Texas A&M University Cyclotron Institute

Precision Internal Conversion Coefficients Measurements for US Nuclear Data Program

N. Nica

Introduction: ICC and Nuclear DATA Science

Internal Conversion Coefficients (ICC):

- Have great impact on the quality of nuclear science
- Play a crucial role in the intensity balance of a level scheme
- One of the central quantities in basic science and applications
- Central for the nuclear data evaluation programs
- Intensely studied by theory and experiment
- What theoretical calculation gives best ICC results?

- At TEXAS A&M Cyclotron Institute: benchmark series of precision ICC measurements
- Found that best approach to calculations: Relativistic Dirac-Fock with "frozen orbitals" approximation for the inclusion of atomic vacancy
- Is the series of measurements complete?
- Are there other critical cases to measure?
- Overview of the scope and completeness of the method

2002RA45 survey ICC's theories and measurements

• Theory: RHFS and RDF comparison

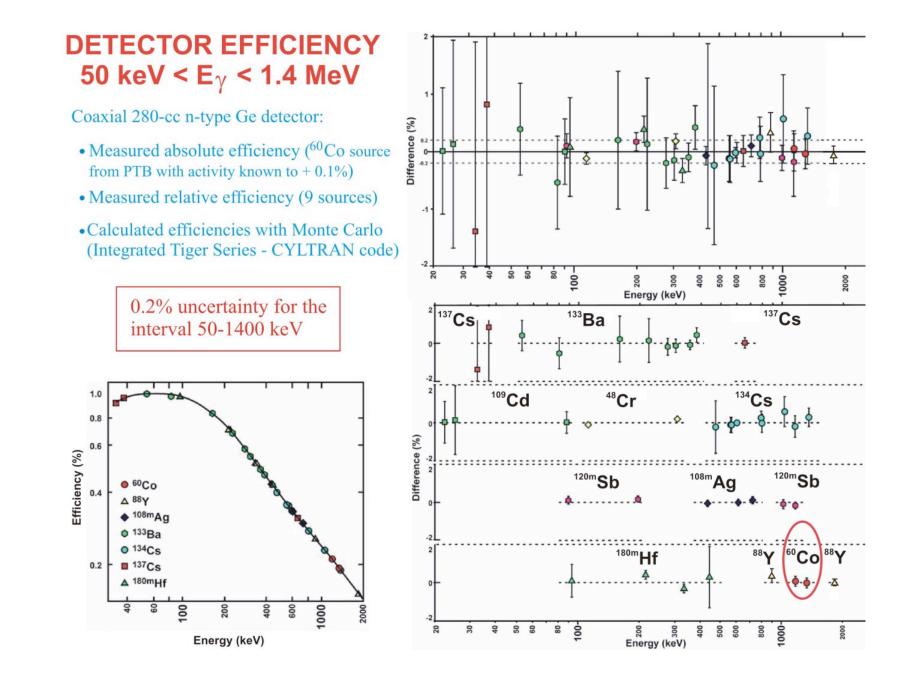
Exchange interaction, Finite size of nucleus, Hole treatment

• Experiment:

100 E2, M3, E3, M4, E5 ICC values, 0.5%-6% precision, very few <1% precision!

Conclusions, Δ(exp:theory)%:

No hole:+0.19(26)% BEST!(bound and continuum states - SCF of neutral atom)Hole-SCF:-0.94(24)%(continuum - SCF of ion + hole (full relaxation of ion orbitals))Hole-FO:-1.18(24)%(continuum - ion field from bound wave functions of neutral atom (no relaxation of ion orbitals))PHYSICAL ARGUMENTK-shell filling time vs. time to leave atom $~10^{-15} - 10^{-17}$ s » $~10^{-18}$ s


Texas A&M precision ICC measurements:

• KX to γ rays ratio method

$$\alpha_{K}\omega_{K} = \frac{N_{K}}{N_{\gamma}} \cdot \frac{\varepsilon_{\gamma}}{\varepsilon_{K}}$$

• N_K , N_γ measured from *only one K-shell converted transition* • ω_K from 1999SCZX (compilation and fit)

