

Modern Structure-based Nuclear Data Evaluations for Basic Science, Nuclear Safety & Security "SBEND: Structure-based Evaluation of Nuclear Data"

BNL/LANL/LLNL DOE Collaboration NSAC Long Range Plan Town Hall Meeting Nuclear Structure, Reactions & Astrophysics

<u>M. Paris</u> (LANL/PI), D. Brown (BNL/co-PI), I. Thompson (LLNL/co-PI), G. Hale & A. Lovell (LANL/co-Invs)

2022-11-15

LA-UR-22-31950

Outline

- Collaboration overview
- Collaborative work overview
- Deliverables

The nuclear data cycle & SBEND

- Theory & evaluation (T&E) @ intersection
 - Observed differential, basic physics data
 - User needs/Applications
 - Basic science
 - Nuclear security
 - Nuclear energy
- T&E provides
 - Overarching: Technical/physics guidance
 - <u>Concrete</u>: Nuclear data parameters
 - Nuclear structure parameters
 - Smooth (differentiable) reaction cross section data
 - & these data should be <u>consistent</u>

Collaboration personnel

- M. Paris (PI, LANL)
 - Staff scientist Theoretical Divison (T-2)
 - Consultant to IAEA (standards, R-matrix, Int. Nucl. Data Evaluation Network)
 - NNDC Cross section evaluation working group (CSEWG) member
- D. Brown (co-PI, BNL)
 - Staff scientist Nucl. Science & Technology Dept.
 - Head National Nuclear Data Center (NNDC); CSEWG Chair; ENDF Manager
 - USNDP Chair
 - Chair GNDS Expert Group OECD/NEA-WPEC
- I. Thompson (co-PI, LLNL, Fellow APS/IoP)
 - Staff scientist Nuclear Data & Theory Group
 - USNDP POC
 - Consultant IAEA (R-matrix, INDEN-LE)
- G. Hale (co-Inv, LANL, Fellow APS)
 - Staff scientist T-Division (T-2) [50+ years!]
 - Evaluator for most of the light-element evaluations in ENDF/B
- A. Lovell (co-Inv, LANL)
 - Staff scientist T-Division (T-2)
 - Recent recipient of 2022 FRIB Theory Award (Bayesian analysis & UQ)

Collaboration work: motivation

- Neutrino detection: ${}^{13}C(\alpha, n_x){}^{16}O \quad x = 0,...,3$
 - KamLAND detector neutrino spectrum
 - Phys. Rev. Lett. 125, 062501 (2020) [Febbraro *et al.*]
 - agrees well with ENDF/B-VII.1 & ENDF/B-VIII.0 based on LANL R-matrix evaluations
 - "we encourage the KamLAND collaboration to assess the impact of these new results."
- Beyond standard-model (BSM) physics
 - putative BSM candidate *X17*
 - $^{7}\text{Li}(p,e^{+}e^{-})\alpha\alpha$
 - require better determinations of isovector & isoscalar *M1* transitions ⁸Be system
 - Sterile neutrinos and other exotica
 - use Big Bang nucleosynthesis as precision probe [PRD 93, 083522 (2016)]
 - requires $\sim 1\%$ accuracy in light-element cross sections
- Nuclear science & engineering
 - Traditional reactors BW, PWR, CANDU, ...
 - H, C, N & O neutron moderators
 - Next generation reactors
 - Coolant: FLiBe
 - Molten salt: F, Cl, Na

Collaboration work: Objectives & Focus Areas

(FI) Improved physics models and code tools for evaluated nuclear data

- •R-matrix
- $(z, z'\gamma)$; $z, z' = n, p, d, t, h(^{3}He), \alpha$
- Extend current techniques to compute:

$$\frac{d\sigma}{d\Omega_{z'}d\Omega_{\gamma}} = \frac{d\sigma}{d\Omega_{z'}}\frac{W(\Omega_{z'\gamma})}{4\pi}$$

- •Coupled-channels
- incorporate statistical γ decays into existing primary (capture) and secondary γ production in CC approach (FRESCO)
- •Transitions from low-energy (resolved resonances) \rightarrow high-energy (unresolved)
- R-matrix / CC / optical models: unification under Feshbach-Reich-Moore approach

