

Connecting R-matrix phenomenology to *ab initio* **approaches**

NSAC Long Range Plan Town Hall Meeting Nuclear Structure, Reactions & Astrophysics

M. Paris, G. Hale, A. Lovell (T-2/LANL), V. Sobes (UT)

2022-11-15

LA-UR-22-31951

Motivation

Evaluated nuclear data & resonance parametrization

Smooth (differentiable) representation of scattering/reaction data is important for a variety of applications

- -Nuclear astrophysics & cosmology
- -Neutrinos and fundamental symmetries
- -Energy
- -Nuclear criticality & safety
- -Nuclear security

Resonance parameters are compact, concise representation of the data that are calculable

- Phenomenologically
- -Ab initio

Resonance parameters

- What do they parametrize?
 - Analytic features of the *T* matrixPoles [& branch points]
- Model independent representations of reaction/scattering data
- **Resolvent formalism** unifies various parametrizations
 - -S or T matrix poles
 - -Brune alternative

- . .

- -<u>NB</u>: Breit-Wigner parameters are not on the list
 - •unconstrained by unitarity, causality, etc.

Ducru, Sobes et al.

R-matrix method Phenomenology

- Model-independent representation of the data
- Comprehensive & unified approach
 - respects multichannel two-body unitarity & causality
 - all data
 - total cross section, reactions, angular distributions, unpolarized and polarization information
- Compact
 - # parameters linear with channel space dimension
- Meromorphic
 - branch points *factorize*

Uncertainty quantification

$$\chi^{2}_{\text{EDA}}(\mathbf{p}) = \sum_{M, i_{M}} \left[\frac{n_{i_{M}} X_{i_{M}}(\mathbf{p}) - R_{i_{M}}}{\delta R_{i_{M}}} \right]^{2} + \left[\frac{n_{M} S_{M} - 1}{\delta S_{M} / S_{M}} \right]^{2} \begin{bmatrix} M : \text{experimental setup} \\ i : \text{observable} \\ R_{i_{M}}, \delta R_{i_{M}} : \text{relative measurement, uncert} \\ X_{i_{M}} : \text{calc'd observable} \\ n_{M} : \text{normalization} \end{bmatrix}$$

Nuclear data evaluation workflow *R-matrix example*

- Four phases of Evaluation
 - Assess single experiment observables
 - Compile all process (total, elastic, inelastic, reaction, polarization)
 - Model / parametrization fitting
 - Production of Reaction Data and Structure & Decay Data

R-matrix method Ab initio

- Two approaches
 - Solve many-body Schrodinger subject to Hermitian BC at finite radius
 - Or solve for generalized Green function

$$\left[H + \hat{\mathscr{L}}\right] |\lambda\rangle = E_{\lambda} |\lambda\rangle,$$

$$\begin{split} |F\rangle &= |f\rangle + A|a\rangle & (H-E) \Psi(r) = f(r) \\ |\Psi\rangle &= \left(H + \mathscr{L}_a^{(0)} - E\right)^{-1} |F\rangle & \iff \left(\frac{d}{dr} - ik\right) (r\Psi(r))\Big|_{r=a} = A \\ \mathscr{L}_a^{(0)} &= \frac{i\hbar}{2\mu} |a\rangle \langle a|\hat{p}_r & \Psi(r) = \int dr' r'^2 G(r,r') F(r') \end{split}$$

• Compare resonance parameters from *ab initio* approaches against the phenomenology

$$S = e^{-2ika} \left[1 + \frac{ika^2}{m} \langle a | \left(H + \mathscr{L}_a(k) - E \right)^{-1} | a \rangle \right]$$

$$R_{cc'} = \sum_{\lambda} \frac{\gamma_{\lambda,c} \gamma_{\lambda,c'}}{E - E_{\lambda}}$$

Thanks in advance for your questions & support