Nuclear Data and Society

Long Range Planning Session

November 15, 2022

Jo Ressler Lawrence Livermore National Laboratory

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Nuclear isotopes are used in many household items and are pushing the scientific frontier in applications

²⁴¹Am: fire/smoke alarm

- Household items
- Industry
- Scientific research

⁸⁵Kr: indicator lights on
 household appliances

²²⁹Th: Helps fluorescent

lights last longer

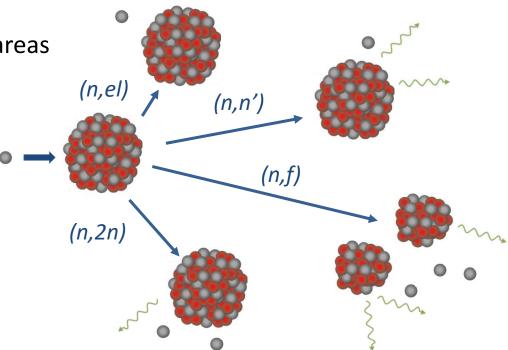
L.

 \square

 \mathbf{f}

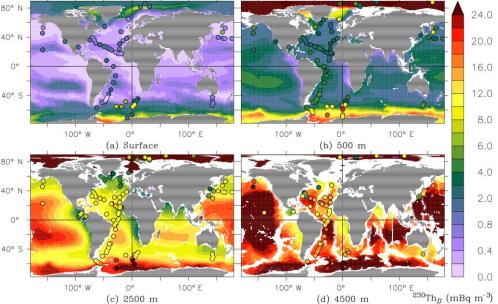
⁶³Ni: surge protector

²³⁸U, ^{nat}U, ⁴⁰K: Dentures and crowns (<1980's)


¹⁴⁷Pm: electric blanket thermostats

Criticality Safety Health Physics Isotope Biogeochemistry Isotope Geochemistry Isotope Hydrology **Nuclear Astrophysics Nuclear Chemistry** Nuclear Engineering **Nuclear Geophysics** Nuclear Medicine **Nuclear Physics** Radiobiology Radiochemistry Radioecology

Today will touch on uses, opportunities, and challenges


- Nuclear data are used in many different areas benefitting society they won't all be covered here, this
 will be a whirlwind overview
- Some examples will be given, but are not all-encompassing
- Utilization of nuclear data can be generally grouped into three areas
 - Chronometers
 - Tracers/signatures
 - Energy deposition and/or production
- Probability for the event and what is produced
 - Radioactive decay half-life, reaction cross section
 - Emissions and products
 - Types
 - Number, multiplicities
 - Energies
 - Angles

Understanding (and improving) our natural world

- Astrophysics
 - Nucleosynthesis and stellar energy generation; *Reactions (cp, n, γ) and decays for stable and unstable*
 - Chronometers/Dating; ¹⁸⁷Re, ²³²Th, ²³⁵U, ²³⁸U... ⁴⁰K, ⁸⁷Rb, ¹³⁸La, ¹⁴⁷Sm, ¹⁷⁶Lu
- Oceanography
 - Food chain contamination; Co, Ag, Zn, Cd, Hg, ¹³⁷Cs, ²¹⁰Po, ²¹⁰Pb, ²⁴¹Am ⁴⁰
 - Ocean acidification; ^{13,14}C
 - Currents and mixing; ³H, ¹⁴C, ⁹⁰Sr, ¹²⁹I, ¹³⁷Cs, ^{238,239,240}Pu, ²⁴¹Am
- Climate modeling
 - Ice caps/cores; ¹⁸O/¹⁶O, ²H/¹H, ¹⁰Be, ³⁶Cl
 - Tree rings; ^{13,14}C, ^{226,228}Ra
- Agriculture
 - Fertilization; ¹⁵N, ³²P
 - Radiation-induced mutations; ⁶⁰Co, β , cp, n, cosmic
 - Irradiation/food safety; ⁶⁰Co, ¹³⁷Cs