(FII) Machine-learning code modernization

- Resonance identification/classification (decision trees)
- Fitting optimization (supervised learning)
- Uncertainty quantification (Mixture density networks)

(FIII) Data formatting, storage, and transmission

- [See codes table on a subsequent slide]

Collaborative work targeting objectives

Collaborative work: broad overview

• Materials of interest

- <u>Light elements</u>
 - methods constraint
- First priority
 - H, C, N, O
- Follow-up
 - He, Li, Be, B

- Elemental processes of interest
 - SBEND initial prioritization
 - subject to need
 - DOE/SC & NNSA motivation

Category	Material	SBEND Elements
Structural	Al, steel, AM material	H, C, N, O
Controlled substances	Conventional explosives, pharmaceuticals, chemical agents, SNM	H, C, N, O, F, P
Intervening (shielding)	Poly, H_2O , <i>n</i> abs, Pb, W	H, Li, Be, B, C, O
Detector	Org & inorg scint, semicon, housings, PMT	He, He, C, O
Source	Detector housing, source reactions	Li, Be

Priority evaluations	DOE-SC user interest	NNSA user interest
$^{1}\mathrm{H}(n,n)^{1}\mathrm{H}; {}^{1}\mathrm{H}(n,\gamma)^{2}\mathrm{H};$	Reference/monitor cross section;	Reference/monitor for various
$^{2}\mathrm{H}(\gamma,n)^{1}\mathrm{H}$	BBN	actinides, $e.g.^{235}U(n, f)$;
		Non-proliferation/interrogation
⁶ Li $(d, \alpha)^4$ He; ⁷ Li $(p, \gamma/\gamma^*)^8$ Be	BSM physics; BBN	Nuclear security
$^{12}C(n, n'\gamma)^{12}C; ^{12}C(\alpha, \gamma)^{16}O;$	Stellar nucleosynthesis; nuclear	Secondary γ -rays
$^{12}\mathrm{C}(lpha,lpha'\gamma)^{12}\mathrm{C}$	structure	non-proliferation/interrogation
¹³ C(α, γ) ¹⁷ O; ¹³ C(α, γ) ¹⁶ O;	Stellar nucleosynthesis; nuclear	Secondary γ -rays
$^{13}\mathrm{C}(lpha,lpha'\gamma)^{13}\mathrm{C}$	structure; Neutrino-detection	non-proliferation/interrogation
	backgrounds	
$^{14}N(n,n)^{14}N; ^{14}N(n,p)^{14}C;$	Stellar nucleosynthesis; nuclear	Secondary γ -rays
¹⁴ N $(n, \alpha)^{11}$ B; ¹⁴ N $(n, n'\gamma)^{14}$ N	structure	non-proliferation/interrogation
$^{15}N(n, n'\gamma)^{15}N;$	Stellar nucleosynthesis; nuclear	Secondary γ -rays
15 N $(p, \alpha' \gamma)^{12}$ C;	structure	non-proliferation/interrogation
¹⁶ O(n, α) ¹³ C; ¹⁶ O(γ^*, α) ¹² C;	Stellar nucleosynthesis; nuclear	Secondary γ -rays
$ {}^{16}\mathrm{O}(n,n'){}^{16}\mathrm{O}^*;$	structure; Neutrino-detection	non-proliferation/interrogation
$^{16}{ m O}(n,n'\gamma)^{16}{ m O};$	backgrounds	

