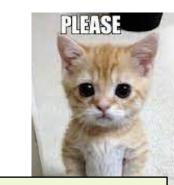


Challenges, Opportunities and Priorities for Nuclear Data

Elizabeth McCutchan National Nuclear Data Center, Brookhaven National Laboratory


We are here to

16	92	16	73	49
S	U	S	Та	In
Sulfur	Uranium	Sulfur	Tantalum	Indium

We need your input on

- Priorities
- Needs
- Areas for improvement

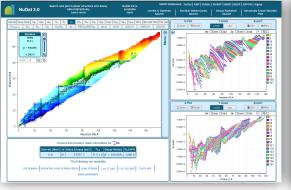
your research and/or your application

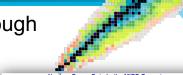
Email us at nndc@bnl.gov

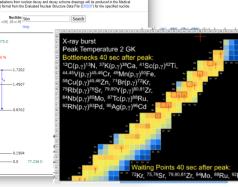
US Nuclear Data Program

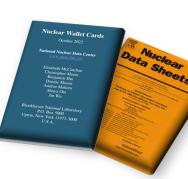
PuRe

ata Resources


Maintaining and improving nuclear data for world-wide use


Mission


To provide current, accurate, authoritative data for workers in pure and applied areas of nuclear science through compilation, evaluation, dissemination and archiving of nuclear data. USNDP also addresses gaps in data through targeted experiments and use of theoretical models.


Services

Disseminate nuclear data through feature-rich web applications

Nuclear Structure & Decay:

ENSDF

Databases

XUNDL

Nuclear Reaction:

- ENDF
- EXFOR
- Bibliographic:
 - NSR

Publications

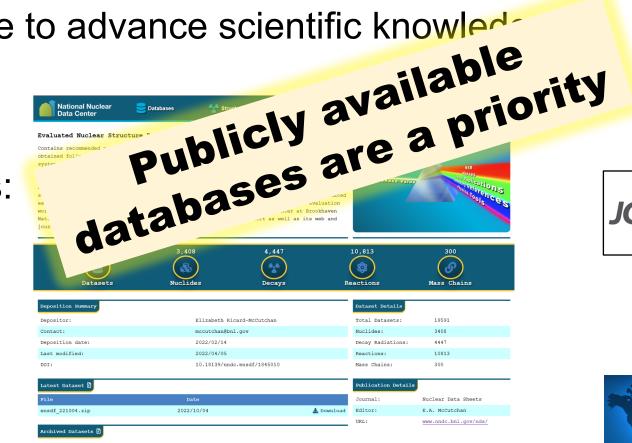
World leading journal on nuclear data evaluations and research

Nuclear Wallet Cards:

Ground and isomeric state nuclear properties of all-known nuclei

What progress has been made since the last LRP?

