Emulators for nuclear physics
 Xilin Zhang (FRIB/MSU)

D. Frame, et.al., (2018)

Emulators

S. König, et.al., (2020)

- Fast interpolation and extrapolation of model predictions in its multi-dimensional parameters space
- Accuracy under control: from sub-percent to 10^{-12}

- Data-driven emulators (Gaussian process, artificial neural networks): physics blind
- Model-driven emulators (from the field of model order reduction): physics informed; eigenvector continuation/reduced basis method
- So far as we know, model-driven emulators have better accuracy and extrapolation capabilities
- Ongoing synergies between the two emulation strategies
- Efficient exploration of parameter space: sensitivity analysis, uncertainty quantification (UQ, calibrating chiral interactions, error propagations for large calculations), experimental design...
- Enabling difficult calculations by taking advantage of strong extrapolation capabilities (sign problem, continuum state calculations based on finite basis...)
- Better research workflow: efficiency (very easy to share emulators), closer and new connections between different studies \rightarrow novel studies; new paradigm for open-access science

For nuclear coupled-cluster structure calculations: "about 1 Million sample in 16dim space, 20 years calculation $\rightarrow 1$ hour on a standard laptop."
A. Ekström and G. Hagen (2019)

Xilin Zhang and R.J. Furnstahl (2022)

Model-driven emulator developments

- The emulators are intrusive: the development requires physics knowledge
- Developed ones:
- nuclear ground state and low-lying states, transitions
- two-body realistic scatterings
- simple three-body scattering
- Many more to be developed in the next decade:
- realistic three-body continuum states
- higher-body systems and nuclear matter
- Emulators for traditional reaction modelings (e.g., CDCC and R-matrix fit)
- response functions
- for other problems with large eqn systems
- emulation UQs
- Unforeseen ones
- Their applications in nuclear and hadronic physics
- Their implementations in UQs
- Better research workflow
- Collaborations between emulator developers and high-fidelity calculation groups
- Synergy between data-driven and model-driven emulations

An (incomplete) list of works

-Discrete spectrum:
-Dillon Frame et. al., Phys.Rev.Lett. 121 (2018) 3, 032501 [1711.07090]

- S. König et. al. , Phys.Lett.B 810 (2020) 135814 [1909.08446]
- Andreas Ekström and Gaute Hagen, Phys.Rev.Lett. 123 (2019) 25, 252501 [1910.02922]
- P. Demol et.al., Phys.Rev.C 101 (2020) 4, 041302 [1911.12578]
- Avik Sarkar and Dean Lee, Phys.Rev.Lett. 126 (2021) 3, 032501 [2004.07651]
- Sota Yoshida and Noritaka Shimizu, PTEP 2022 (2022) 5, 053D02 [2105.08256]
- Margarida Companys Franzke et. al., Phys.Lett.B 830 (2022) 137101 [2108.02824]
-T. Djärv et.al., Phys.Rev.C 105 (2022) 1, 014005 [2108.13313]
- Pablo Giuliani et. al., [2209.13039]
- Nuwan Yapa and S. König, Phys.Rev.C 106 (2022) 1, 014309 [2201.08313]
- Amy L. Anderson et. al., Phys.Rev.C 106 (2022) 3, L031302 [2206.14889]
- Introduction of model order reduction methods (many good references there):
\bullet-J.A. Melendez et. al., J.Phys.G 49 (2022) 10, 102001 [2203.05528]
- Edgard Bonilla et. al., [2203.05284]
- Continuum states:
- R.J. Furnstahl et. al., Phys.Lett.B 809 (2020) 135719 [2007.03635]
- Dong Bai and Zhongzhou Ren, Phys.Rev.C 103 (2021) 1, 014612 [2101.06336]
- J.A. Melendez et.al., Phys.Lett.B 821 (2021) 136608 [2106.15608]
- C. Drischler et.al., Phys.Lett.B 823 (2021) 136777 [2108.08269]
- Xilin Zhang and R.J. Furnstahl, Phys.Rev.C 105 (2022) 6, 064004 [2110.04269]
- Dong Bai, Phys.Rev.C 106 (2022) 2, 024611

