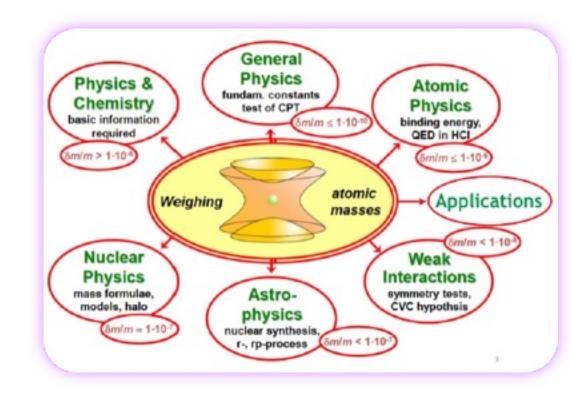


Member of the US Nuclear Data Program

The latest AME & NuBase nuclear data tables: how well do we know the basic nuclear physics properties?

F.G. Kondev
Physics Division, Argonne National Laboratory
kondev@anl.gov


Nuclear Physics

Nuclear Data WG session at the NSAC LRP Town Hall meeting on Nuclear Structure, Reactions & Astrophysics, ANL, November 14-16, 2022

Atomic Mass Evaluation & NuBase

- Correlations
 - ✓ pairing
 - √ p-n
- Binding energy
 - √ mass models
 - √ shell structure
- Nuclear Data
 - ✓ Q values
 - √ reaction probabilities
- The limits of existence
 - √ drip lines
 - Nuclear astrophysics
 - ✓ nucleosynthesis pathways & scenarios
 - Fundamental symmetries
 - Applications of Nuclear Science

AME2020 & NUBASE2020

coordinated by M. Wang (AME) and F.G. Kondev (NuBase)

The Nubase2020 evaluation of nuclear physics properties**

F.G. Kondev ^{1,*}, M. Wang (王猛)^{2,3,*}, W.J. Huang (黄文嘉)^{2,4,5,6}, S. Naimi⁷, G. Audi (欧乔治)⁶

since March 5, 2021

- 30000 downloads
- 650 citations

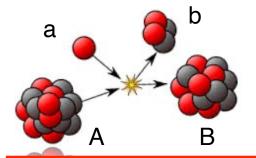
The Ame 2020 atomic mass evaluation **

(I). Evaluation of input data, and adjustment procedures

W.J. Huang (黄文嘉) 1,2,3,4 Meng Wang (王猛) 1,5,* F.G. Kondev 6 G. Audi (欧乔治) 3 S. Naimi 7

The Ame 2020 atomic mass evaluation **

(II). Tables, graphs and references

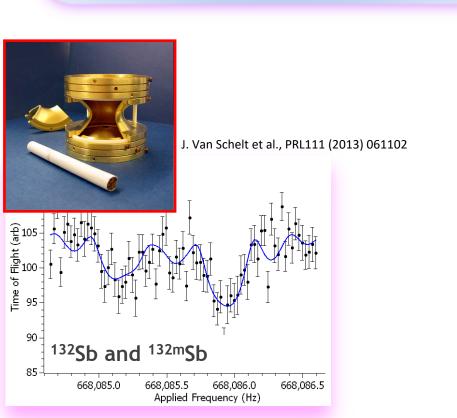

Meng Wang $(\Xi猛)^{1,2,*}$ W.J. Huang(黄文嘉) 1,3,4,5 F.G. Kondev 6 G. Audi (欧乔治) 5 S. Naimi 7

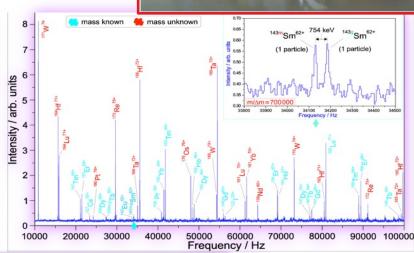
Data coverage

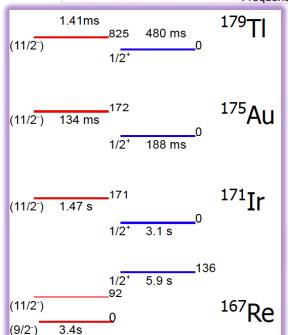
- Direct methods mass spectrometry
 - TOF & MR-TOF (very fast BUT low precision & resolution)
 - Storage Rings (fast & many nuclei at once)
 - Penning Traps (relatively "slow" BUT high precision and high resolution)

