NSAC LONG-RANGE PLAN TOWN HALL MEETING ON NUCLEAR STRUCTURE, REACTIONS AND ASTROPHYSICS

CIRCULAR MODE BEAM OPTICS FOR HIGH LUMINOSITY COLLIDERS

BRAHIM MUSTAPHA

Physics Division Argonne National Laboratory

November 15th, 2022 APS Conference Center Argonne National Laboratory

CIRCULAR MODE BEAM OPTICS FOR HIGH LUMINOSITY COLLIDERS

Colliders are operating at luminosities well below their theoretical limit!

□One solution is to collide flat beams, which can significantly enhance the luminosity of a collider; one beam size is much smaller: $\varepsilon_x = R^* \varepsilon_v$

$$\mathcal{L} = \frac{f N_1 N_2}{4\pi \sigma_x^* \sigma_y^*} \quad \Rightarrow \quad \frac{\mathcal{L}_f}{\mathcal{L}_0} = \sqrt{R},$$

However, flat beams cannot be effectively transported and accelerated at low-energy; space charge effects are detrimental to flat beams in this regime.

Circular beams (round & rotating) are intrinsically flat. They can be produced at low-energy, accelerated then converted to flat beams at high-energy.

WHAT WE KNOW, HAS BEEN ACHIEVED SO FAR

Different ways to produce a circular mode beam at low-energy:

- $\,\circ\,$ Derbenev's Adapter 3-skew-quadrupole transformation from a flat beam
- $\circ\,$ Beam born inside strong solenoid field:
 - electron gun, ion source in strong solenoid field
 - stripping ion beams inside a solenoid (H- and ions)
- o Injection from a linac into a synchrotron ring; special 4D phase space painting

Electrons in a storage ring become flat due to synchrotron radiation damping

Our recent studies confirmed: Focused on hadron beams

- o Identified new building blocks that preserve angular momentum (circular mode)
- Designed a low-energy ring that maintains circular modes through dispersion, acceleration and space charge effects
- Preliminary proof that circular mode beams also reduce the effect of intra-beam scattering (IBS) → more effective cooling with lower emittance limit for IBS

SOME RECENT RESULTS

2.00

0.0

0.5 1.0

0.0

2.0

2.60

0.0

0.4

0.8

s (m)

1.2

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

1.6

4D painting from linac to ring: the two planes having $\pi/2$ phase difference; particle simulations

Ref: O. Gilanliogullari, B. Mustapha and P. Snopok, Invited talk at ICFA SC Workshop, Oct. 2022

2.2

0.0

0.50

1.00 1.50

s (m)

2.00 2.50

0.0

50

100

150

I[ma]

200

3.00

250

300

0.0

1.5 2.0 2.5 3.0 3.5 4.0

s (m)

CHALLENGES & OPPORTUNITIES \rightarrow ACTIONS

Challenges & Opportunities

- Circular mode beams can be used to circumvent space charge effects at lowenergy while maintaining intrinsic flatness, enabling flat beams at high energy
- Potential for minimal IBS effects and more effective hadron beam cooling
- Not clear if the whole accelerator chain need to support circular mode beams
- Require special lattice design and ring magnets, injection and extraction regions, but not more demanding than the MBA lattices for electron storage rings
- Such R&D could lead to a future EIC upgrade to enhance the luminosity

□Recommend/Suggested Actions:

- $_{\odot}\,$ Build a demonstrator ring for the experimental study of circular mode optics
- We encourage DOE/NP to sponsor such a development, which would parallel the IOTA ring, which was built at Fermilab to investigate Integrable Optics

REFERENCES

- Y. Derbenev, Adapting optics for high energy electron cooling, University of Michigan, UM-HE-98-04 (1998).
- □ A. Burov, S. Nagaitsev, and Y. Derbenev, Circular modes, beam adapters, and their applications in beam optics, Physical Review E 66, 016503 (2002).
- L. Groening, C. Xiao, and M. Chung, Extension of busch's theorem to particle beams, Physical review accelerators and beams 21, 014201 (2018).
- □ L. Groening, C. Xiao, and M. Chung, Particle beam eigenemittances, phase integral, vorticity, and rotations, Physical Review Accelerators and Beams 24, 054201 (2021).
- V. A. Lebedev and S. Bogacz, Betatron motion with coupling of horizontal and vertical degrees of freedom, Journal of Instrumentation 5 (10), P10010.
- A. Burov and V. Lebedev, Coupling and its effects on beam dynamics, Proceedings of Hadron Beam (2008).
- V. Lebedev and S. Nagaitsev, Multiple intrabeam scattering in x-y coupled focusing systems (2018).

THANK YOU

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

