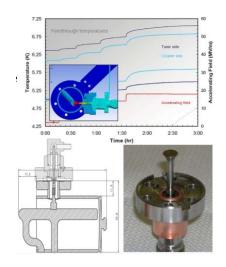
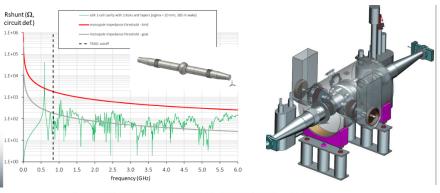


RadiaBeam Technologies Future HOM dampening: EIC & beyond


NSAC Long Range Planning Process in the Accelerator Science, Applications and Broader Impacts

Nov 15, 2022

Dr Paul Carriere, Material & Process Engineer: carriere@radiabeam.com


- High current or high luminosities: HOM dampers is crucial to absorb the wakefields
 - Does not harm fundamental mode
 - RF Power handling capabilities: [mW] -> [kW]
 - Thermal/mechanical/vacuum/cleanliness considerations
- Design types
 - 1. Coaxial dampers
 - 2. Waveguide dampers
 - 3. Beampipe/line absorbers(BLA)



Lab/Industry/University involvement

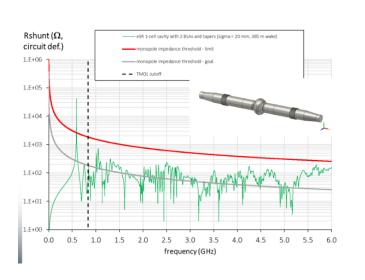
- Various forms of 'industry': R&D focused(\$\$\$) versus production-focused(\$)
 - Production-focused companies cannot tolerate design changes: quote & build to print
 - Costs: Project schedule versus budget
- Accelerators: High mix/low volume engineering and production needs
 - SBIR/STTR projects keep PhD-heavy companies engaged throughput development lifecycle: application-specific challenges
- \$280B CHIPS and Science ACT will impact production-focused companies with applied physics, clean room, chemistry and vacuum expertise
 - Challenge or opportunity?

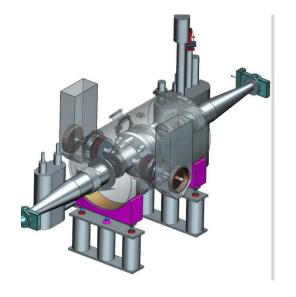
	HOM Dev	Lab	University	Industry: R&D focus	Industry: Production
1	1. Conceptual Design	<80%>	<80%>	20%	
	2. Mechanical Design	40%	20%	40%	
	3. Prototype fabrication	30%	10%	40%	20%
	4. Experimental Testing	< 50 %>	<50%>	30%	20%
	5. Production	<20%>		<20%>	80%

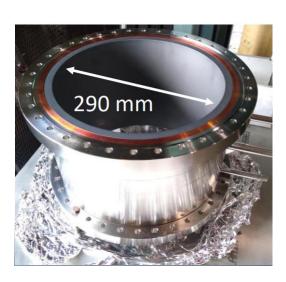
< %> represents shared costs

Cornell Injector

- Brazed tile delamination
- Electrostatic beam deflection




Appendix


EIC Requirements

- x17 591MHz single cell cryomodules: 40kW HOM/cavity, >34 need
- Shrink-fit SiC beam line absorbers
 - Cornell-> APS-U -> EIC
 - Metal/ceramic joint formed mechanically: no brazing/reduced cracking
 - Coorstek Ceramic: SC-35 graphite loaded SiC: Optimized for friction/wear properties, not accelerators
- Proof of principle HOM completed: at least 34 more needed