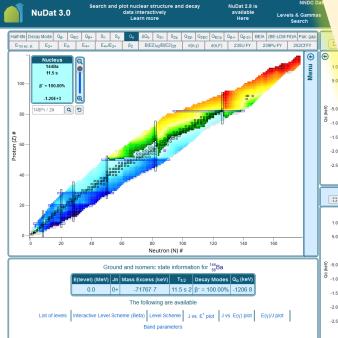
NNDC is the latest PuRe Data Resource

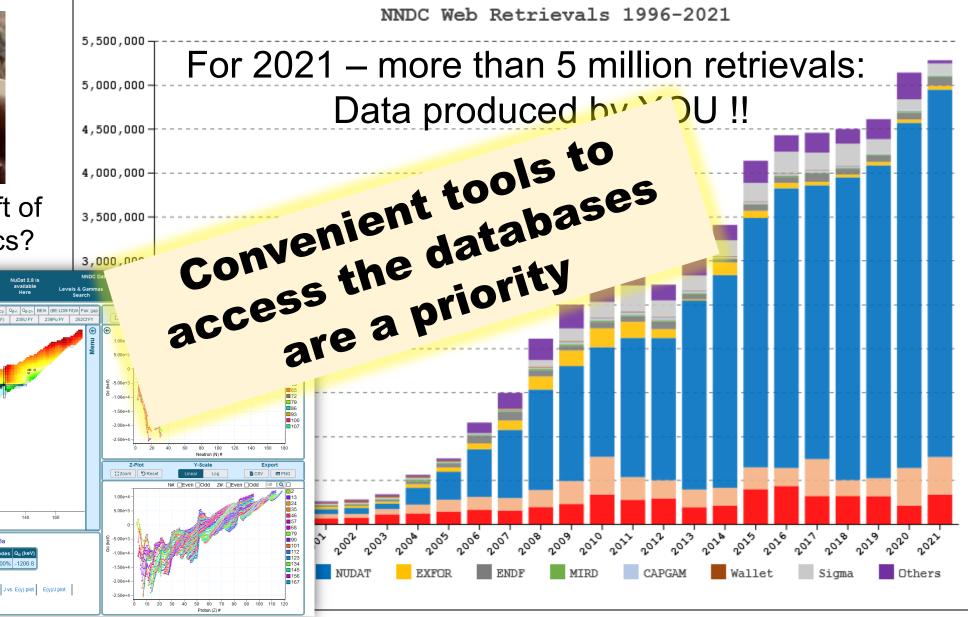

As a **Public Reusable Research (PuRe) Data Repository** the NNDC strives to make data publicly available to advance scientific knowled

3 major libraries already have library-wide DOIs:

- ENSDF
- XUNDL
- NSR

ENDF is next!


DOE Systems Biology Knowledgebase



Open Data Web Downloads

The Taylor Swift of Nuclear Physics?

5 Million +++++

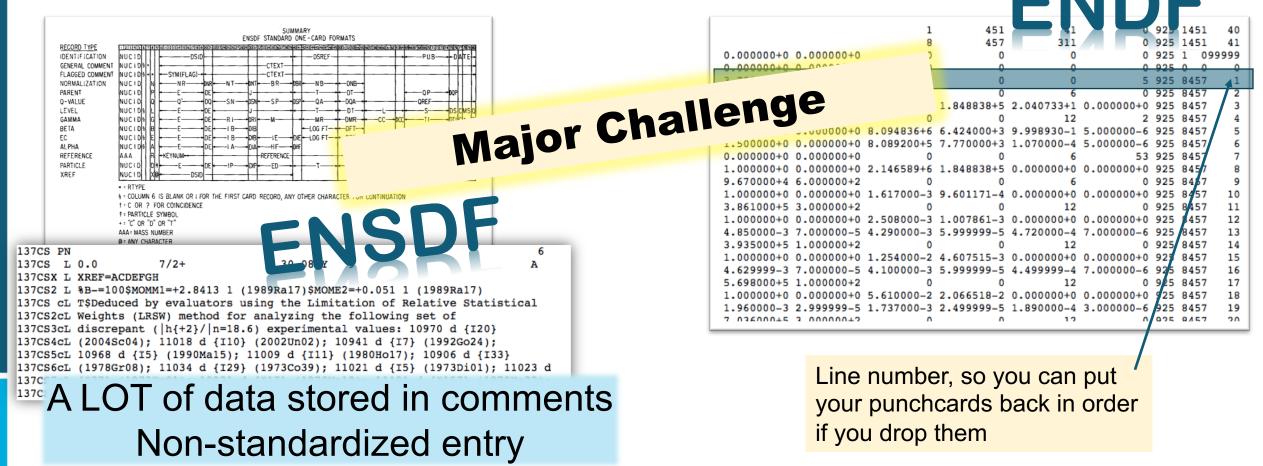
- Many nuclear modeling packages embed ENDF/B and ENSDF data
 Impossible to count
 - Reactor design, simulation and licensing codes.
 - Nuclear waste and repositories.
 - Radiation spectroscopy, dose, detectors and shielding.
 - Defense
 - CTBTO
 - Non-proliferation
 - \circ Space physics
 - \circ Industry