Model of dissolved ²³⁰Th activity; Hulten *et al.,* Geosci. Model Dev., 11, (2018) pp 3537–3556 *https://doi.org/10.5194/gmd-11-3537-2018*

Understanding (and improving) our human bodies

- Irradiation
 - Cancer treatment
 - External beam radiotherapy; ⁶⁰Co, ¹³⁷Cs, β , cp, n
 - Brachytherapy; ¹²⁵*I*, ¹³¹*I*, ¹⁹²*Ir*
 - Allograft sterilization; ⁶⁰Co, ¹³⁷Cs
- Diagnostic
 - imaging, PET, SPECT; ¹⁸F, ⁶⁸Ga, ⁸²Rb, ^{99m}Tc, ²⁰¹Tl
- Therapeutic
 - Pain relief; ⁸⁹Sr, ¹⁵³Sm, ¹⁸⁶Re, ¹⁶⁹Er
 - Targeted energy deposition; ⁹⁰Y, ¹³¹I, ¹⁷⁷Lu, ²²⁵Ac, ²²³Ra
- Theragnostic
 - Diagnostic and therapeutic; ${}^{64}Cu$ - ${}^{67}Cu$, ${}^{43,44}Sc$ - ${}^{47}Sc$, ${}^{123}I$ - ${}^{131}I$
- Historical pacemaker, ²³⁸Pu

lacrimal glands 99mTc - DTPA - inflammation salivary glands 99mTc - pertechnetate 42K - coronary blood flow 99mTc - sestamibi (Cardiolite) and tetrofosmin (Myoview) -

myocardial perfusion 103Ru - myocardial blood flow 191mtr - cardiovascular angiography liver 99mTc - MAA - intraarterial perfusion 99mTc - colloidal sulfur scintigraphy ^{99m}Tc - phytate 99mTc - para-methyl iminodiacetate 99mTc - red blood cells hetapic hemangioma kidnevs 99mTc - diethylenetriaminepentaacetic acid (DTPA) and mercaptoacetyltriglycine (MAG₃) renal dynamic scintigraphy soft tissues

> 67Ga - citrate 18F-FDG

brain

11C, 13N, 15O - physiology and pathology 18F-FDG - glucose metabolism ⁷⁵Se - tracer 99mTc exametazime (HMPAO) - perfusion scintigraphy 99mTc bicisate (ECD) - perfusion scintigraphy 111 In - brain studies 122 - blood flow thyroid 18F-FDG - detect cancer 99mTc - pertechnetate 1231 - iodide - diagnosis of function pulmonary perfusion 99mTc - macroaggregated of serum human albumin (MAA) ¹³³Xe - lung ventilation stomach 58Co - gastrointestinal absorption 141Ce - gastrointestinal tract diagnosis intestines 51Cr - human serum albumin 58Co - gastrointestinal absorption 141Ce - gastrointestinal tract diagnosis 99mTc - pertechnetate - diverticulum detection skeleton ⁴⁷Ca - bone metabolism

99mTc - colloidal sulfur - bone marrow scintigraphy ¹⁵⁵Eu - osteoporosis detection

Radiopharmaceuticals for imaging; Payolla et al., Eclética Química Jour., 44 (2019) pp 11–19 https://doi.org/10.26850/1678-4618egj.v44.3.2019.p11-19

Reaching out (or in) to the unknown

- Radioisotope thermionic power; ⁹⁰Sr, ²³⁸Pu, ²⁴¹Am, ²⁴⁴Cm
 - Heat from radioactive decay
 - Arctic, ocean floor, space...
- Terrestrial exploration
 - Geochronometers; ^{235,238}U > ^{207,206}Pb, ¹⁸⁷Re-¹⁸⁷Os, ⁴⁰Ar/³⁹Ar
 - Moon formation; ¹⁸²Hf-¹⁸²W, ¹⁴⁶Sm-¹⁴²Nd, and ¹⁷⁶Lu-¹⁷⁶Hf
 - Isotope hydrology, water age/origins; ³H, ¹⁴C, ⁸¹Kr, ⁴He
 - Geologic characterization; NAA, PGAA, XRF, PIXE, PIGE, NMR
- Extraterrestrial and meteoritic composition
 - Chondrites and chondrules; U/Pb ratios, ²⁶Al-²⁶Mg
 - Iron meteorites; ¹⁸²Hf-¹⁸²W
 - Achondrites, angrites; ⁵³Mn/⁵⁵Mn
 - Characterization
 - asteroid Psyche; γ-spectroscopy
 - Saturn moon Titan; *neutron activation*, *γ*-spectroscopy