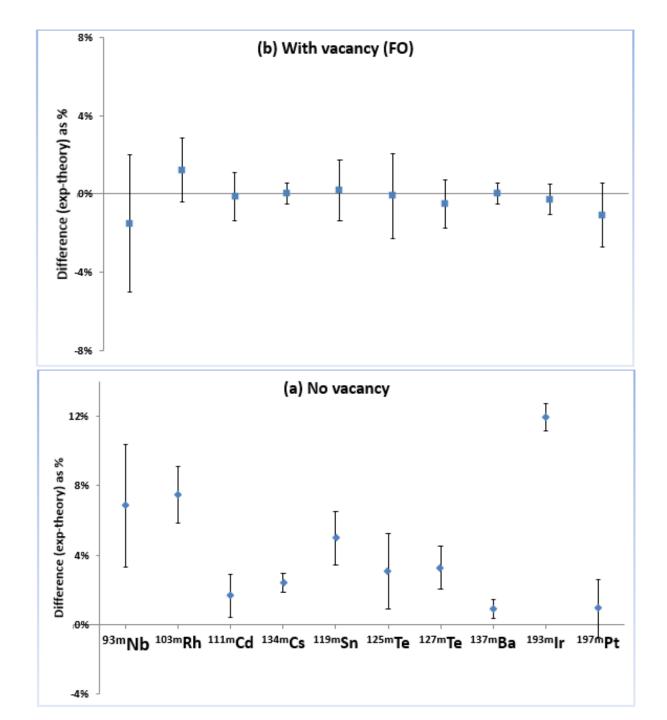
- Very precise detection efficiency for ORTEC γ-X 280-cm³ coaxial HPGe at standard distance of 151 mm:
 - 0.2%, 50-1400 keV (2002HA61, 2003HE28)
 - 0.4%, 1.4-3.5 MeV (2004HE34)
 - 1%, 10-50 keV (KX rays domain)

KX to γ rays ratio method

 \circ Sources for n_{th} activation

- Small selfabsorption (< 0.1%)</p>
- Dead time (< 5%)</p>
- Statistics (> 10⁶ for γ or x
- High spectrum purity
- Minimize activation time (0.5 h)
- **o Impurity analysis** *essentially based on ENSDF*
 - Trace and correct impurity to 0.01% level
 - Use decay-curve analysis
 - Especially important for the K X-ray region