LARA

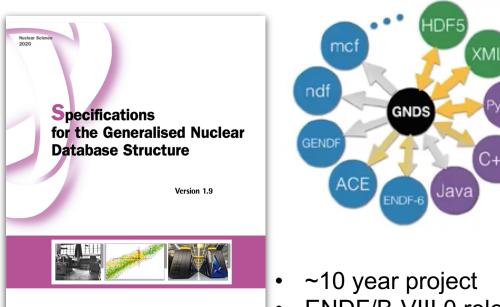
OpenMC

MESA

Laplacian and Analytic Radioactivity Analysis

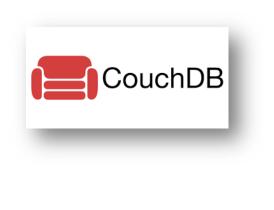

PHITS

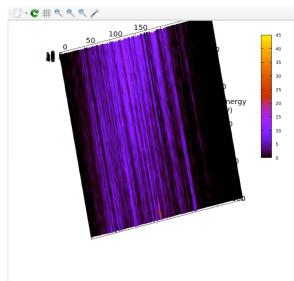
Moving Past Punch Cards


- Major databases based on 50+ year old technology
- Limitations imposed by the 80 column format
- Hard to engage next generation
- Difficult to implement ML/AI

Current Database Modernization Efforts

ENDF-6 Format is transitioning to GNDS, GNDS-2.0 almost ready




NEA

~10 year project ENDF/B-VIII.0 released in both ENDF6 and GNDS formats ENSDF modernization project well under way

2	"header": {
	"schemaVersion": "1.0",
	"documentType": "nuclide",
	"z": 62,
	"n": 90,
	"a": 152,
	"elementName": "Samarium",
	"elementSymbol": "Sm",
	"history": [{
	"evaluationType": "full",
	"cutoffDate": "2013-08-31",
	"authors": [{
	"name": "M. J. MARTIN"
	}],
	"publication": "NDS 114, 1497 (2013)"
	}]
18	},

- 3 year project
- CouchDB object-oriented database
- JSON schema for validation
- ENSDF API with python plotting packages

view: 358.000, 78.0000 scale: 1.00000, 1.00

WalletCraft: a new evaluation of properties of groundstate and long-lived isomers for all known nuclei

Evaluation for g.s. and isomers (T^{1/2}>100ms) of: •Spin/Parity •Mass Excess – from AME2020 •Half-life, Width or Abundance •Decay Mode(s)

Nuclear Wallet Cards October 2022

National Nuclear Data Center

Elizabeth McCutchan Christopher Morse Benjamin Shu

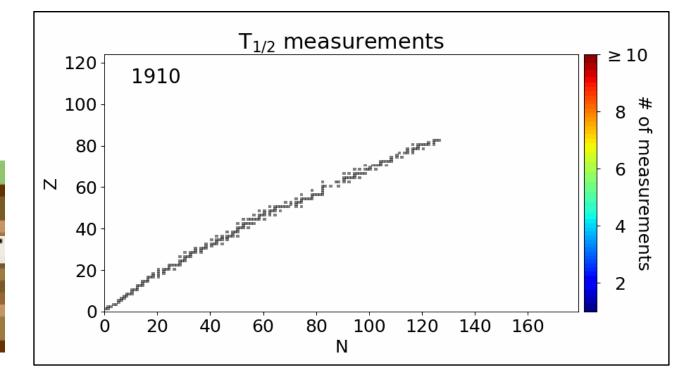
Donnie Mason

Andrea Mattera

Shuya Ota Jin Wu

Brookhaven National Laboratory

P.O. Box 5000 Upton, New York 11973-5000


U.S.A.

Brookhaven[•]

tional Laboratory

Major changes under the hood: Advantages:

- New JSON-based OODB
- We store experimental measurements (building block of the evaluation)
- Transparent documentation of evaluation history
- Format can be easily read in modern codes and data plotted/analyzed
- Allows for much shorter versioning (from 5-10 yr to ~1yr)

Improving Connections with Users

WANDA – Workshop for Applied Nuclear Data Activities Yearly meeting since ~2018 Input to NDIAWG FOA's

PHYSICAL REVIEW RESEARCH 4, 021001 (2022)

