

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Machine Learning for Nuclear Data

REVIEWS OF MODERN PHYSICS

Colloquium: Machine learning in nuclear physics

Amber Boehnlein, Markus Diefenthaler, Nobuo Sato, Malachi Schram, Veronique Ziegler, Cristiano Fanelli, Morten Hjorth-Jensen, Tanja Horn, Michelle P. Kuchera, Dean Lee, Witold Nazarewicz, Peter Ostroumov, Kostas Orginos, Alan Poon, Xin-Nian Wang, Alexander Scheinker, Michael S. Smith, and Long-Gang Pang Rev. Mod. Phys. 94, 031003 – Published 8 September 2022

- I. Introduction
- II. Machine Learning for Nuclear Physics in Broad Strokes
- III. Nuclear Theory
- IV. Experimental Methods
- V. Accelerator Science and Operations

VI. Nuclear Data

- A. Overhauling the nuclear data pipeline
- B. Improving compilations and evaluations
- C. Building emulators and surrogate models
- VII. Summary and Perspectives

Transforming the Nuclear Data Pipeline

Measurements

- **design** experiments / detectors with BO, emulators, GPs, NNs ...

Theory

- speed up large-scale calculations with HPC resources and emulators
- determine uncertainties in theory model using BNN

Compilation

- choose keywords in NSR with NLP
- extract tables / plots / text with CNNs

Evaluation

- update ENDF using BN and GPs
- extract GDR energies & widths using NNs and MTL
- identify outliers using RF, and using experimental info w/ SVM, LR ...
- **combine data** differential / integral / theory using RFs

Processing / Validation and Verification

- reaction evaluation processing / V&V using BN and GP
- **design** validation experiments with BO

ML projects are already improving the pipeline

they have the potential to transform it ...

GLOSSARY

BO Bayesian Optimization

GP Gaussian Process

NN Neural Network

BNN Bayesian NN

NLP Natural Lang. Proc.

CNN Convolutional NN

BN Bayesian Network

MTL Multi-Task Learning

SVM Supp. Vector Mach.

LR Logistic Regression

RF Random Forests

Applications

- identify criticality factors using RF
- Uncertainty Quantification (UQ) using emulators

Transforming the Nuclear Data Pipeline

future trends...

Reaction pipeline formulated as a BN

UQ and radiation transport with emulators

Physics-driven loss terms in NNs

Validation & Verification using BO

- Recommend that the potential of ML to transform Nuclear Data Pipeline be discussed in NSAC LRP and NSAC-Nuclear Data Subcommittee Report
- Recommend that ML be a part of future Funding Opportunity Announcements from NDIAWG / DOE NP
- Recommend that USNDP establish a "Machine Learning Task Force" to share approaches / algorithms / strategies
- Recommend development of toolkits for non-experts on ML for nuclear data