TABLE I. Physical properties, abundance and occurrence of the geologically important radioactive elements

Element	Active isotope		Energy in Mev	Decay constant λ in sec. ⁻¹	Half-period T	Mean abundance of active isotope g/g rock	Occurrence Rocks, evaporites and sea-water.		
Potassium	K40 K40	$\beta \gamma$	1.2 2.0	$1.4 \pm 0.3 \times 10^{-17} \\ 4 \times 10^{-19}$	$1.6 \pm 0.3 \times 10^{9} y$ $5 \times 10^{10} y$	$2.2 \pm 0.4 \times 10^{-6}$			
Rubidium	Rb ⁸⁷	β	0.13 $3.5 \pm 1 \times 10^{-19}$		6.3±2×1010y	ca 6×10 ⁻⁶	Lepidolite and other Li-bearing minerals.		
Samarium	Sm148	α	2.55	2.5×10 ⁻¹⁹	0.9×10 ¹¹ y	ca 10 ⁻⁶	Samarskite, cerit and monazite.		
Radon	Rn Tn An	α α α	5.49 6.28 6.82	$\begin{array}{c} 2.10 \times 10^{-6} \\ 1.27 \times 10^{-2} \\ 0.177 \end{array}$	3.82 <i>d</i> 54.5 <i>s</i> 3.92 <i>s</i>	ca 3×10^{-18} ca 7×10^{-22} ca 2×10^{-24}	Genetically assoc ated with uranium thorium, and au tino-uranium, ru spectively, in rock radioactive mine als, atmospher mineral waters, an sea water.		
Radium	Ra ThX	α α	4.87 5.78	$\begin{array}{c} 1.4 \times 10^{-11} \\ 2.20 \times 10^{-6} \end{array}$	1600 y 3.64d	$0.5 \pm 0.1 \times 10^{-12}$ ca 4×10^{-18}	Genetically assoc ated with uraniu and thorium, r spectively, al found separately certain miner springs.		
Thorium	Th RdTh Io	α α α	4.31 5.47 4.66	${\begin{array}{*{20}c} 1.58 \times 10^{-18} \\ 1.16 \times 10^{-8} \\ 3 \times 10^{-13} \end{array}}$	1.40×10 ¹⁰ y 1.9y 8×10 ⁴ y	$5.6 \pm 1 \times 10^{-6}$ ca 8×10^{-16} ca 3×10^{-11}	Rocks, monazit thorite, and thoria nite. Ionium gen etically associate with uranium.		
Protactinium	Pa	α	5.1	7.0×10 ⁻¹³	3.1×10 ⁴ y	ca 4×10 ⁻¹³	Genetically assoc ated with actine uranium (U ²³⁶).		
Uranium	U ²³⁸ U ²³⁵	α α	4.13 4.4	$\substack{4.87\times10^{-18}\\3.1\pm0.1\times10^{-17}}$	$4.52 \times 10^{9}y$ $7.1 \pm 0.3 \times 10^{8}y$	$1.4 \pm 0.3 \times 10^{-6}$ 1.0×10^{-8}	Rocks, uranini pitchblende ar carnotite.		