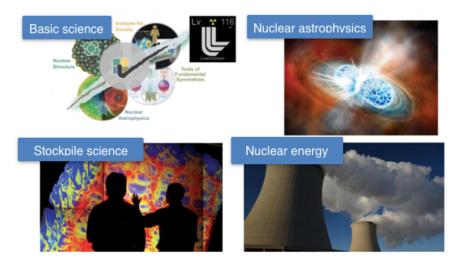
Perspective

Current nuc

Lots of Opportunities

Karolina Kolos,¹ Vladimir Sobes,² Ramona Vogt[©],^{1,3} Catherine E. Romano,⁺ Michael S. Smith,⁵ Lee A. Bernstein,^{6,7} David A. Brown,⁸ Mary T. Burkey,⁹ Yaron Danon,¹⁰ Mohamed A. Elsawi,^{11,12} Bethany L. Goldblum,^{6,7} Lawrence H. Heilbronn,² Susan L. Hogle,¹³ Jesson Hutchinson,¹⁴ Ben Loer,¹¹ Elizabeth A. McCutchan,⁷ Matthew R. Mumpower,¹⁵ Ellen M. O'Brien,¹⁶ Catherine Percher,¹⁷ Patrick N. Peplowski,¹⁸ Jennifer J. Ressler,⁹ Nicolas Schunck,¹ Nicholas W. Thompson,¹⁴ Andrew S. Voyles,^{6,7} William Wieselquist,¹⁹ and Michael Zerkle²⁰

Topics of 2021 Meeting


- HPC in Nuclear Data
- Predictive Codes for Isotope Production
- Benchmarks and Validation for Nuclear Data
- Nuclear Data For Space Applications
- Nuclear Data For Advanced Reactors
- Human Pipeline for Nuclear Data

Nuclear Data to Reduce Uncertainties in Reactor Antineutrino Measurements

Summary Report of the Workshop on Nuclear Data for Reactor Antineutrino Measurements (WoNDRAM)

Catherine Romano, Nathaniel Bowden, Andrew Conant, Bethany Goldblum, Patrick Huber, Jonathan Link, Bryce Littlejohn, Pieter Mumm, Juan Pedro Ochoa-Ricoux, Shikha Prasad, Catherine Riddle-Alejandro Sonzogni, William Wieselquist


Addressing Cross Cutting ND Needs

- Isomer to ground state FY ratio measurements
- Decay spectroscopy of fission products with X-Array/Gammaspere at nuCARIBU
- LLNL, ANL et al., collaboration

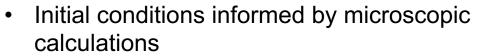
Courtesy of K. Kolos See talk: K. Kolos, ND Working Group session

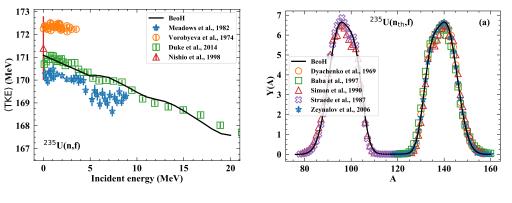
Nuclear Physics

How Do Neutrons Interact with Reactor Materials?

OCTOBER 27, 2022

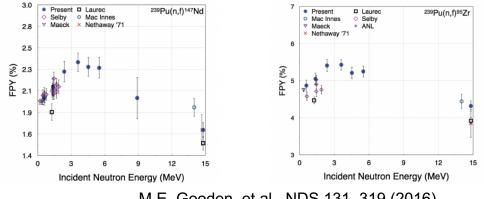
- Inelastic neutron scattering measurements
- University of Kentucky, USNA, LLNL et al.,
- Important for reactors, space, homeland security

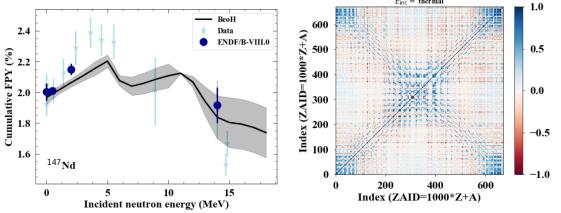

See talk: B. Crider, ND Working Group session See talk: E. Chimanski, ND Working Group session


Fission product yield re-evaluation effort

A tour de force of measurement, theory and evaluation

Evaluation and Compilation of Fission Product Yields 1993 T. R. England and B. F. Rider Los Alamos National Laboratory October, 1994


 Consistent fission modeling with constraints from prompt and delayed data;


A.E. Lovell, et al., PRC 103, 014615 (2021)

New measurements with a range of incident neutron energies (including results from LBNL, UCB, PNNL)

Energy-dependent fission product yields with full covariance information are being produced for inclusion into ENDF

