Nuclear Data for Nuclear Reactions

A. Couture

13 Nov 2022

Managed by Triad National Security, LLC for the U.S. Department of Energy's NNSA

Nuclear Reactions play roles across scientific studies on stable and unstable isotopes

Cassiopeia A 10⁴⁴ Joules 10²² n/cm²/sec

Castle-Romeo 4x10¹⁶ Joules 10²³ n/cm²

Nucleosynthesis

ΕC/γ

/(n,f)

Κβ-

241_{Pu} 14 y

elements give information on stellar dynamics and evolution and cosmology. Individual cross sections have large impact on final abundances.

Relative abundances of heavy

ΔA = ²⁴⁰Am/²⁴¹Am: a

radchem diagnostic that does not require prior knowledge of initial Pu.

More reliable and sensitive decay

(n,2n)

(n,γ**)**

(n,f)

Important for nuclear forensics

What are the types of Nuclear Data that are needed to support these efforts?

- Cross sections—Resonant and non-Resonant, Partial and Total—are the primary quantity of interest
- The traditional tools and libraries for tracking many of these are welldeveloped
 - R-matrix theory
 - Resonance properties
 - Hauser Feshbach formalism
 - Ready place for new measurements of direct properties to be captures
- In some cases, new measurements, particularly on unstable isotopes, do not have a home to capture the physical measurement
 - Photon Strength Functions

Light Ion R-Matrix

- New facilities open the door to measurements previously unachievable
- The r-matrix tools to analyze them are robust
- Recent efforts led through IAEA to cross-compare r-matrix calculations are welcome

Combining techniques to measure radiative capture on ¹⁷¹Tm

n_TOF resonance measurement

- n_TOF: proton spallation, 200m timeof-flight
- SARAF: high-power ⁷Li(p,n)
- Combination of measurements with very different facilities increases confidence

New direct measurements on radioisotopes

 The combination of advanced instrumentation, intense beams, and radioisotope production and separation has opened the door to new highenergy cross section measurements

LENZ: (n,a), (n,p)

Direct ⁵⁹Ni(n,p) and (n, α)

Initial take-aways for nuclear data and reactions

- Experimental advances are delivering cross-sections that have previously been inaccessible, often on unstable isotopes or very weak reaction rates
- The theoretical tools (often r-matrix) are robust and physically motivated
- From an evaluation, library, and nuclear data perspective, we understand how to utilize these measurements

Structure-Informed Reaction Modeling

• The Hauser Feshbach Formalism is the standard treatment for compound-nuclear reactions at reasonably high excitation

$$\sigma_{\gamma}(E_n) = \frac{\pi}{k_n^2} \sum_{J\Pi} g_c \frac{T_n T_{\gamma}}{T_n + T_{\gamma}} W_{n\gamma}$$

$$T_{\gamma} = \sum_{J'XL} \int_{0}^{E_{0}} 2\pi E_{\gamma}^{2L+1} f_{XL}(E_{\gamma}) \rho(E_{x}, J') dE_{x}$$

• Can we determine the input parameters when the cross section cannot be directly measured?

Structure-Informed Reaction Modeling

• The Hauser Feshbach Formalism is the standard treatment for compound-nuclear reactions at reasonably high excitation

$$\sigma_{\gamma}(E_n) = \frac{\pi}{k_n^2} \sum_{J\Pi} g_c \frac{T_n T_{\gamma}}{T_n + T_{\gamma}} W_{n\gamma}$$

$$T_{\gamma} = \sum_{J'XL} \int_0^{E_0} 2\pi E_{\gamma}^{2L+1} \mathbf{f}_{XL} (\mathbf{E}_{\gamma}) \rho(E_x, J') dE_x$$

• Can we determine the input parameters when the cross section cannot be directly measured?

Structure-Informed Reaction Modeling

• The Hauser Feshbach Formalism is the standard treatment for compound-nuclear reactions at reasonably high excitation

$$\sigma_{\gamma}(E_n) = \frac{\pi}{k_n^2} \sum_{J\Pi} g_c \frac{T_n T_{\gamma}}{T_n + T_{\gamma}} W_{n\gamma}$$

$$T_{\gamma} = \sum_{J'XL} \int_0^{E_0} 2\pi E_{\gamma}^{2L+1} f_{XL}(E_{\gamma}) \rho(E_x, J') dE_x$$

• Can we determine the input parameters when the cross section cannot be directly measured?

Flow for Theory:Experiment Comparison (From PSF studies on DANCE by B. Baramsai)

Major progress has been made in understanding partial reaction measurements

- Major theoretical and experimental work has gone into improving understanding components of the reaction
- This opens a wider range of measurements, particularly on short-lived species
- Yet it requires a certain caution in interpretation and archiving
 - Application wants a cross section
 - What is measured is typically a deexcitation property

β -Oslo Determination of (n, γ) rates

- Extends the Oslo Technique for extraction of first-generation gamma rays to β -decay studies
 - Simplifies use of Total Absorption Spectroscopy
 - With β -decay, can use far less intense (but more neutron rich) beams

Structure (and Models) still affect Reactions

- Determining input components significantly improves reliability of HF calculations
- Other nuclear properties (like resolved structure) that may be poorly known off stability still impact calculations
- From a Nuclear Data perspective, it is important to
 - Take advantage of the improved inputs
 - Use and archive the data as what was measured, not the derived cross section
 - Neither EXFOR nor XUNDL is ready to accept PSF data
- This remains Structure Informed Reaction Modeling

Opportunities: Coupling Measurement to Evaluation Measurements of the Fission Neutrons Spectrum

- Past measurements inadequately accounted for neutron scattering
- Chi-Nu provided new data and drove a reinterpretation of past measurements
- Direct engagement of evaluation at all stages of the measurement

²³⁵U PFNS: M. Devlin et al. NDS 148 (2018) 322.

Opportunities: The Uncertainty Frontier

- Many applications are looking for uncertainty estimates
- Sensitivity studies have tended to approach this by independently sampling the uncertainty phase space
 - It is fast
 - We can do it today
 - It's probable not right
- For Light Ion Reactions, Longland et al. provided PDFs which could be sampled
 - These were generally resonancedominated charged particle reactions
- Large libraries are often a combination of theory and measurement—Can a consistent set of reaction samples be generated for use?

"Total" Monte Carlo, a la TENDL

Monte Carlo: 1000 runs of all codes

Opportunity: Complete Libraries

- One of the strengths of ENDF is its experimentally-driven
- But many applications require cross sections where no measurements exist
 - This leads to a large-scale adoption of other models/approaches
- JEFF has historically provided an "activation file" that is not a complete transport library, but does provide a much broader set of cross sections. Is this worth considering?

Conclusions and Future

- Both application needs and reaction measurements have advanced rapidly in the past decade
- Recent advances in techniques, *particularly those providing statistical data that sits at the boundary of structure and reactions*, challenge the current Nuclear Data Tools for evaluation, reporting, and archiving
- This offers an opportunity to expand the range of measurementdriven reaction data as part of the nuclear data effort\

- Why Nuclear Reactions Matter
- Where new reaction measurements have a home in Nuclear Data
- Homeless Nuclear Reaction Measurements
- Opportunities in the Next Decades