Nuclear geophysics is a mature field where the use of isotopes was recognized early; Goodman, J. of Appl. Physics 12 (1942) pp 276 - 289 https://doi.org/10.1063/1.1714866

Industrial applications utilize decays and reactions

- Nuclear densitometry; ¹³⁷Cs, ²²⁶Ra, ²⁴¹Am/Be
 - Nuclear logging, Measurement While Drilling, Logging While Drilling
 - Identify oil deposits, porosity, water content of coal
 - Construction, soil compaction and asphalt
- Oil and gas tracing; ²⁴Na, ⁵⁶Mn, ^{110m}Ag, ¹³¹I, ¹³³Xe, ¹⁴⁰La
- Processing; ⁸²Br, ¹³⁷Cs, ¹⁰⁹Cd, ¹⁹²Ir, ²⁴⁴Cm
 - Flow, blending, separation of materials
 - Automatic control of filling furnaces, vessels, transport containers
- Materials characterization
 - Construction, e.g. welds, wear, damage effects, shielding; ¹³⁷Cs, ⁶⁰Co, ¹⁹²Ir
 - Contamination, mining, processing, and smelting or uranium, phosphate, lead and iron ore, burning fossil fuels (coal), and burning leaded gasoline; ²³⁸U and ²³²Th decay series (²¹⁰Pb, ²¹⁰Po), Rn gas
- Transmutation, e.g. doping Si semiconductors; reactor n (fission)

Paper/board weight using ⁸⁵Kr or ¹⁴⁷Pm (Beta-emitters) https://jasch.net.in/paper-global-trendsetting-technology

Nuclear reactors provide power

- Electrical generation
 - 437 operating power reactors, 57 under construction, 102 planned (Sept 2022); mostly Pressurized Water Reactor (PWR)
 - Higher burn-up, modified fuels proposed
- Propulsion
 - aircraft carriers, nuclear submarines, ice breakers
 - space
 - Nuclear Thermal Propulsion (NTP)
 - Nuclear Electric Propulsion (NEP)
- Future Reactors
 - Small Modular Reactors, 50+ concepts;
 - fast neutron reactions, materials, dynamics
 - Fusion Reactors; *cp fusion*
- Safeguards
 - Material control and accounting
 - Characterization

Fission, fission product decays and reactions, neutron absorption and moderation reactions, n and γ production and transmission/shielding, half-lives...

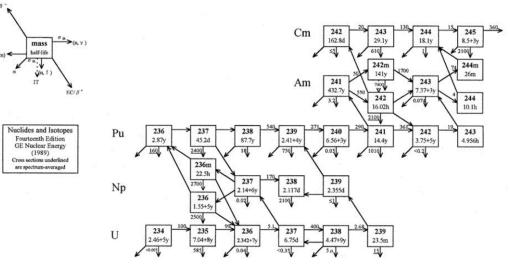


FIG.III-3. Actinide transmutation chains for UO₂ and MOX fuel (detail).


A large number of complex reaction networks in the fuel and other materials must be considered; Nuclear Fuel Cycle Simulation System: Improvements and Applications, IAEA-TECDOC-1864

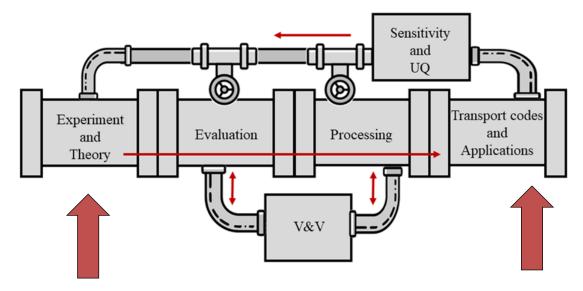
Nuclear security considers nuclear threats

- Non-proliferation: prevent the spread of nuclear weapons
 - Detect, characterize, monitor nuclear fuel cycle activities
 - Detect the illicit movement of nuclear materials
- Counterterrorism and counterproliferation
 - Counter acquisition of nuclear capabilities
 - Respond to nuclear and radiological incidents
- Forensics
 - Determine origin of materials outside of regulatory control
 - Respond to nuclear and radiological incidents
- Stockpile stewardship
 - Expand predictive capability
 - Maintain deterrence

Fission, fission product decays and reactions, neutron reactions, cp reactions, n and y production and transmission/shielding, half-lives...