Slide courtesy of A. Lovell

Training the next generation in Nuclear Data Bay Area Nuclear Data – 2020-2021 PhDs

"Uncertainty Analysis Procedures for Neutron-Induced Cross Section

Austin Troy Lo – Fall 2020 ORNL Postdoc

"Advancements in the Nuclear Data of Fission Yields"

"Nuclear Data Evaluation of High-Energy"

Measurements and Evaluations" Amanda Marie Lewis - Spring 2020* NNL Staff

"Fission plasmas and their novel application to power producing nuclear reactors in

BAND Future PhDs

Auton of High-Energy Angel Ang

BAND slide courtesy of L. Bernstein

28 NNDC Summer interns in FY22!

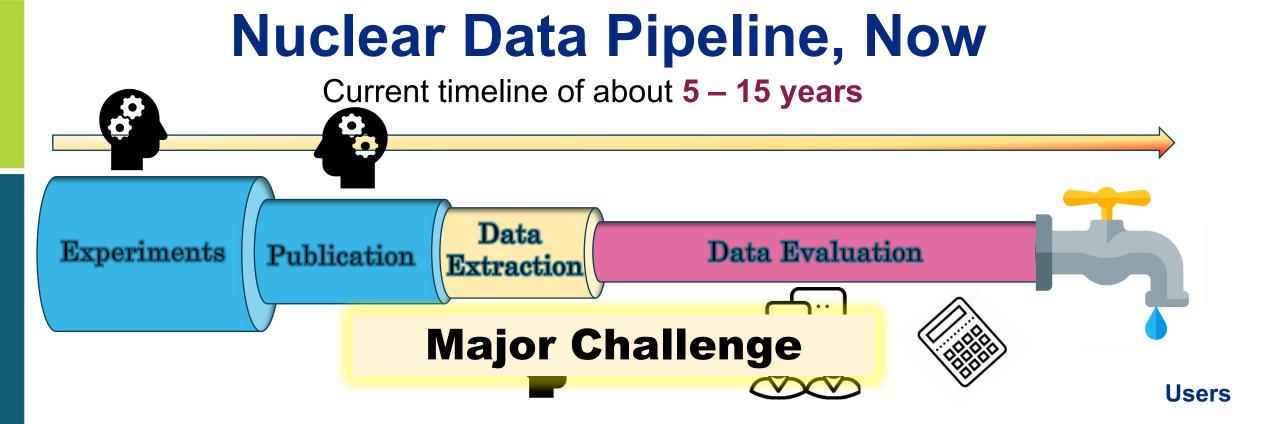
"Machine

2.

4.

5.

6

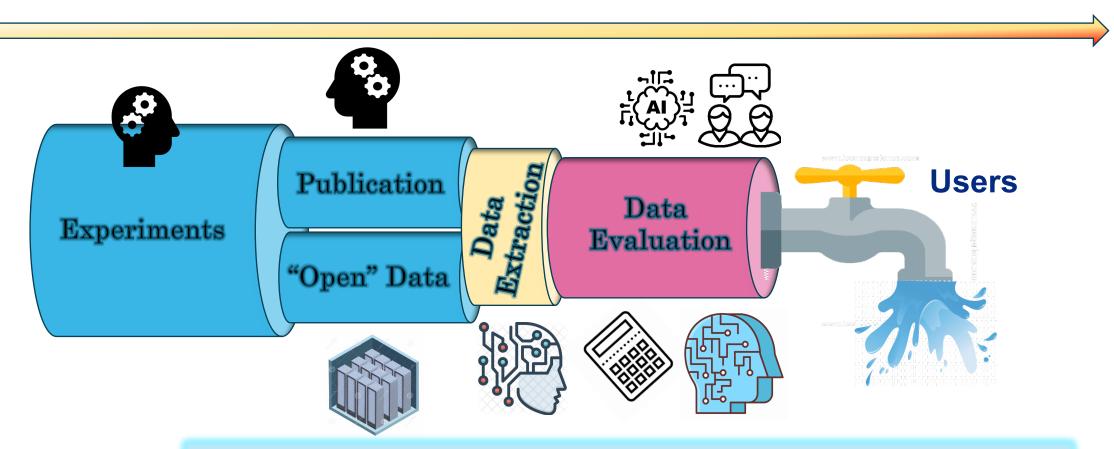

space"

