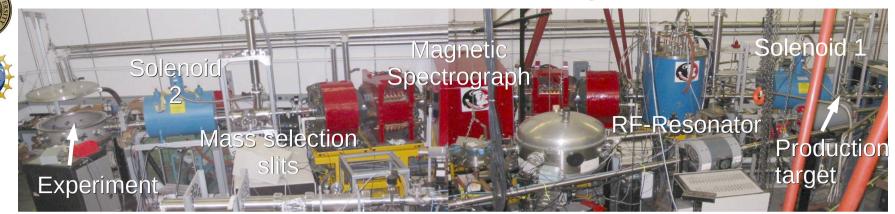

9 MV Tandem + 8 MV Linac

Beam Energy profile



- In-flight Radioactive beams with RESOLUT
- Still kinda new: Super-Enge Split Pole Spectrograph
- New: Clarion-2

Tandem: Pelletron-charged 9 MV FN-tandem Linac: 14 Superconducting cavities Niobium on Cu, Split-Ring (Atlas-design)

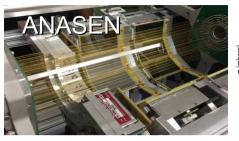
RESOLUT: a radioactive beam facility at FSU

In-flight production of radioactive beams in inverse kinematics,

⁷Li(d,³He) ⁶He 18-29 MeV ~1·10⁴ pps (40% pure) ~2· 10⁵ pps ⁷Li(p,n) ⁷Be 25-35 MeV (80% pure) ~5 · 10⁴ pps (90% pure) ⁷Li(d,p)⁸Li 20-30 MeV ⁷Li(³He,n)⁸B 30-45 MeV ~1 · 10⁴ pps (10% pure) ⁷Li(³He,n)¹⁰N 27-55 MeV $\sim 1 \cdot 10^{3}$ pps (10% pure) ¹⁸O(d,n)¹⁷F ~2 · 10⁵ pps (80% pure) 80 MeV ¹⁸O(d,p)¹⁹O ~5 · 10⁴ pps (90% pure) 95 MeV ¹⁸O(³He,n)¹⁸Ne ~2· 10⁴ pps (25% pure) 70 MeV $^{24}Mg(d,n)^{25}AI$ 98 MeV ~2· 10⁴ pps (35% pure)

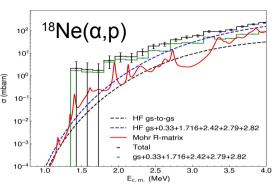
Beams can be "purified" off-line by tracking / rf-correlations

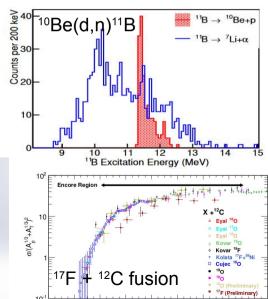
Radioactive-Beam Programs at FSU


RESOLUT in-flight facility and specialized detector systems: a) ANASEN active-target detector

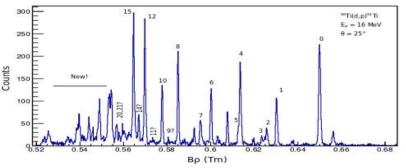
- ¹⁸Ne(α,p)²¹Na: Break-out from hot CNO cycles in X-ray bursts
M. Anastasiou et al.: PRC 105, 055806 (2022)
- ⁷Be(d,α): BigBang nucleosynthesis, primordial Lithium problem
N. Rijal et al.: PRL 122, 182701 (2019)

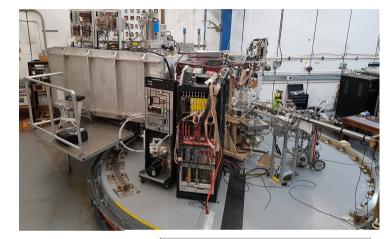
b) ResoNeut resonance spectr.


- ¹⁰Be(d,n)¹¹B for β-delayed
 proton decay of ¹¹Be
 E. Lopez-Saveedra et al.: PRL 129, 012502 (2022)
 - ¹⁷F(d,n)¹⁸Ne for Nuclear Astrophysics
 J. Belarge et al.: PRL 117, 182701 (2016)

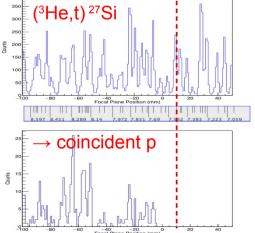

c) Encore active-target detector Fusion cross sections of ¹⁷F+¹²C B. Asher et al.: PRC 103, 044615 (2019)

ENCORE





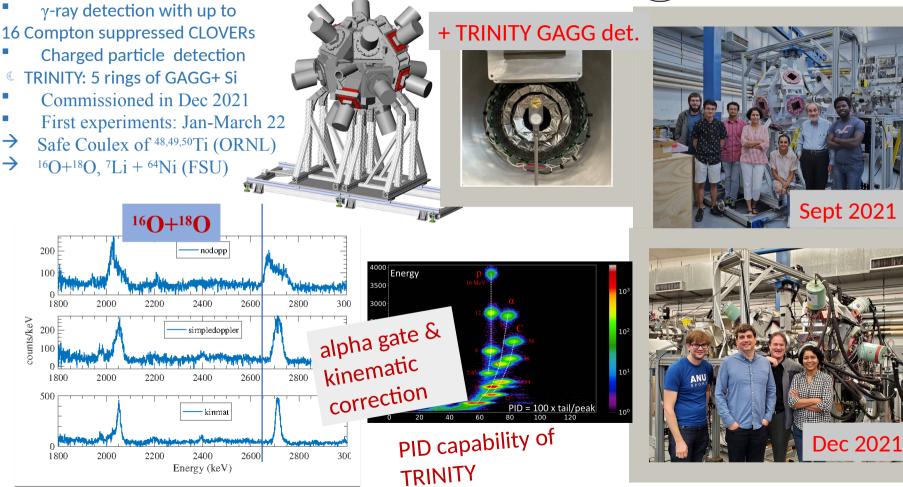
 $E_{c.m.}(A_{p}^{1/3}+A_{T}^{1/3})/(Z_{T}Z_{p})$