"Cop with scary gadget", blog of Zack Hample, 2008 https://mlblogssnaggingbaseballs.wordpress.com/2008/07/17/2008-home-run-derbv

Opportunities and challenges in nuclear applications


- The use of nuclear reactions and radioisotopes has many significant advantages
 - Security can be gained: nuclear, energy, food, and water
 - Scientific understanding of complex processes can be undertaken fact-based findings can support policymakers, e.g. pollution control, public safety
 - Information and controls can provide significant cost and time savings, as well as safety
- Most applications are multidisciplinary
 - Utilization of nuclear science techniques often requires training and knowledge
 - What can we do to support the next generation in connecting fields?
- Risk
 - Regulations and controls can inhibit use of radioactive materials
 - What can we do to properly understand and communicate the risk/reward balance?
- Most applications rely on simulation and modeling
 - Do we have the necessary data readily available?

I think we can do better!

New data are needed, with improved timelines for delivering to applications

- Experiments and Theory are pushing the scientific boundaries
 - New experimental facilities, complex detector arrays
 - Sophisticated algorithms, analyses
 - Larger computation platforms, GPU capabilities
- Data needs
 - Reactions on unstable isotopes
 - Quantified uncertainties; precision improvements may need integral or quasi-integral data
 - Nuclear structure and decay data with reaction data
- Evaluation capabilities
 - Rate-limiting step
 - Modern tools and infrastructure
 - Peoplepower

Foundational Sciences

Applications

Nuclear data are shared: different applications use the same data resource

Multiple applications rely on nuclear data

- Six examples of applications fields
 - Environmental sciences
 - Medical physics
 - Geophysical characterization
 - Industrial applications
 - Nuclear power
 - Nuclear security
- Multidisciplinary
- Difficult environments
 - Underwater, underground, outer space
 - Extreme temperatures, pressures
- Challenging observations/detection... and interpretation

The nuclear science community "owns" part of the problem space:

- Can we produce new tracer or medical isotopes?
 Can we calculate the production accurately?
- Do we understand the nuclear reaction networks in high flux environments?
- Do we know the reaction and decay products accurately?
- Are these data accessible for modeling/simulation?
- Do we have detection techniques that could be applied in the field?

Naturally occurring isotopes from U and Th series

Element	U-238 series							Th-232 series				U-235 series					
Neptunium																	
Uranium	U-238 4.47 x 10 ⁹		U-234 2.48 x 10 ⁵										U-235 7.04 x 10 ⁸				
Protactinium		Pa-234 1.18												Pa-231 3.25 x 10 ⁴			
Thorium	Th-234 24.1 d		Th-230 7.52 x 10 ⁴	· ·				Th-232		Th-228 1.91			Th-231 25.5 hrs		Th-227 18.7		
Actinium								Í	Ac-228 6.13 hrs					Ac-227 21.8			
Radium			Ra-226 1.62 x 10 ³					Ra-228 5.75		Ra-224 3.66					Ra-223		
Francium											· ·						
Radon			Rn-222 3.82 d							* Rn-220 55.6 s					Rn-219 3.96 s		
Astatine																	
Polonium			Po-218 3.05 min		Po-214 1.64 x 10 ⁻⁴		Po-210			Po-216 0.15 s	64%	Po-212 3.0 x 10 ⁻⁷			Po-215 1.78 x 10 ⁻³ s		
Bismuth				Bi-214 19.7 min		Bi-210 5.01					Bi-212 60.6					Bi-211 2.15	
Lead			Pb-214 26.8 min		Pb-210 22.3 y		Pb-206 Stable lead isotope			Pb-212 10.6 hrs	36%	Pb-208 Stable lead			Pb-211 36.1 min		Pb-207 Stable lead isotope
Thallium											TI-208 3.05 min					TI-207 4.77 min	