Half of students from traditionally underserved groups

Nuclear Physics Traineeship allowing us to bring in URM students for longer term mentoring

Our product's impact is limited by:

Ancient formats


Brookhaven

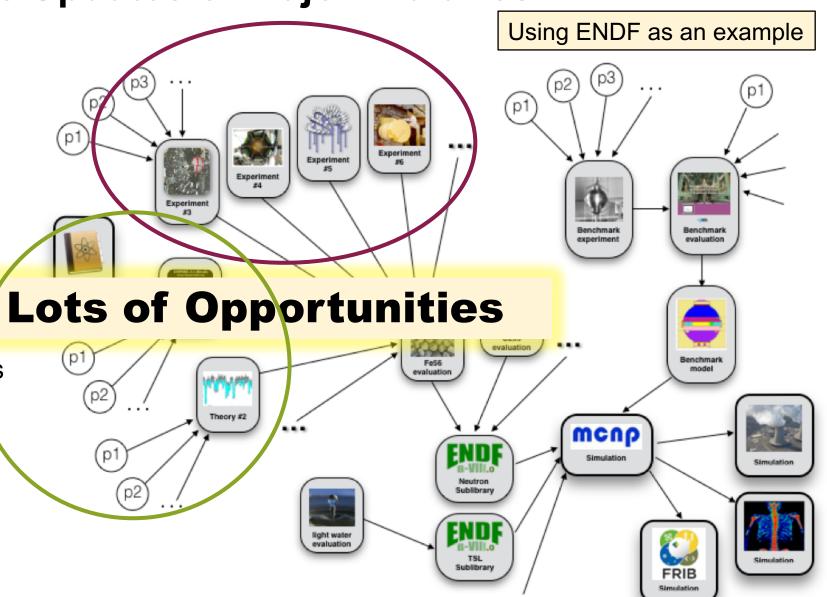
- Outdated evaluation procedures
- Lack of sufficient workforce
- Often publications only contain a portion of all data measured

Modernization of USNDP databases has started !! Leverage this effort to fix the rest!

Nuclear Data Pipeline: Future

Proposed timeline of 1-2 years

A new paradigm will :


Eliminate bottlenecks

Brookhaven

- Ensure that results of expensive experiments are properly stored
- Address stakeholders' feedback in a timely manner.

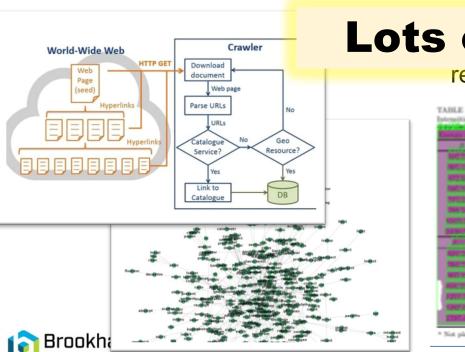
Workflows: Automatic Updates of Major Libraries

- Use ML + HPC + software engineering to update ENDF library
- Employ "containers" to hold experimental results, reference parameter sets, theory codes, benchmark experiments, evaluations of individual nuclides or reactions
- Interlink containers to be nodes in a Bayesian network
- Use Gaussian Process Regression to update a new ENDF library, when any NN components are updated

Machine Learning Throughout the Pipeline

For efficient extraction of data from publications

NuScholar for NSR

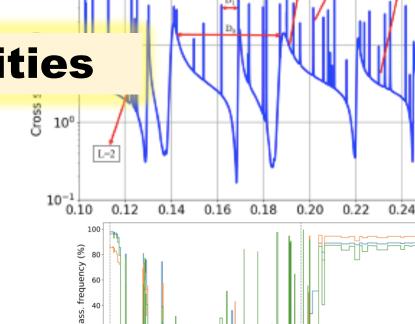

- Automated literature collection
- Automatic keyword extraction
- Natural language queries

