



# Nuclear Data For Space Applications

Emanuel Chimanski chimanski@bnl.gov



## Planetary Nuclear Spectroscopy: Space exploration and beyond!



from wiki

Active Interrogation with fast neutron beams;

En = 14 MeV

- Capture, Inelastic and Decay Gammas
  Nuclear fingerprints
- Subject to

ENSDF

- Thorough experimental knowledge;
- Precise models and evaluations;
- Incorporation of data into evaluated files;





Neutron Interrogation for Material Characterization is strongly dependent on gamma ray production libraries

# Space exploration: Today and tomorrow!

#### Upcoming Missions:

- LunaH Map (2022)
- Psyche (2023)
- VIPER (2023)
- MMX (2024)
- Dragonfly (2026)
- Commercial Lunar Payload Services (multiple payloads/missions, 2022)

#### organic-rich atmosphere and surface de-coupled outer shell (water-ice / clathrate) global subsurface ocean high-pressure ice VI shell hydrous silicate core -2000 km radius http://photojournal.jpl.nasa.gov/catalog/PIA14445

#### **Deficiencies in neutron cross-section and photon atomic data libraries** have been noted in the literature

- Yamashita et al. (2003), Adv. Space Res. 31;
- Prettyman et al. (2006), JGR 111 ;
- Brückner et al. (2011) NIMB 269;
- Lim et al. (2017) Met. Planet. Sci. 52;
- Han et al. (2018). IEEE Trans Nucl Sci, 65;
- Mauborgne et al. (2020), EPJ Web Conf., 239;

Archaic formats; Lack of intrinsic consistency; Outdated (possible mistakes) values; Missing documentation; Protocol for version management

NASA currently has numerous active and upcoming investigations valued at >\$100M.

## Space applications are evoking outdated evaluations that need to be revisited

The accuracy of the simulations varies strongly depending on neutron inelastic cross section library is used

