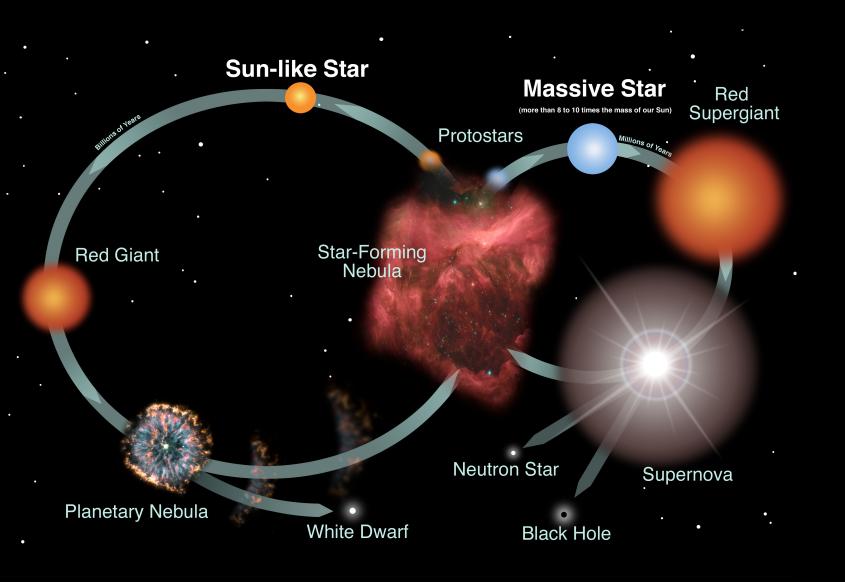
NUCLEAR PHYSICS DATA FOR ASTROPHYSICS

TUNL

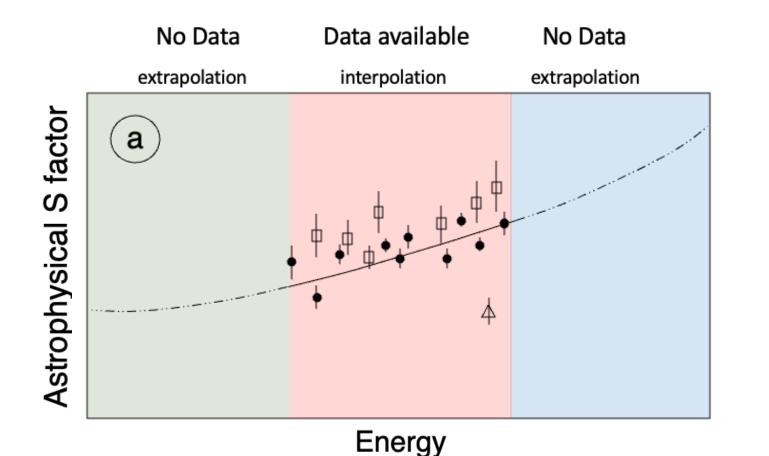

Christian ILIADIS

University of North Carolina at Chapel Hill Triangle Universities Nuclear Laboratory

Town Meeting, November 2022, Argonne National Laboratory

A SYMPHONY OF PROCESSES: r, p, rp, s, i, x, α , α p, ...

• all nuclear data are important for nuclear astrophysics

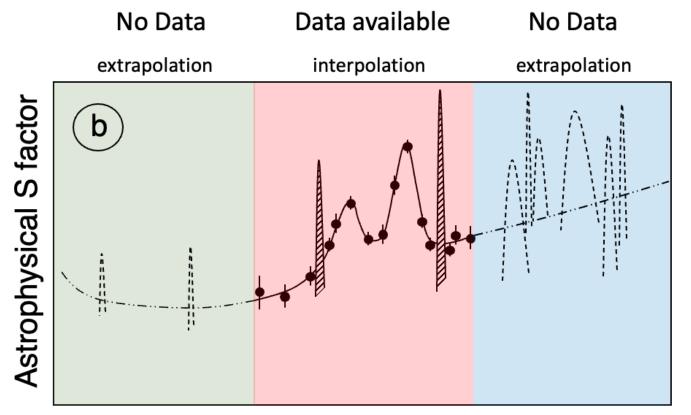

TUN

 in future: much more emphasis on uncertainties of nuclear data and derived quantities

- astrophysical S factor: $\sigma(E) = E^{-1} e^{-2\pi\eta} S(E)$
- reaction rate: $\langle \sigma v \rangle \sim T^{-3/2} \int E \sigma(E) e^{-E/kT} dE$

needed:

- measured cross section
- nuclear theory
- statistical [e.g., Bayesian^{1,2}] model for fitting


data bases:

- EXFOR
- original literature

examples: $D(p,\gamma)^{3}He$, $D(d,n)^{3}He$, $D(d,p)^{3}H$, ${}^{16}O(p,\gamma)^{17}F$,...