Tabular Extraction for XUNDL/EXFOR

 Modified CascadeTabNet for

For improving evaluations

Machine Learning to Classify Quantum Numbers of Neutron Resonances



Lots of Opportunities

recognition

orger (heV	17	and a second
10000.00		6 oct 10 Mi
SHELTER A	1007 L	The second se
AND DO TO THE	ALC: NO	108
APRINCE IS	A112 ()	1 <u>86</u> 10.00
AND NO.	STATE OF	y 🚥 '
APRIL OF	Same B	
2012/2	and the second second	
	RUNCTED 1	7 24(3)0.99
1000	15(5)	108
	10000	
STATE OF	and a later	
100 C	ALC: NO	
ALC: NOT	- AND 1.0	
CALCULATE ST.	1000	
	A.867 (1)	
CHE GE	STATE OF	9 <u>an</u> 9(1.00
1797.4(2)	1201	621

Led by C. Soto, BNL

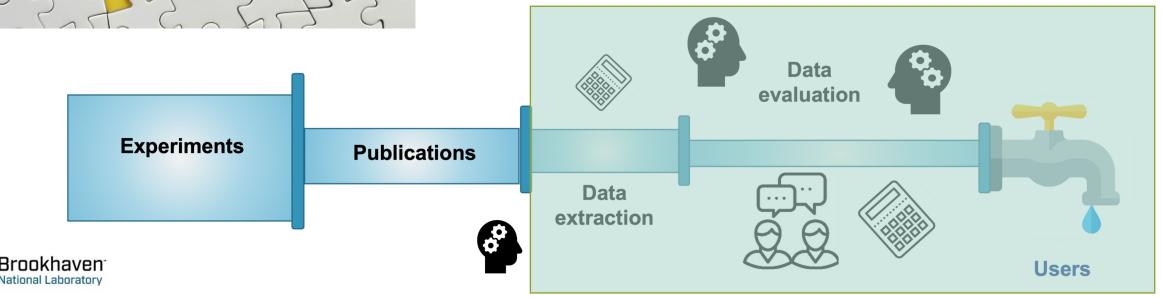
10

0 0

0.5

1.0 1.5 Resonance energy (MeV) 20% training RMI

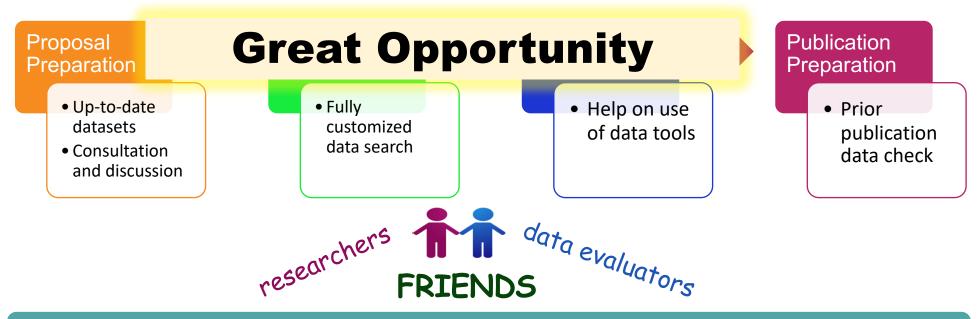
20


Led by B. Goldblum, UCB

Led by G. Nobre, BNL

Still some missing pieces because ...

US Nuclear Data program involved mainly after the data are published



A Step in the Right Direction:

The FRIENDS project at FRIB

FRIB Integral Experimental Nuclear Data Services

Aiming to provide seamless support for data needs to FRIB experimenters throughout all stages of an experimental work as an integral part of the FRIB experimental support

The data evaluator at FRIB leads the effort in the FRIENDS service along with the primary focus on ENSDF and XUNDL effort.

