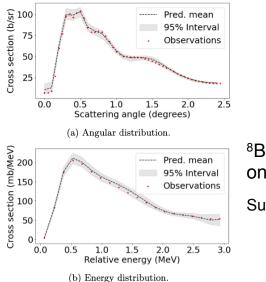


theory needs for rare isotope science

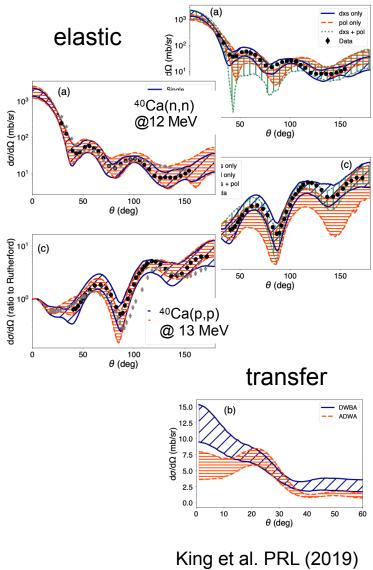
Topic	Theory development needed
T1: Forces	Effective field theory (EFT) constants from LQCD; Improved chiral forces, with and
	without Δs plus UQ; Consistent operators and power counting
T2: Nuclear	Connect realistic nuclear forces to shell model and DFT; Microscopic optical potential
structure	that incorporates many-body correlations; Proper treatment of collective, cluster and
	continuum degrees of freedom
	Masses and beta-decay rates
T3: Medium-	Properties of nuclei with validated ab-initio techniques; Shell-model effective interac-
mass nuclei	tions and operators derived and/or constrained from microscopic interactions, with
	controlled uncertainties; Unified treatment of structure and reactions.
T4: Heavy nu-	DFT constrained by rare isotope data and ab-initio theory; Beyond-DFT treatment of
clei	open shell systems; calculations of Schiff and anapole moments.
	Improved DFT-based adiabatic models of the large-amplitude collective motion; Im-
	plementation of TDDFT and multi-reference DFT approaches; Effective field theory
	for collective nuclear phenomena based on powerful existing phenomenology.
	Implementation of proton-neutron, symmetry-projected multi-reference DFT and
	large-scale shell model to compute nuclear matrix elements for double-beta decay.
T5: Neutron	Controlled calculations of the nuclear equation of state for all relevant densities includ-
stars	ing extrapolations to high densities with known uncertainties; Improve constraints on
	nuclear EOS by identifying observables most sensitive to the high-density behavior of
	the nuclear symmetry energy; Calculate structure in the neutron star crust at various
	densities (ground state and response functions).

Table from FRIB-TA proposal – last updated Sep 2021


theory needs for rare isotope science

T6: Reactions	Ab-initio reaction theory, consistent with nuclear structure, with quantified uncertain-
	ties, adequate for many domains of experimental interest, including radiative capture,
	transfer, breakup of dripline nuclei, knockout, alpha-induced reactions in intermediate-
	mass nuclei, and superheavy synthesis to estimate production of nuclei at and beyond
	the dripline and to extract structural information.
	Nuclear reactions study at the limits of stability to extract crucial isovector indica-
	tors such as neutron skins; Reaction theory with quantified uncertainties for charge-
	exchange.
	Reaction observables to isolate the role of pairing correlations and characterize the
	pairing interaction.
	Microscopic theory of spontaneous and neutron-induced fission; Ab-initio theory for
	light-ion fusion.
	Reaction theory for compound nucleus formation consistent with structure.
	Consistent reaction theory for single-nucleon transfer and radiative capture reactions
	on medium mass and heavy nuclei;
	Reliable transport theory with quantified errors, including a quantum formulation with
	correlations, for heavy-ion reactions from low to intermediate energies.
T7: Astro-	Advanced simulations of compact objects; supernova, binary neutron star mergers and
physics	related explosive phenomena; Nucleosynthesis and chemical evolution simulations with
	up-to-date nuclear input; Neutrino interactions with nuclei in hot and dense nuclear
	matter, including neutrino oscillations; Hydrodynamics and neutrino transport in stars;
	Screening in stellar plasma consistent with reaction theory.

Table from FRIB-TA proposal – last updated Sep 2021


Bayesian analysis as a tool for nuclear reactions

- Use for calibration of the effective interactions in the model
- Propagation to all desired observables
- Exploration of parameter sensitivities
- Versatile approach to experimental design
- Quantitative method for model comparison
- Quantitative method for model mixing
- Emulators for complex reactions

⁸B breakup on ²⁰⁸Pb

Surer et al., PRC 106, 024607 (2022)

King et al. PRL (2019) Lovell et al., JPG (2020) Catacora-Rios et al. PRC 100, 064615 (2019) PRC 104, 064611 (2021)

DNP Fall meeting 2015 – LRP presentation We expect much progress in the next decade!

From theory we will have:

- Microscopic reaction theories applicable to heavy nuclei and rooted in QCD with predictive power for transfer, breakup and fusion.
- A spectroscopic-quality nuclear energy density functional rooted in QCD
- Few percent uncertainties in the prediction of the symmetry energy for the equation of state of nuclear matter, including its isospin and density dependence.
- Few percent uncertainties in the prediction of nuclear matrix elements relevant for the neutrinoless double better decay tonne scale experiment.
- Plus all the surprises along the way...