¹ Zhang et al., PLB 751, 535 (2015) ² Iliadis et al., ApJ 831, 107 (2016)

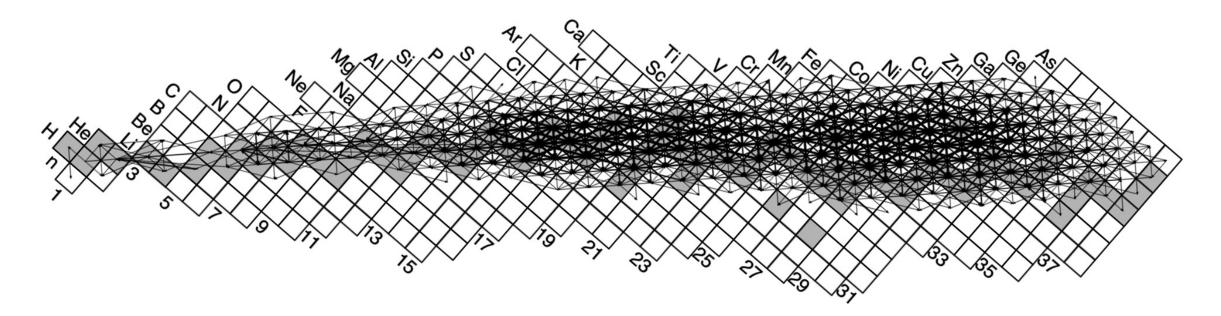
Energy

examples: ¹⁴N(p,γ)¹⁵O, ¹²C(α,γ)¹⁶O, ¹⁷O(p,γ)¹⁸F, ²³Na(p,γ)²⁴Mg...

¹ de Souza et al., PRC 99, 014619 (2019) ² Odell et al., PRC 105, 014625 (2022) ³ Longland et al., NPA 841, 1 (2010) ⁴ Endt, NPA 521, 1 (1990)

needed:

- measured E_r , E_x , Q [masses]
- measured $\omega \gamma$
- measured cross sections
- measured J, C²S or ANCs, τ
- nuclear theory [R matrix]^{1,2}
- reaction rate uncertainty³
- Hauser-Feshbach model
- level densities/OMP
- strength functions


data bases/codes:

- AME/NUBASE
- ENSDF
- Endt 1990⁴
- original literature

examples: NSE or QSE in Type Ia Supernovae [NSE: Nuclear Statistical Equilibrium; QSE: Quasi-Statistical Equilibrium]

- [reaction rates NOT needed for equilibrium]
- reaction rates needed for freezeout

needed:

- measured masses [binding energies]
- measured spins, excitation energies
- β-decay rates

data bases:

- AME
- NUBASE
- ENSDF

CASE IV: RAPID NEUTRON CAPTURE PROCESS

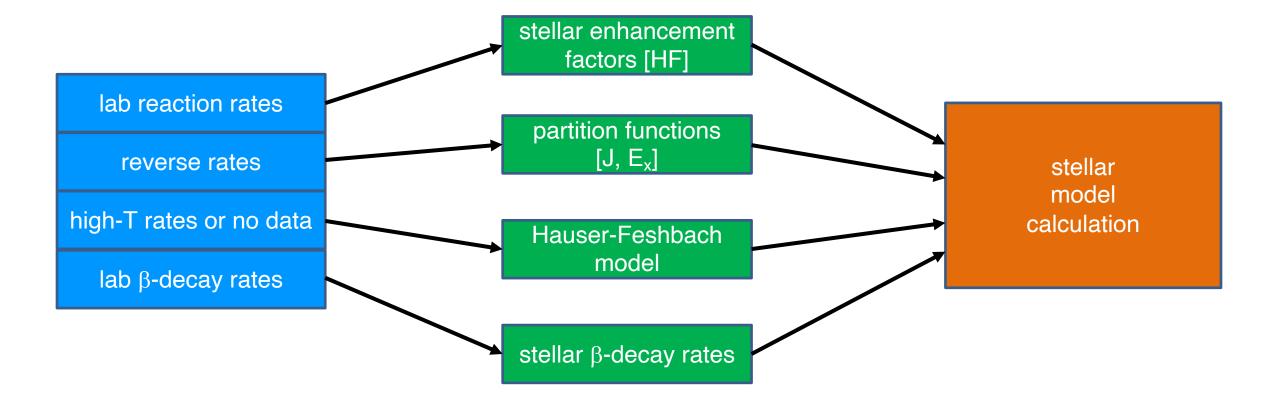
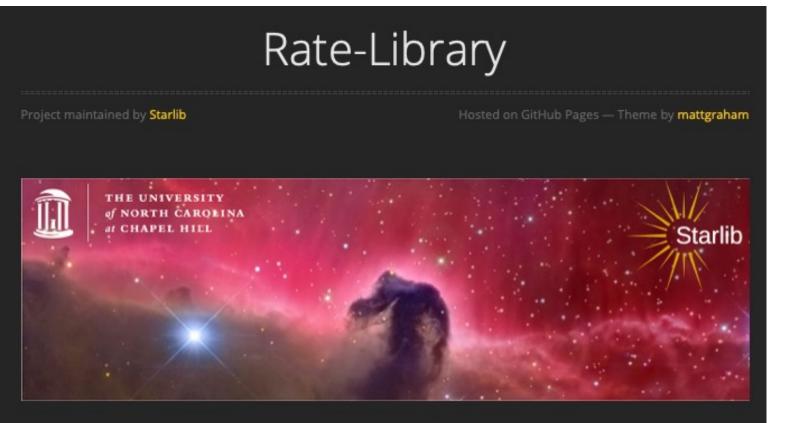