High-Resolution Magnetic Spectrograph at FSU

a) Studies of Shell Evolution e.g. ⁵⁰Ti(d,p)⁵¹Ti, "beyond N=28" orbitals *L. Riley at al: PRC 103, 064309 (2021)*

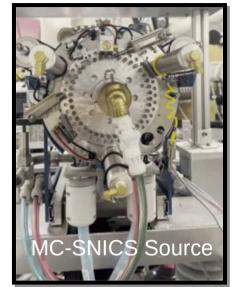
b) Resonance spectroscopy for nuclear Astrophysics e.g. ${}^{10}B({}^{3}He,\alpha){}^{9}B$ to study resonance spectrum / BBN e.g. ${}^{27}Al({}^{3}He,t){}^{27}Si(p) \rightarrow {}^{26}Al_{g,m}$ for ${}^{26}Al(p,g)$ destruction (LSU) c) (Developing) Gamma-ray strength function through transfer-reaction studies d) (Developing) Spectroscopy with tritium-beam (t,p) reactions

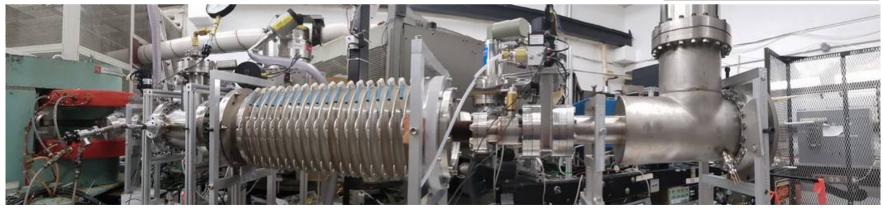
CLARION2@FSU


TownMeeting

LE

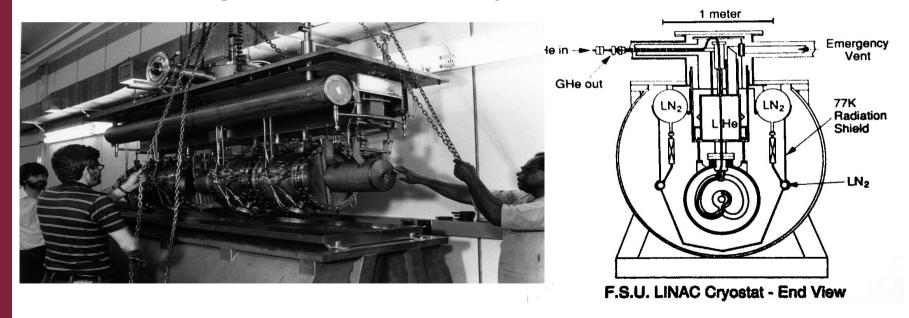
NSAC





The Triton-Beam Project at FSU

Centaur-project, collaboration b.w. FSU, UTK, ORNL Built dedicated negative-ion injector for Tandem Planned:Tritium inventory in solid state Titanium Design-Goal: 5000 hours of 20 nA triton-beam Energy range: 4 -17 MeV, up to 24 MeV with Linac



New, dedicated negative-ion injector at FSU Tandem-Linac

History: ~1983-1986 FSU Linac Development 1985-1989, in <u>close collaboration</u> with ANL / ATLAS. Purchase ATLAS-style resonators / copy control electronics FSU: Design and build own cryostats

FSU Linac upgrade project

The current FSU linac has 12 accelerating resonators with β =0.1 natural vel. The original design already anticipated an upgrade to 20 resonators, including 4 with β =0.07 and 16 with β =0.1 Plan A: We already acquired the missing resonators and electronics from Kansas State and Resonators from ANL => Need to build cryostats

The upgraded linac will easily support RESOLUT operations up to mass 40

MeV/u	Energy Tandem	Current Linac	Complete Upgrade
¹⁶ O	3.9	8.0	9.9
²⁴ Mg after prod. target	2.9	6.6 5.7	8.6 7.8
³² S after prod. target	2.5	5.8 4.6	7.9 6.9
⁴⁰ Ca after prod. target	2.2	4.7	6.8 5.6

What is needed ?

- Purchase Linde 400 W Helium refrigerator (ask FSU \$)
- Plan A: Construction of two Cryostats for existing ATLAS-style split-ring resonators 2.5 MV/m (ask NSF-MRI)

OR:

 Plan B: Would <u>rather</u> construct cryostat with modern, quarter-wave cavities, which reach ~7.5 MV/m acceleration for a much more compact LINAC. Is it possible ? Only in collaboration with a National Lab

Summary:

The FSU lab is an active, "fun" science place, with a great set of instruments and great groups & collaborators

- The Tandem-Linac is doing well, but stretched to its limits by the science program, especially for RIB.
- The Linac would be relatively easy to upgrade with existing (old) technlogy
- It would be much more foreward-thinking to perform an upgrade with up-to-date Linac technology.

Is a collaboration on this project with National Labs possible today, like it was in 1986 ?