Experimental Validation of Neutron Capture γ-Cascades

Katelyn Cook¹, Yaron Danon¹ and Amanda Lewis²

¹Gaerttner LINAC Center, Rensselaer Polytechnic Institute, Troy, NY ²Naval Nuclear Laboratory, Schenectady, NY

NSAC Long Range Plan Town Hall Meeting on Nuclear Structure, Reactions and Astrophysics Nuclear Data Working Group November 15, 2022

RPI γ-Multiplicity Detector

- 16 segment NaI(Tl) detector for <u>neutron capture yield</u> <u>and γ-spectra measurements</u>
 - Total volume: 20 L of NaI(Tl) surrounding the sample
 - Inside of the detector is lined (~1 cm) with a B₄C ceramic sleeve which is enriched 99.5 atom% in ¹⁰B to absorb scattered neutrons from the sample
 - Up to 96% efficiency for detecting γ -cascades
 - Incident neutron energies: 0.01 eV 3 keV

Motivation for Capture γ-spectra Measurements

- Understand γ-heating in nuclear reactors
- Characterize γ-emission spectra for **non-proliferation** applications
- Improve the current models used to simulate γ-emission spectra
- Increase the accuracy of nuclear data for **reactor and shielding calculations** (constrain physics models used)

Simulated vs. Experimental y-spectra for ¹⁸¹Ta(n,y)

MCNP-6.2/ENDF/B-VIII.0

Extracts γ -ray data from ENDF/B-VIII.0 files

MCNP-6.2/CGM

(Cascading Gamma-Ray Multiplicity) Produces correlated secondary γ-emissions

MCNP-6.2/DICEBOX

- 1. γ -cascades are generated using DICEBOX
- 2. For each capture event, a cascade is transported though the detector geometry
- γ-energy deposition in each of the 16 detector segments is tallied which enables event-by-event analysis including coincidence

* Working with LANL to implement this capability for all MCNP users

Large discrepancies between experimental and simulated γ -spectra for ¹⁸¹Ta(n, γ)

Need a material with well-known neutron capture γ -ray data that is easy to measure

Measuring an Isotope with well-known γ-ray Data following Neutron Capture: ⁵⁶Fe(n,γ)

Fewer discrepancies between experimental and simulated γ -spectra for ⁵⁶Fe(n, γ)

Conclusions

- For isotopes where the neutron capture γ-cascade characteristics are well-known, the experimental system agrees with the γ-emission spectra calculated using modified simulation tools.
- RPI γ-Multiplicity Detector system can provide experimental information for isotopes with deficiencies in γ-ray data and simultaneously measure neutron capture yield

Future Work

- Develop a robust method for analyzing and adjusting neutron capture γ-cascade data for ⁵⁹Co, ⁵⁵Mn and other measured isotopes including ¹⁸¹Ta, ²³⁸U and ²³⁵U
- Compare experimental γ-emission spectra with MCNP-6.2/DICEBOX simulations for important nuclear materials: ²³⁸U and ²³⁵U
 - Most interesting for reactor applications, most difficult to measure and simulate (due to the fission contribution)

LABORATOR