figure courtesy of Matt Mumpower

FROM NUCLEAR DATA TO STELLAR MODEL INPUT



- nuclear data needed: excitation energies, spins, level densities, branching ratios, Gamow-Teller strengths, ...
- what are the uncertainties in the "corrected" quantities [from model predictions]?

STARLIB: NEXT-GENERATION REACTION RATE LIBRARY

STARLIB: Thermonuclear Rate Library

https://starlib.github.io/Rate-Library/

Sallaska, Iliadis, Champagne, et al., ApJS 207, 18 (2013)

other rate libraries:

- REACLIB [Thielemann < 2000]
- REACLIB [Rauscher/Thielemann]
- JINA REACLIB
- BRUSLIB [2012]
- KADoNiS [2014]
- several others...

STARLIB contains:

- reaction rates
- rate uncertainties
- rate probability densities
- used in MC sensitivity studies

Starlib

NEW REACTION RATE / S FACTOR EVALUATIONS

updates of:

REVIEW OF MODERN PHYSICS, VOLUME 83, JANUARY-MARCH 2011

Solar fusion cross sections. II. The pp chain and CNO cycles

E. G. Adelberger, A. García, R. G. Hamish Robertson, and K. A. Snover Department of Physics and Center for Experimental Nuclear Physics and Astrophysics, University of Washington, Seattle, Washington 98195, USA

+ 44 additional co-authors

Berkeley SF III workshop [July 2022; organizers: Serenelli, Guglielmetti, Bemmerer, Haxton]

- ≈ 60 participants [co-authors]
- focus on S factors
- goal to publish by July 2023

Available online at www.sciencedirect.com

Nuclear Physics A 841 (2010) 1-30

www.elsevier.com/locate/nuclphysa

Charged-particle thermonuclear reaction rates: I. Monte Carlo method and statistical distributions

R. Longland ^{a,b}, C. Iliadis ^{a,b,*}, A.E. Champagne ^{a,b}, J.R. Newton ^{a,b}, C. Ugalde ^{a,b}, A. Coc ^{c,d}, R. Fitzgerald ^e

- mainly: Richard Longland & CI
- focus on reaction rates
- goal to publish by early 2024
- concurrent major new STARLIB release

TUNL

1. Ensure that evaluated nuclear data are up-to-date:

- measured ground-state masses, spin-parities, half-lives [AME, NUBASE]
- cross sections, S factors [EXFOR,...]
- energies, spin-parities, lifetimes of excited levels [ENSDF]
- resonance parameters [strengths, partial widths,...]

2. Support evaluation of derived nuclear quantities:

- laboratory reaction rates [MC method to derive uncertainties]
- Hauser-Feshbach predictions: level densities, optical potentials, strength functions [uncertainties?]
- stellar weak interaction rates [uncertainties?]
- 3. Provide modern tools for statistical analysis of nuclear data and derived nuclear quantities:
 - Bayesian models, machine learning, genetic algorithms,...

"Ultimately, the future of nuclear physics in this endeavor is a coherent combination of data and theory, which advances our understanding of astrophysics"

[quote by Matt Mumpower]

QUESTIONS?

