Center for Experimental Nuclear Physics and Astrophysics (CENPA) University of Washington

Van de Graaff at UW - CENPA

A. GarciaUniversity of WashingtonCenter for Nuclear Physics and Astrophysics

FN Tandem Van de Graaff

- Eric Smith, resrch engineer
- Brittney Dodson, resrch engineer

Engineers work on Tandem on as-needed basis.

- Recent research:
 ⁶He + ¹⁹Ne production for 6He-CRES
 ²¹Ne(p,γ) with South Africa group
- Detector studies: ⁴⁰Ar(⁷Li,αp)⁴²Ar for LEGEND and protons for PIONEER
- Accelerator operator training for students

• Physics 575 graduate-level course

Physics 575 Fall 2017 Nuclear physics: purces, detectors, and safety

Accelerator/Ion Source Capabilities

• High current:

- 60 µA protons (100 1000 keV)
- $-25 \,\mu A^{3}He (100 7000 \,keV)$
- $-20 \mu A^{4}He (100 7000 keV)$
- High current at high voltage:
 - 15 µA of deuterium at 18 MeV (into Li target)
 - Allows high-intensity ⁶He production (> 10¹⁰/s)
 - Can deliver **pulsed ion beams** of 30 ns to 250 ns width at maximum rate of 4 MHz
- Implantation of positive and negative beams for special targets
 - ³He, ⁴He ²³Na ²⁸Si ³⁶Ar
 - ²⁰Ne, ²¹Ne ²⁴Mg ³²S ¹¹³In

Research with the accelerator: ⁶He source for 6He-CRES

10¹⁰ ⁶He/s to clean lab.

Knecht et al. NIM A 660, 43 (2011)

Compare intensities for "precision beta decay studies" to neutron sources

UCN: 10^3 UCN/cc $\rightarrow \approx 1$ (decay/s)/cc CN: 10^{10} CN/s cm2 \rightarrow 2 × 10^{5} CN/cc \approx 200 (decay/s)/cc ⁶He: $\approx 2 \times 10^6$ (decay/s)/cc

Relevant for using CRES technique in an RF guide.

Research with the accelerator: ¹⁹Ne source for 6He-CRES

SF₆ target \rightarrow ¹⁹F(*p*,*n*)¹⁹Ne Similar to Princeton/LBL source developed by Commins/Calaprice

Undergrad Noah Hoppis at SF₆ target

¹⁹Ne production at CENPA now stable and sufficient for 6He-CRES needs.

 \sim 5 \times 10⁹ ¹⁹Ne/s to clean lab.

Research with the accelerator: ${}^{21}Ne(p,\gamma)$

Led by Triambak et al. from South Africa – TRIUMF/Gluelph.

Data under analysis by PhD student Bhivek Singh (South Africa)

Angular distrib. of gammas: Borrowed detectors from Gammasphere & TRIUMF

Research with accelerator: recent publications

Charge-state distribution of Li ions from the decay of laser-trapped ⁶He atoms R. Hong et al. Phys. Rev. A **96**, 053411 (2017)

Isospin mixing and the cubic isobaric multiplet mass equation in the lowest T = 2, A = 32 quintet Editors' Suggestion Letter Kamil et al. (Triambak et al., South Africa + TRIUMF/Guelph group) Phys. Rev. C **104**, L061303 (2021)

β-nuclear-recoil correlation from ⁶He decay in a laser trap P. Müller et al. Phys. Rev. Lett. **129**, 182502 (2022)

First observation of cyclotron radiation from MeV-scale e^{\pm} following nuclear beta decay W. Byron et al. https://arxiv.org/abs/2209.02870 Submitted to Phys. Rev. Lett.

PHYSICAL REVIEW LETTERS 129, 182502 (2022)

β -Nuclear-Recoil Correlation from ⁶He Decay in a Laser Trap

P. Müller¹, Y. Bagdasarova,² R. Hong¹,² A. Leredde,¹ K. G. Bailey,¹ X. Fléchard,³ A. García¹,²
B. Graner,² A. Knecht¹,^{2,4} O. Naviliat-Cuncic¹,^{3,5} T. P. O'Connor,¹ M. G. Sternberg¹,² D. W. Storm,² H. E. Swanson¹,² F. Wauters¹,^{2,6} and D. W. Zumwalt²

Beam use

Year (March to March)	Tandem running days
2019	80
2020	14
2021	20
2022	25 ^a

^a ends 03/30/2023

Accelerator runs when needed. Examples:

- 2019: 70 days of continuous running (with ~1 day of interruption every week) for $^{21}Ne(p,\gamma)$.
- 2022: 1 week ⁶He production 1 week ¹⁹Ne production

A class on nuclear physics using the accelerator

A class on nuclear physics using the accelerator

Audience/Grade Level: medical or bioscience systems technicians or engineers, medical paraprofessionals.

Students get practical training in experimental physics and learn about nuclear science.

Lab experience: students tune beam through the accelerator, learn highvacuum techniques, electronics, accelerator physics.

A class on nuclear physics using the accelerator

Recent students, eventual positions

Diana Thompson, MS, CHP, RRPT Present position: Health Physicist/Licensing Consultant Sulas Radiation Safety Consultants, LLC Chicago, IL

Atnativos Zeleke, RHP/MDE Present position: Health Physicist, Maryland Regulatory Body

He6-CRES – Major Equipment

Ensure accelerator system operation protecting against major debilitating failure: Complete CSX & satellites (HE, LE, DECK, Radiation) computer controls upgrade to replace VAX, 286/DOS, 8186, and Q-BUS :

- current PC's, touchscreens, knob box encoders
- LabVIEW programming
- new DAQ devices
- new wire scanners signal display and capture capabilities

He6-CRES – Major Equipment

• Ion trap (Texas A&M)

Needed for Phase-III of He6-CRES, with radioactivity trapped, so no betas reach the guide surface.

Ion-trap setup at Texas A&M (Melconian) A similar system would be installed at CENPA

Conclusion UW Van de Graaff

- Ideal tool for our needs for carrying out the local research program
- Engineers work on tandem on as-needed basis.

 Excellent hands-on training environment for undergrad and grad students

Tandem accelerator a big plus with modest expense.