See talk: J. Chen, ND Working Group session

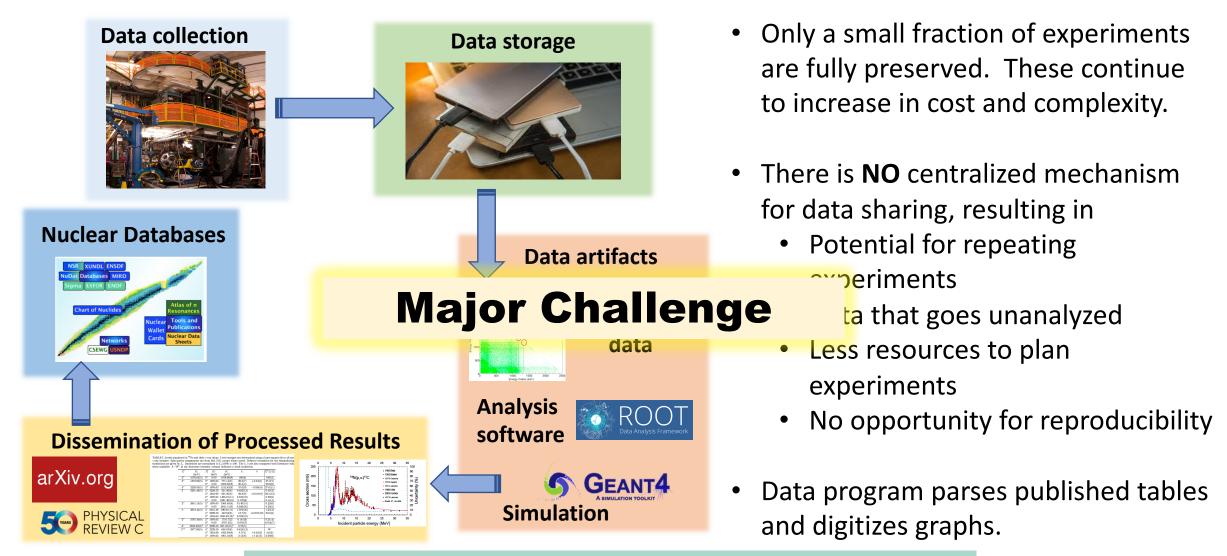
COOKhaven[®]

Slide courtesy of J. Chen

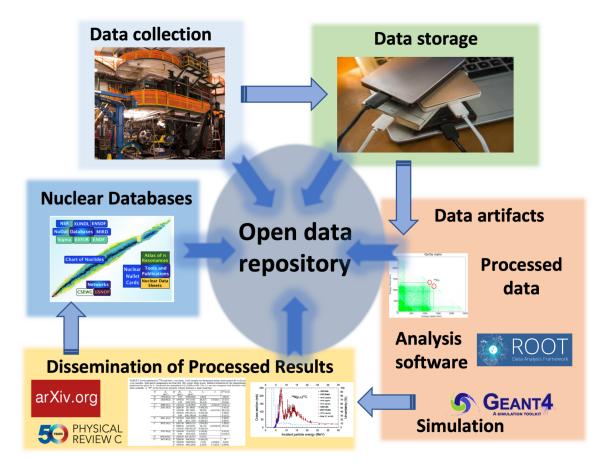
Data Preservation (aka Open Data, FAIR data, Data Sharing)

BRIEFING ROOM

OSTP Issues Guidance to Make Federally Funded Research Freely Available Without Delay


AUGUST 25, 2022 • PRESS RELEASES

E GALL	ouranni	and toute proprogrammer	Service Freehold	
13		Actions	Instrume Filters Target Na	ame Observation ID
	1	🖹 📵 💿 🛃 …	MIRI NGC 655	2 jw01039-0004_t00
	2	12 🛯 💿 🖪 💬	MIDT NOT CEE	yw01039-o004_t00
	3	🖹 🖪 😳 🔀 📲	Add data products to Download B	asket jw01039-0004_t00
	4	1 🔁 💿 🔁 📲	Create a Subscription Focus AstroView on These Coordi	jw01039-0004_t00


Current Low Energy Nuclear Physics Data Status

Average experiment costs at least \$100k's ~300 experiments into XUNDL alone every year

Data Preservation

Purpose is to ingest, document, and preserve data at each stage of an experiment

Brookhaven National Laboratory

See talk: J. Wu, ND Working Group session

Benefits :

- help fully realize discovery potential
- maximize return on investment
- extract more physics with advanced analysis codes
- explore additional reaction channels
- enable accurate renormalizations as "standards" change
- re-examination and validation of results
- source of critical training data for ML approaches
- useful for student training

Challenges, Opportunities and Priorities

Priorities Challenges

Publicly available databases

Timely and Accurate

- Tools to access the databases
 Modernization
- Training a diverse workforce
- Data Preservation

Opportunities

- Automation
- ML/AI
- Communication
 with Users

