

ORRUBA/GODDESS

- Overview of ORRUBA/GODDESS
 - detectors, DAQ etc
 - Scope of physics program
 - Recoil detectors
- Upgrades/Needs
 - Coupling to GRETA (4π py spectrometer for FRIB)
 - Expansion of DAQ
 - Improved targets
 - Recoil detection

S.D. Pain

Town Hall Meeting

ANL, Nov. 2022

- Largest Si suite for RIB physics in US
- Designed around reaction kinematics
- Originally conceived as a standalone device, but increasingly coupled to other instruments
- Detector/FE compatibility (ANASEN, ND, ...)

Recoil detectors (channel selection)

- Fast ICs
- Recoil separators
 - S800
 - FMA
 - SECAR

Tilted-grid Ionization

Preamplifiers

chamber

FMA quad

Target ladder port

DAQ properties

- Conventional VME system (MVME5500)
- 768 ch Mesytec MSCF-16 (0.5 µs typical)
- 768 ch CAEN V785 (2 bridged VME backplanes)
- V775 TDCs (common start) ٠
- SIS scaler (10 MHz, TS, event-by-event scaler readout)
- **MyRIAD** ٠
- ORPHAS (broadcast to GEB, GRETINA run control)
- Real-time data analysis (sub-second) ٠
- Multiple trigger types (including PS beam samples)
- Trigger type recorded

Triggering

- Si singles (+ slave detectors; GRETINA, S800, HRS)
- Built coincidence OR+Aux (< 500ns)

Data

- < 4kB per event (every ch, typical ~50ch/evt)
- < 32 MB/s (10 kHz events, maxed out)
- < 1-10% typical

Toward GRETA...

- Based around GRETINA, *with GRETA in mind* 4π particle-gamma spectrometer for FRIB
 - New central chamber (triplet compatibility)
 - New endcaps (QQQ6 detectors)
 - New signal routing
- Recoil separator compatibility in mind
 - compact tracking detectors (fast beams)

triplet

S800 quad gate valve

S800 configuration

Thin Frozen H/D target

H/D-induced reactions on RIBs limited by plastic targets

- FE background
- Greater dE (from C) ie worse resolution/luminosity

 ${}^{30}P(d,p)^{31}P$ 0.5 mg/cm² D₂ on diamond backing 14 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 110 120 130 140 150 160 100 110 120 130 140 150 160

- Solid D₂ factor of 3 gain in luminosity/dE
- 10²⁰ D/cm² ~ 1mg

> Typical jet densities5e18 (limited gammas)

< liquid H target (1e23 + windows)

ReA12 – optimum for transfer/DR at FRIB

- Cornerstone of nuclear structure models, key indirect for astro
 - Evolution of SP structure
 E, J^π, ℓ, C²S, ...
- Best at ~CB energies
 - Resolution (kinematic compression)
 - Cross sections
 (magnitude, shape)
 - Dynamic range
- Reaccelerated preferable
 - Beam quality directly affects CoM energy resolution
- Need 10-15 MeV/A (ReA12)
 - to reach S_n, S_p, etc
 - (eg SRM (d,p), (p,d), (p,p')

An experiment is only as good as its recoil detector...

... and with recoil detector

7 3

... and with recoil detector

XNational Laboratory

Transfer expts at ReA@FRIB...

Instantaneous rates = 10 – 100 x average

- Typically isobarically mixed beams (eg decay daughters)
 need recoil detector
- Beam intensities will ultimately be substantially higher
 - Even PAC2 intensities are approaching IC limit (given EBIT time structure)
- EBIT spill structure high instantaneous rates (x10-100 average; constraints on breeding times)
- A dedicated recoil separator is needed...
- ^{34g,m}Cl(d,p) experiment approved at FRIB PAC1
 - mirror study for (p,γ) resonance strengths

🛣 OAK RIDGE

National Laboratory

develop use of SECAR as recoil separator for transfer reactions

35

 For direct-reaction program

⁴Cl(d.p)³³Cl at 4.5 MeV/A

Laboratory angle (deg)

Recoil Enegry (MeV) 130

120

All recoils

Recoils in coincidence with detected prote

- Enabling for (d,n) program
- 3-4 deg recoil (70 mrad)

Energy spread +/- 4% (+/- 2% ∆P)

Summary

- ORRUBA largest suite of Si detectors for RIB physics
- Thrives from coupling to other instruments
 - GODDESS (GS, GRETINA)

with GRETA – 4π high-res particle- γ spectrometer (mm precision) for FRIB

- Targets (JENSA, frozen H₂ under development)
- Recoil detectors/separators crucial (ICs, S800, SECAR, FMA,)
- ReA12@FRIB a step away from a world-leading highquality direct-reaction experiments
 - Direct reactions are a cornerstone tool, ideally performed at ~10 MeV/A, reaccelerated beams
 - Energy upgrade is critical to many experiments (eg reaching $S_{n,p}$)
- To fully realize the direct-reaction program at FRIB, the ReA12 upgrade and a dedicated high-acceptance recoil separator, constructed in a timely manner, are the highest priorities

Thanks

ORRUBA, GODDESS, JENSA and SECAR Collaborations

