase-image ion-cyclotron-resonance (PI-ICR) improves precision
 - ★ LEBIT, CPT (TITAN, JYFLTRAP, …)
- MR-TOF has really exploded in recent years; every major lab has one now

ĀМ

TEXAS A&M

Nuclear Structure Town Meeting – ANL

Q-values for ν mass and EC studies

CHIP-TRAP : Central Michigan University High Precision Penning Trap

Made ¹⁶⁵Ho⁺ ions; MR-TOF and Penning traps being commissioned

D. Melconian

Nuclear Structure Town Meeting – ANL

Correlations – Pioneering work paying off

Beta-decay Paul Trap @ ANL

* ⁸Li ang distr:
$$g_1 + g_2 \frac{\vec{p}_e \cdot \vec{p}_v}{E_e} +$$

 $g_{12} \left(\left[\hat{p}_\alpha \cdot \frac{\vec{p}_e}{E_e} \right] \left[\hat{p}_\alpha \cdot \hat{p}_v \right] - \frac{1}{3} \frac{\vec{p}_e \cdot \vec{p}_v}{E_e} \right)$
* $\beta_{-\alpha-\alpha}$ coincidence M T. Burkey

urkey *et al*., PRL 128, 202502 (2022)

Plastic Scintillator

TABLE I.	Summary	of	dominant	systematic	corrections	and
uncertainties	, listed at	1 <i>σ</i> .				

Source		Correction	Uncertainty
Theory	Intruder state (added linearly) Recoil and radiative terms	+0.0005	0.0005
Experiment	α -energy calibration Detector line shape Data cuts β scattering		0.0007 0.0009 0.0009 0.0010
Total		+0.0005	0.0028

D. Melconian

Nuclear Structure Town Meeting – ANL

Theory improvements

- G.H. Sargsyan, K.D. Launey, et al., PRL 128 202503 (2022).
- Theory improvements to radiative and recoil order corrections – reduce theory uncertainties by factor of 2!
- Possible intruder state in ⁸Be?

Next step: Beta-decay Paul Trap Mk. IV.

Recently commissioned with ATLAS

- Designed and built by Louis Varriano (graduate student, University of ₩-Chicago).
- Commissioned with ATLAS beam during May-June 2022; collected 2.7 million events (~30% increase in statistics).
- Design and commissioning paper in progress. ⋇
- —₩ Reduces beta scattering by factor of 4, a key source of systematic uncertainty.
 - Aim to improve uncertainty by factor of 2 from recently published result.

Nuclear Structure Town Meeting – ANL

Nov 15 2022

ĀМ

St. Benedict and TriSol upgrade

FS program at Notre Dame centered on superallowed mixed transitions.

- Precision half-life measurements
- Beta-neutrino angular correlation measurements using St. Benedict
 - Improve accuracy of Vud
 - \circ Search for scalar/tensor currents
 - \circ BSM tensor coupling to RH neutrinos

Superallowed Transisiton Beta-Neutrino Decay Ion Coincidence Trap (St. Benedict)

- Gas catcher from ANL: RF/DC & vacuum tested; transport tests underway
- RF carpet tested; ion guide assembled and RF circuit being tested
- Cooler/buncher commissioned
- Paul trap has been simulated and manufactured

NIVERSITY OF JOTRE DAME

s

N

Р

А

TAMUTRAP at the Cyclotron Institute

World's largest Penning trap commissioned

- Typical cylindrical traps have l/r = 11.75; to confine the protons from T = 2 decays, we need r = 90 mm
 - Needed a new design to make it fit in the 7T magnet

D. Melconian

M.Mehlman *et al.*, NIMA **712** (2013) P.Shidling *et al.*, Int J Mass Spectr **468** (2021)

Stable masses via TOF-ICR agree to few ppb \Rightarrow it works!

Nuclear Structure Town Meeting – ANL

Atom traps

- TRINAT has developed some pretty cool techniques
 - ★ High nuclear polarization

B.Fenker *et al*, New J. Phys. **18** (2016)

***** Physics result: A_{β} to 0.3%

 $\langle |\boldsymbol{P}_{\mathrm{nucl}}| \rangle = 0.9913(9)$ sη 8 polarized times photoion events 6 300 350 400 450 500 2 0 500 1000 1500 2000 time after MOT B_{quad} off $[\mu \text{s}]$ G4 A & Fierz

TEXAS A&M

ĀМ

D. Melconian

Nuclear Structure Town Meeting – ANL

Sterile ν search with HUNTER

- ¹³¹Cs in a MOT, reconstruct momenta to search for mixing to a sterile v (5–100 keV)
 - ★ Recoil-momentum with MOTRIMS technique; X-rays and Auger e⁻

ĀТМ

TEXAS A&M

10⁻¹⁰ 10⁻¹² 10⁻¹⁴ 10⁻¹⁴ 10⁻² 10⁻¹ 10⁻¹ Mass (keV) D. Melconian Nuclear Str

1

10-2

10-4

10-6

θ¹⁰*

Nuclear Structure Town Meeting – ANL

10

HUNTER Phase 3

100

1000

Superconducting Tunnel Junctions (STJs)

- Cryogenic-charge superconducting sensor
- Superconducting energy gap Δ is of order ~meV
 - High Energy Resolution (~1 eV)
- Timing resolution on the order of 10 μ s, allowing for faster count rates than most superconducting sensors
 - ★ "High" Rate (10⁴ s⁻¹ per pixel)

First Nuclear Recoil Experiments with STJs – ⁷Be Decay

D. Melconian

Nuclear Structure Town Meeting – ANL

Nov 15 2022

TEXAS A&M

Conclusions/Thanks

- ♥ Fundamental symmetries requires high precision
 ⇔ we develop some really cool techniques to accomplish this
- We all know each other, but meetings like this are a great idea I hope it breeds new ideas/collaborations!
- Sorry if I didn't show your work, sorry if I asked for slides too late...
- Thanks to Kyle (!), Maxime Brodeur, Drew Byron, Matt Redshaw, Nick Scielzo, Louis Varriano (Jason), ..., Google...
- And of course, the DOE!

