WORKING GROUP ON FACILITIES, UPGRADES, INSTRUMENTS - 2022 TOWN MEETING

ATLAS PLANS FOR ACCELERATOR AND EQUIPMENT

GUY SAVARD Director of ATLAS

NERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

11/15/2022 **Argonne National Laboratory**

MAIN INITIATIVES BEING FOLLOWED TO ADDRESS THESE SCIENTIFIC OPPORTUNITIES

- Take advantage of the significant new capabilities in last few years: AGFA, RAISOR, EBIS and the low-background experimental area for CARIBU
- Move forward with the development and implementation of the ATLAS multi-user upgrade to allow ATLAS to address the large oversubscription of the facility by providing more research hours to its user community
- Expand the range and intensity of unstable neutron-rich beams available from ATLAS with the CARIBU upgrade by implementing the nuCARIBU upgrade
- Provide first access to the north-east region of the chart of nuclei near ²⁰⁸Pb through the completion of the N=126 factory
- Extend the energy range of ATLAS for high-intensity stable beams, primarily for in-flight production of exotic beams with RAISOR and the N=126 factory
- Maintain an infrastructure capable of sustaining and improving the ATLAS experimental equipment and developing or adapting other detectors designed by the community for use at ATLAS.

ATLAS UPGRADE OVERVIEW

Recently completed / ongoing / planned Mass Analyzer

The HELIOS program

The first of kind, continuous evolution of capabilities

- The "(d,p) machine" (mass 8-238), a broad class of reactions [(d,p), (d,t), (d,³He), (d,α), (d,d'), (p,p'), (⁶Li,d), (a,p), (t,p), etc.), isomeric beams (²⁶Al, ¹⁸F, ¹⁶N,...)
- **Expanding** suite of auxiliary detectors, Apollo, LSU fast-counting ionization chamber, gas-cell targets, AT-TPC, SOLSTISE, fission-fragment detectors, etc.
- Future: RAISOR beams (inc. isomer beams), nuCARIBU beams, large demand for stable beams, actinides, AT-TPC campaigns

BETA DECAY FACTORY IN AREA 1

Gammasphere Decay Station Saturn/X-Array Upgrades

- $\beta \gamma$ coincidences for proper feeding
- $\gamma \gamma$, $\gamma \gamma \gamma$ for level structure

ay with Gammasphere

nne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

- LaBr₃ to measure lifetimes -2
- uetectors for by an RF buncher, will add unma-ray are 1 fed by an RF buncher, will add unasphere electronent stations now, including 1 fees needed for Gammasphere (@ 4, 8 a <u>A instrument stations</u> with 1 with all services needed for <u>Gammasphere</u> (@ 4, 8 a <u>A instrument stations</u> with 1 with all services needed for <u>Gammasphere</u> (""") The stations, with 1 with all services needed for Gammasphere and the stations of the stations

Beta Decay Factory

- Gammasphere upgrade project allows to Area 1.

stimate 2 ease in

Here gives multi-fold incidences, total gamma-ray energy, angular correlations, for spin, parity,

- X-Array lifetimes (LaBr₃), low-energy gamma detections (BEGe), conversion electron measurement (LACES).
- · Campaign of six months to measure 30-50 parent decays - FY23-24

AGFA PUSH FOR WEAKER CROSS-SECTION EVENTS

FEATURES:

- Gas-filled differential pumping no entrance foil
- Compact design two magnets, length 3.7- 4.3 m
- Quad: vertical focusing
- Dipole: 38° bend and horizontal focusing
- Gammasphere at target position solid angle 22.5 msr
- Small focal plane one DSSD implantation detector
- Bρ-max: 2.5 Tm

- Operating for over 5 years
- Very successful program but for the next step in very heavy systems need improvements:
 - Higher beam intensity
 - Electric beam scanner
 - Actinide targets
 - Full refurbishing of Gammasphere

HIGH INTENSITY ECR ECR4 to ECR2+

- Higher currents needed to support N=126 and super heavy element programs
- We were collaborating with University of Jyvaskyla to adapt their 18 GHz ECR technology (HIISI), but details could not be worked out
- Now ATLAS Ion Source Group will look at upgrading the current ECR2
 - Increased hexapole fields
 - Higher frequency operation
 - Improved iron shaping
 - Upgraded material introduction mechanisms

Species	14 GHz 0.94 T	14 GHz 1.11 T	18 GHz 1.11 T
16 0 6+	563 еµА	703	1163
¹⁶ O ⁷⁺	265	331	548
⁴⁰ Ca ¹¹⁺	70	87	145
⁴⁰ Ca ¹²⁺	40	50	83
⁵⁰ Ti ¹¹⁺	9	11	19
⁵⁰ Ti ¹²⁺	18	22	37
¹³⁶ Xe ²⁵⁺	35	44	72
¹³⁶ Xe ²⁶⁺	30	37	62
	Current ECR2		

