

Paul Fallon

Project Director Nuclear Science Division Lawrence Berkeley National Laboratory

1

GRETA: A premier γ -ray tracking detector for FRIB

The Facility for Rare Isotope Beams (FRIB) is a world leading accelerator facility to understand the properties of exotic nuclei and how the elements are synthesized.

GRETA will be a key instrument at FRIB capable of reconstructing the energy and three-dimensional position of γ -ray interactions.

Its design provides the performance (combination of full solid angle coverage and high efficiency, excellent energy and position resolution, and good background rejection) needed to carry out a large fraction of the nuclear science programs at FRIB.

FRIB at Michigan State University

GRETA

Measurements use Fast, Stopped, and Reaccelerated Beams

Designed (expected) to be used on multiple beam lines

Measurements use Fast, Stopped, and Reaccelerated Beams

Designed (expected) to be used on multiple beam lines

GRETA Builds on Past Success: GRETINA

Between 2003 and 2011, the US low-energy nuclear physics community constructed GRETINA, a 1π tracking detector employing the same segmented detector and signal decomposition technology as GRETA.

- GRETINA a \$20M project funded by US DOE-Nuclear Physics Office
 - LBNL led the construction (NSD: I-Y. Lee)
 - Covered ~¼ of a sphere with 7 Quad Detector Modules
- GRETINA science operations at NSCL and ANL have demonstrated the technology and scientific impact of a γ-ray tracking array
- Added Quad Detector Modules total of 13
- Flagship Instrument for Nuclear Physics

10 Quad Detector Module at NSCL

The GRETA Project

GRETA builds on the existing GRETINA array to subtend the full 4π coverage of γ -ray tracking detectors.

- 18 Quad modules, to be combined with 12 GRETINA modules for a total of 30
- <u>Full mechanical structure</u> for a 30 module, close-packed array, covering 80% of solid angle
 - Removable forward and rear detector rings
 - Rotation and translation capabilities
- Electronics to instrument all 30 Quad modules
 - Detector-mounted digitizer modules with continuous streaming of waveforms to FPGA-based signal filter boards
 - New trigger, timing and controls systems
- <u>Computing cluster to support full array</u>
 - Real-time signal decomposition up to total through-put of 480k decompositions/s
 - High-speed local network
 - Large local RAID storage

GRETA Project Phased for Early Science Operation at FRIB

CD-4A Scope

- Electronics, Computing and Mechanical systems for 30 Quad Detector Modules
- Subset of Detector Modules (6)
- Delivered to FRIB for Science Operation

CD-4 Scope

 Accept the remaining Quad Detector Modules (For a total of 18)

Technical Progress

- Mechanical Systems major procurement ongoing and being delivered
- Procured/fabricated pre-production hardware in Computing and Electronics to enable testing and software integration
- Detector Systems 12 ordered, 8 delivered and 7 accepted
 - CD-4A KPP detector scope complete`

Delivery to System Assembly and Path to CD-4A

GRETA Initial Operations (starting 2025)

- Reaccelerated beams
 - GRETA at ReA beam Line
- Fast Beams
 - GRETA frame is not designed for S3 vault (S800) and HRS is under construction
 - Plan to modify GRETINA frame to be able to have up to ~20 QUADS in front of the S800, with the new GRETA electronics and computing and cooling (to maximize HPGe coverage and science opportunities)

LRP key to initiating new Major Instruments – science based

Summary

- Well into the project fabrication phase
- All major procurements for Mechanical Systems have been awarded and most delivered
- Completed fabrication/purchase of pre-production hardware in Computing and Electronics and this is being used to for testing and software integration
- Detector Systems 12 (out of 18) ordered, 8 delivered, and 7 accepted
 - CD-4A KPP detector scope complete

Working to deliver GRETA (phase-1) early in calendar 2025 and complete everything by summer 2026

Acknowledge the GRETA project team, GRETINA project and operations team, community (GUEC) and agency's (DOE/NP) support – and I-Yang Lee