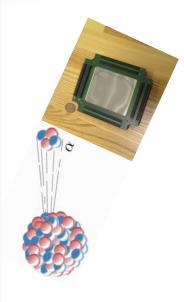
 $Q_r = M_A + M_a - M_b - M_B$

 $Q_d = M_P - M_D - m_{p(\alpha)}$

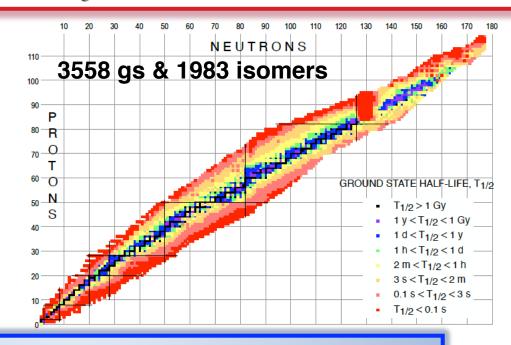

- Indirect methods reaction and decay energies
 - Reaction Energies
 - \bullet (n, γ) and (p, γ) are the backbone
 - self-calibrated A(a,b)B vs. C(a,b)D
 - close to stability
 - **Decay Energies** in β^- , β^+ , α and p decays
 - far from stability α and p (heavy or proton-rich nuclei) & Q_{8-} neutron-rich nuclei


Connection to Nuclear Structure


Beware of Isomers


Do we have the right relation?

- Excitation energy
- Lifetime
- Decay mode



The Nubase2020 evaluation of nuclear physics properties**

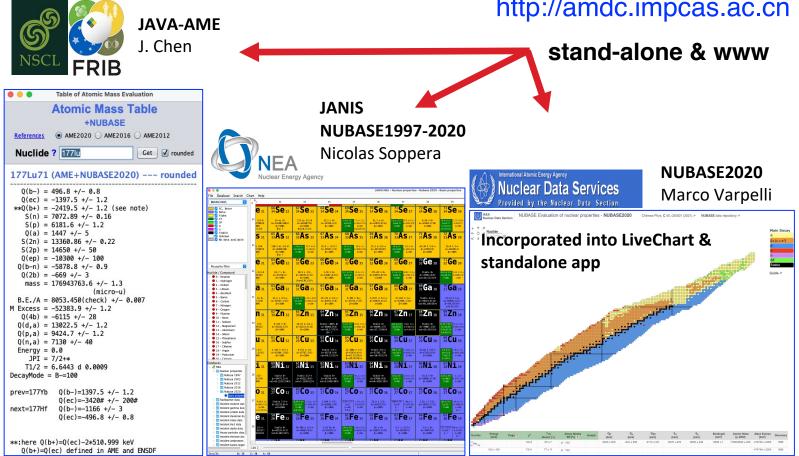
F.G. Kondev ^{1,*}, M. Wang (王猛)^{2,3,*}, W.J. Huang (黄文嘉)^{2,4,5,6}, S. Naimi⁷, G. Audi (欧乔治)⁶

What is included in NuBase?

- masses (Ex) for isomers (T_{1/2}>100
 ns) and their method of deduction
 integral part of AME
- $T_{1/2}$, Jπ, decay modes and BR for both ground states and isomers
- properties of 205 Isobar Analog States (IAS)

Why NuBase?

- complete include all measured quantities and their uncertainties
- up-to-date include results from all recent publications
- credible and reliable identify and resolve contradictory results that exist in the scientific literature, as well as in other nuclear physics databases
- properly referenced provide comprehensive bibliographical information for all included properties.


Conclusions & Outlook

AME2020 & NUBASE2020 evaluations have been released – complete, up-to-date & reliable information about the basic NP properties

pdf & ascii: https://www.anl.gov/phy/atomic-mass-data-resources (ANL)

https://www-nds.iaea.org/amdc/ (IAEA)

http://amdc.impcas.ac.cn (IMP)

work on the next next tables started – aim to be completed in 2024