ATLAS 109 MHZ AIP

Upgrades to position ATLAS for delivery of beams for N=126 factory

- Energy gain and good transmission \rightarrow high intensity beams for N=126
- Complete: Baking, cleaning, and

• **Complete** hardware:

- Cryomodule installed in tunnel and cooled to operating temperature

NEUTRON GENERATOR UPGRADE TO CARIBU

- Replace ²⁵²Cf source by neutron-induced fission on actinide foils
 - More reliable source of fission products
 - Operationally easier to maintain and operate
 - Gain an order of magnitude in overall fission rate ... i.e. ~ 10⁹ fission/sec vs current few 10⁷ fission/sec
 - Higher fission yield feeding in the ¹³²Sn region or above ⁷⁸Ni region

NUCARIBU PROGRESS

Neutron generator

- Cyclotron passed factory acceptance test
- Has been delivered to • Argonne on Jan 31 2022

- design completed
- Solicitation period for triplet and magnetic chicane closed on Feb 14 2022
- Scheduled Nov 2022 • delivery

- Concept developed for high power heat removal
- Prototype built and being tested

NEXT BIG STEP AT ATLAS: MULTI-USER UPGRADE

AMUU goal: overcome the ~7000 hrs/yr limit by providing reliable simultaneous multiuser capability

- EBIS beams represents 1-3% duty factor
- Combine pulsed EBIS beam with stable ECR beam
 - Address high demand on facility
 - Enable long duration experiments
 - Maximize efficient accelerator usage

NEED FOR AMUU: NEW OR CONTINUING STABLE BEAM PROGRAMS WITH VERY HIGH BEAMTIME REQUIREMENTS

- Spectroscopy of the heaviest isotopes
 - Recoil and gamma efficiencies are now optimized, beam intensity limited by rate in germanium detectors ... the main knob left is running longer
- Production of new neutronrich isotopes of the heaviest elements
 - Small cross-sections and large running time

- Detailed single-particle spectroscopy in the medium mass region
 - Limited intensities

PROJECT SCOPE

- Mixing modification of PII LEBT
 - Dipole magnets
 - Pulsed Electrostatic deflector
 - Sextapoles
 - Triplets
 - Vacuum equipment
 - Chambers
 - Diagnostics
 - Controls
 - Utilities

Argonne

PROJECT SCOPE

- Separation
 - Reconfiguration of Booster exit region
 - Kicker
 - Septum
 - Chicane
 - Compact triplet
 - Vacuum equipment
 - Chambers
 - Controls
 - Utilities

KICKER FIELD STABILITY & REPRODUCIBILITY

Field stabi Tand repeatability are important in the flat-top and between pulses

- The 10⁻⁴ stability level comes from ~ 1 mm beam jitter on target in Area II
- The < 5 G residual field is required to have minimal effect on un-deflected beam</p>

KEY COMPONENT: N=126 FACTORY ... MULTI-NUCLEON TRANSFER VERSUS FRAGMENTATION FOR NEUTRON-RICH HEAVY ISOTOPES

TL

Yb

Er пг Dy

Gd

Sm

Nd

The N=126 factory

- Compact design: using all three dimensions to make it fit into the room
- 1 or 2 experiments can fit in the room ... CPT will take beam first
- Background will be high ... not a problem for CPT but will be for decay spectroscopy ... a connected low-background area would help for many applications

REACH OF THE N=126 FACTORY ... FOR N-RICH NUCLEI

- Red line is limit of known masses
- Reaction ¹³⁶Xe + target ... with 10 mg/cm² target and > 1% abundance isotopes
- For very heavy, limit target thickness to 50 mCi activity

Courtesy of Biying Liu

STATUS

- ATLAS is constantly evolving to better fulfill the needs of its users.
- Needs are:
 - More intense stable, CARIBU and RAISOR beams
 - More beamtime
 - Higher sensitivity and rate capability for the instruments
 - Access to new regions
- Currently being addressed by:
 - New ECR source, 109 MHz cryostat upgrade, nuCARIBU, and better targets
 - ATLAS Multi-User Upgrade
 - Gammasphere upgrade, AT-TPC at HELIOS, MUSIC2, PI-ICR at CPT, ...
 - N=126 facility
- Need sustained R&D to keep ATLAS, and facilities in our field in general, at the forefront

SUPPLEMENTARY MATERIAL

ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

CHANGES IN FISSION DISTRIBUTION