• Voigt-shape (Lorentzian) correction for X-rays


Done by simulation spectra, analyzed as the real spectra

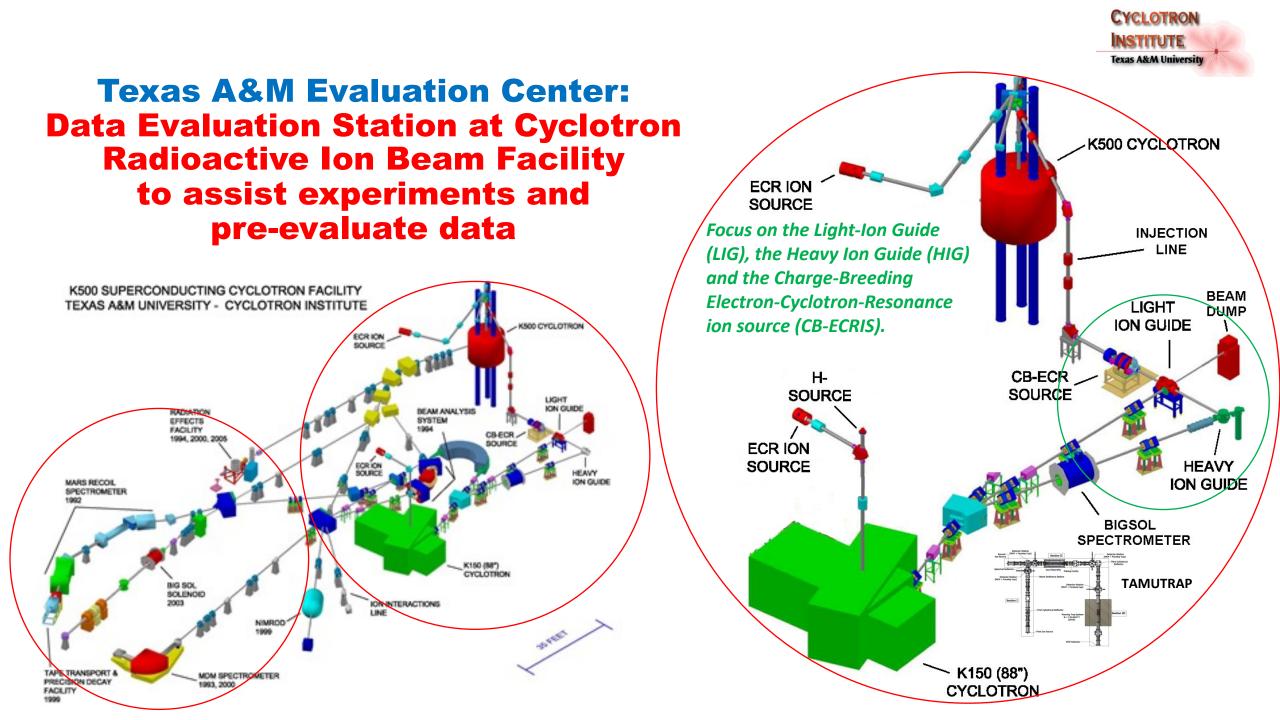
• Coincidence summing correction

Texas A&M Evaluation Center Precision Internal Conversion Coefficients Measurements for the US Nuclear Data Program

Texas A&M Center implied decisively by decade-long program of Internal Conversion Coefficient (ICC) Precision Measurements to guide USNDP for best approach of theoretical ENSDF database ICC values

					Calculated α_{κ} values:		
	Parent		Transition	Measured	No	"Frozen	SCF
	State	Multipolarity	Energy (keV)	<u>a</u> ^K	vacancy	Orbitals"	
1	^{93m} Nb	M4	30.760(5)	25600(900)	23960	25990	25440
2	^{103m} Rh	E3	39.752(6)	141.1(23)	131.3	139.4	137.2
3	^{111m} Cd	E3	150.825(15)	1.449(18)	1.425	1.451	1.446
4	^{119m} Sn	M4	65.660(10)	1621(25)	1544	1618	1603
5	^{125m} Te	M4	109.276(15)	185.0(40)	179.5	185.2	184.2
6	^{127m} Te	M4	88.23(7)	484(6)	468.6	486.4	483.1
7	^{134m} Cs	E3	127.502(3)	2.742(15)	2.677	2.741	2.73
8	^{137m} Ba	M4	661.659(3)	0.0915(5)	0.09068	0.0915	0.091
9	^{193m} lr	M4	80.22(2)	103.0(8)	92.0	103.3	99.7
10	^{197m} Pt	M4	346.5(2)	4.23(7)	4.191	4.276	4.265
				χ²:	252	1.5	21.5

Texas A&M Evaluation Center Precision Internal Conversion Coefficients Measurements Follow-up


- Covered the interval 93<A<197 of nuclear chart and concluded that the "frozen orbitals" hole calculations are best describing the results.
- The calculation methodology is an approximate description of reality with no obvious reason, other than the empirical evidence, that it is universally valid.
- Used HPGe and Si(Li) detectors that were painstakingly calibrated for detection efficiency and are now fit to explore for ICC measurements in the underrepresented regions A>200 and A<100.

- Conclusions:

✓ Solved the ICC problem for the US Nuclear Data Program

It is still possible to improve the ICC test by extending the A range

- Possible candidates: ^{58m}Co, ^{198m}Au

Texas A&M NSDD Evaluation Center Strategic Priorities for NDAC LRP 2022

- Continuing ENSDF Mass Chain Evaluation
 - First Strategic Priority according to the Mission Statement.
 - All other priorities will be strictly subordinated to this purpose
- Produce experimental nuclear data to aid data evaluation
 - Precision Internal Conversion Coefficients Measurements at Cyclotron Institute, Texas A&M University to give USDNP the best approach for ENSDF ICC-calculated values (concluding cases pending on conditions)
 - **Precision** $\beta \gamma$ **Spectroscopy for** T_{1/2} **and BR for Standard Model**
- Experimental studies of Medical Isotopes
 - Invers kinematics methodology, Cyclotron Institute, Texas A&M University
- Reevaluation of data procedures for basic science and data evaluation Level scheme re-concept based on Repeatability, a newly revealed experimental data evidence