|                                                |      | Gamma     | Model/Measurement Ratio |           |           |           |           |           |           |           |           |
|------------------------------------------------|------|-----------|-------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
|                                                |      | Ray (keV) | G4NDL 4.6               | G4NDL 4.5 | ENDF VIII | ENDF VII  | ENDF VI   | JENDL 4.0 | JENDL 3.3 | CENDL 3.1 | BROND 3.1 |
|                                                | н    | 2223      | 1.45±0.01               | 1.47±0.01 | 1.44±0.01 | 1.47±0.01 | 1.45±0.01 | 1.44±0.01 | 1.46±0.01 | 1.46±0.01 | 1.45±0.01 |
|                                                | с    | 4438      | 1.40±0.03               | 1.36±0.03 | 1.34±0.03 | 1.37±0.03 | 1.30±0.03 | 1.47±0.03 | 1.38±0.03 | 1.41±0.03 | 1.38±0.03 |
|                                                | 0    | 6129      | 0.78±0.06               | 0.71±0.05 | 0.05±0.01 |           | -         | 0.71±0.05 | 0.70±0.05 | 0.70±0.70 | 0.06±0.01 |
|                                                |      | 440       | 1.13±0.03               | 0.45±0.01 | 0.25±0.01 | 0.25±0.01 | 0.25±0.01 | 1.26±0.03 | 1.26±0.03 | -         | 1.17±0.03 |
|                                                | Na · | 1634      | 1.92±0.03               | 1.73±0.17 |           |           | -         | 1.66±0.02 | 1.69±0.02 |           | 2.06±0.03 |
|                                                | Mg   | 1369      | 1.42±0.02               | 1.42±0.02 | 1.41±0.02 | 1.41±0.02 | -         | 1.40±0.02 | 1.40±0.02 | 0.86±0.02 | 1.42±0.02 |
|                                                |      | 843       | 1.22±0.01               | 1.07±0.01 | 1.09±0.01 | 1.10±0.01 | 1.11±0.01 | 1.09±0.06 | 1.05±0.01 | 1.05±0.01 | 1.11±0.01 |
| Model<br>Accuracy<br>Within 5%<br>Within 5-10% | AI   | 1014      | 1.47±0.01               | 1.32±0.01 | 1.31±0.01 | 1.31±0.01 | 1.30±0.01 | 1.22±0.08 | 1.22±0.00 | 1.20±0.00 | 1.31±0.01 |
|                                                |      | 2211      | 1.21±0.01               | 1.18±0.01 | 1.18±0.01 | 1.12±0.01 | 1.12±0.01 | 1.01±0.01 | 0.98±0.01 | 0.94±0.01 | 1.14±0.01 |
|                                                | Si   | 1779      | 1.05±0.02               | 1.12±0.02 | 1.13±0.02 | 1.13±0.02 | 1.13±0.02 | 0.07±0.00 | 1.07±0.02 | 1.13±0.02 | 1.13±0.02 |
|                                                | S    | 2232      | 1.31±0.01               | 0.78±0.01 | -         | 0.78±0.01 | 0.80±0.01 | 0.79±0.01 | 0.79±0.01 | -         | 0.80±0.01 |
|                                                | CI   | 1763      | 0.99±0.01               | 1.02±0.01 | 1.03±0.01 | 1.02±0.01 | 1.02±0.01 |           | I         | -         | 1.10±0.02 |
| Within 10-20%                                  | Ca   | 3736      | 1.00±0.04               |           | -         |           | 0.06±0.01 | -         | 1.12±0.04 | 0.04±0.01 | -         |
| Diff. >20%<br>"" = No Peak<br>in Model         | Ti   | 983       | 1.07±0.03               | 1.06±0.03 | 1.06±0.03 | 1.05±0.03 | -         | 1.07±0.03 | 1.08±0.03 | 1.09±0.03 | 1.05±0.03 |
|                                                | Fe   | 846       | 0.88±0.01               | 0.94±0.01 | 0.99±0.01 | 0.94±0.01 | 0.94±0.01 | 0.95±0.01 | 0.95±0.01 | 0.90±0.01 | 1.06±0.02 |
|                                                |      | 1238      | 0.71±0.03               | 0.80±0.03 | 0.83±0.03 | 0.81±0.03 | 0.77±0.03 | 0.85±0.03 | 0.87±0.02 | 0.67±0.03 | 0.75±0.09 |
|                                                |      | 1408      | 1.14±0.07               | 0.91±0.06 | 0.89±0.06 | 0.83±0.06 | 0.78±0.06 | 0.94±0.06 | 0.92±0.05 | 0.88±0.06 | 1.27±0.19 |
|                                                | Co   | 1099      | 1.28±0.04               | 1.30±0.04 | 0.93±0.04 | -         |           |           | 0.88±0.04 | -         | 0.84±0.05 |
|                                                |      | 1190      | 1.13±0.02               | 1.15±0.02 | 1.08±0.02 | -         | -         | -         | 0.85±0.02 | -         | 0.86±0.02 |
|                                                |      | 1292      | 1.31±0.06               | 1.32±0.05 | 1.93±0.05 | -         |           |           | 1.40±0.06 |           | 1.37±0.07 |
|                                                |      | 1459      | 1.71±0.04               | 1.67±0.04 | 0.86±0.03 | -         |           |           | 0.67±0.03 |           | 0.65±0.03 |
|                                                |      | 1481      | 1.24±0.06               | 1.20±0.05 | 1.02±0.05 |           |           |           | 0.89±0.05 |           | 0.95±0.07 |
|                                                | Ni   | 1332      | 1.02±0.01               | 1.11±0.02 | 1.03±0.01 | 1.10±0.02 | 1.09±0.01 | 0.91±0.01 | 0.90±0.01 | 1.05±0.01 | 1.00±0.01 |
|                                                |      | 1454      | 0.84±0.02               | 0.87±0.02 | 0.93±0.02 | 0.89±0.02 | 0.87±0.02 | 0.73±0.02 | 0.72±0.01 | 0.99±0.02 | 0.86±0.01 |

Highlighted cases from Jack T. Wilson presentation at DNP2022

#### ENDF does a good job but it's not yet shining

Opportunity to have broader suite of benchmarks and achieve a more complete validation of nuclear data

## A Joint Effort: Experiment + Evaluations + Validation

#### **Space Application Needs**

(Gamma Ray Spectra)

- Capture Gamma Rays
- Inelastic Gamma Rays
- Gamma Rays from pseudo-continuum

for isotopes lighter than Cu



We can take the chance to improve the Intermediate energies given by theory

### **Opportunity**:

Measurements and evaluations can finally be performed at same time!!

# Thank you

chimanski@bnl.gov