Collaboration work: methods & approach

Exterior region • Multi-channel R-matrix EDA_{f90} R-matrix $|\Psi_c
angle = |\mathscr{I}_c
angle - \sum_{c'}|\mathscr{O}_{c'}
angle S_{c'c}$ • Coupled-channel approach $S_{cc'} = \delta_{cc'} + 2i \ T_{cc'}$ $r
ightarrow\infty$ • Machine learning algos Channel surface $\mathscr{S}_c \in \mathbb{R}^{3A-4}$ - BRR, MDN, QUILTR Interior region $\left[H + \mathscr{L}_B
ight] \left| \lambda
ight
angle = E_\lambda \left| \lambda
ight
angle$ $|\Psi
angle = [H + \mathscr{L}_B - E]^{-1} \mathscr{L}_B |\Psi
angle$ Machine learning $\mathscr{L}_B = \sum_c rac{ia_c}{2m_c} |a_c
angle \langle a_c | (\hat{p}_r + iB_c) |$ $R_{B,c'c} = \langle c' | [H + \mathscr{L}_B - E]^{-1} | c
angle = \sum_\lambda rac{\langle c' | \lambda
angle \langle \lambda | c
angle}{E_\lambda - E}$ g_PDF_eval < gini = 0.449 samples = 53 alue = [18, 35 cumul_avg_spacing < gini = 0.484 Coupled-channel methods $R \le 34.90$ i = 0.5 les = 174 = [88, 86]acingR <= 40.2 gini = 0.488 samples = 121 value = [70, 51] r' ng_PDF_eval <= 0.0 gini = 0.497 samples = 191 value = [103, 88] cumul_avg_spacing <= gini = 0.498 samples = 103 value = [55, 48] idthVavetotwidth <= gini = 0.487 samples = 88 value = [51, 37] r A amples = 72 lue = [38, 34 gini = 0.391 amples = 15 alue = [4, 11]gini = 0.5 samples = 8 value = [4, 4] ad_dif_elwidthVaveelwidth <= 399. gini = 0.5 samples = 2 value = [1, 1] R_{α} $\mathbf{R}'_{\mathbf{\beta}}$ Decision tree @ 5 nodes a h

Deliverable example

T2: Improved physics modeling and theoretical work

- Central theory effort: develop analytical, numerical tools to calculate, *e.g.* ${}^{16}O(n, n'\gamma){}^{16}O$
- New work on ${}^{3}H(d, n\gamma){}^{4}He$:

Nuclear data evaluation workflow *R-matrix example*

- Four phases of Evaluation
 - Assess single experiment observables
 - Compile all process (total, elastic, inelastic, reaction, polarization)
 - Model / parametrization fitting
 - Production of Reaction Data and Structure & Decay Data

Experimental data desiderata

- General rule
 - the more differential, the better:
 - from Good→Better
 - $\sigma_{tot} \rightarrow \sigma(E) \rightarrow \sigma(E, \theta) \rightarrow \vec{\sigma}(E, \theta)$
 - Who is going to measure polarization observables in the future?
- Better kinematical coverage
 - projectile energy $E_{lab} \leq 20 \text{ MeV}$
 - angular
- Higher precision with higher energies and larger compound systems
 - As A increases, ΔE_R decreases
 - energy resolution needs increase
 - As E_{lab} projectile increases, higher- ℓ contributions
 - angular resolution needs increase

Going forward

- Post-doc search
 - Being run through LANL with online interview talks
- Communication
 - Listserv
 - Regular meetings
 - Biweekly = "once every two weeks" → these have been occurring since
- Code & document sharing options
 - BNL-based: NNDC gitlab; listserv

Thanks for your attention

Deliverables: Code development FIII. Data formatting, storage, and transmission

- Code capabilities & development driven by
 - FOA objectives
 - Evaluation needs: higher A, E (number of nucleons, reaction energies)

Code name	Purpose	Language	Improvements
EDA _{f90}	R-matrix calc/fitting	Fortran90/95	Full (z , $z'\gamma$); integration
RESPAR	Resonance parameters	Fortran77	Python/ENDFtk/FERDINAND
FRESCO	Coupled-channel/R-matrix	Fortran90/95	GPU
RFLOW	GPU/fast optimization R-matrix	Python/TensorFlow	Multi-GPU
FERDINAND	R-matrix parameter handler	Python	Concurrent covariance matrix
SPECT	$(z, z'\gamma)$	Fortran77	Full theory; Fortran2008
STEEP	$\langle \sigma v \rangle$	Fortran77	NJOY module/Python
NDIOUT	Multigroup σ	Fortran77	NJOY module/Python
COVAR/ANGCOV	$\langle \rho_i(E) \rho_j(E') \rangle$	Fortran77	NJOY module/Python
QUILTR	MCMC parameter optimization	Python	Integration with R-matrix
BRR [scikit-learn]	Resonance classification and optimization	Python	Integration with R-matrix, CC, for global optimization

