

Nuclear Reactions for Nuclear Astro (and more) Alan B. McIntosh – Town Hall, Nov 2022

Equation Of State

0.08 NIMROD **∀**(0.075) **∀**(**Z**-**N**) **0.07 3**^{0.065} 8 (2017) 062501 PRL 108 (2022) 172701 RC 95 (2017) 044604 0.055 10¹⁰ PRC 101 (2020) 034605 0.6 0.8 10⁹ time (zs) (MeV) FAUST ^{/8}Kr+C (c) ^{.6}Kr+(Slope PRC, Submitted (2022) 2.5 1.5 2 0.02 E*/A (MeV) o. nuc/fm $Y(\pi^{-})/Y(\pi^{+})_{132+124}$ DR= $\overline{Y(\pi^{-})/Y(\pi^{+})_{108+112}}$ **STRIT** Data

Measure: Neutron-Proton Equilibration Chronometry Asymmetry Dependence of Caloric Curve Equilibrium constants of alpha coalescence Pion yield ratios

N/Z

Future:

0.03

Low Density Correlations **Equilibration Chronometry** SpiRIT@RIKEN FRIB EoS: nucleon flow EoS TPC @ FRIB: pions

Current & Future: Photon strength function **Neutron Capture** Compare **proxy rxns** & direct methods DAPPER + DANCE + Hyperion Key nucl & isotopic chains

Impacts: nucleosynth: capture & burning

Nuclear Reactions for Nuclear Astro (and more) Alan B. McIntosh – Town Hall, Nov 2022

Clustering & Correlations

50

0

100

150

E* (MeV)

250

200

60 80 100 120 140 160 180 200 220

³²S Excitation Energy (MeV)

Critical Tools

Z = 10 FAUST α - α

Z = 10 Filtered $\alpha - \alpha$

to constrain: Equation of State **Direct Reactions** Clustering & Correlations

ARUNA labs **Rare Isotope Beams** FRIB 400, HRS **TPC Community Targets Neutron Targ & RIB Ring Accurate Models** (transport, direct rxns)

FRIB 400-MeV/u Energy Upgrade is Critical for Achieving Nuclear Astrophysics Goals

- FRIB400 will significantly extend the study of neutron-rich isotopes of importance for the r-process, substantially reducing nuclear-physics uncertainties in simulations
- FRIB400 will extend study of nuclei along the neutron dripline into a region important for modeling the crust of neutron stars
- FRIB400 will allow the study of very neutron-rich nuclear matter at twice normal nuclear density, strongly constraining the Equation of State
- All types of experiments benefit, but enhanced opportunities at higher energies, e.g. quasifree reactions, inflight fission, Coulex, charge-exchange reactions

The High Rigidity Spectrometer Enhances the Luminosity for Fast-Beam Experiments with Factors of up to ~100 for the Most Neutron-Rich Systems

- Ability to perform experiments at rigidities for which isotope production is maximized (FRIB200 AND FRIB400)
- HRS Project underway Goal: CD2/3A Summer 2023

- Nuclear Astrophysics Experiments are key drivers for HRS' capabilities – next 5 years provide ample opportunity for community to define new opportunities and contribute
- The extraction of weak transition rates on unstable nuclei through charge-exchange reactions is now feasible in both the β⁺/EC and β⁻ directions through (d,²He) and (p,n) reactions in inverse kinematics

HRS Working group: <u>https://hrs.lbl.gov/</u> <u>HRS Preliminary Design Report</u>

Science: Understanding the Origin of the Elements with the FDS

Critical inputs for astrophysical modeling

- Half-lives
- Delayed neutron branches
- Strength determination (above and below S_n)
- n,γ reaction cross sections
- Required FDS detector configurations
 - Charged particle detection for ions and electrons
 - Neutrons (time-of-flight or thermal)
 - Photons
 - TAS

https://fds.ornl.gov/wp-content/uploads/2020/09/FDS-WP.pdf

M. Mumpower et al., et al., Prog. Part. and Nucl. Phys. 86, 86 (2016)

National Science Foundation Michigan State University

Improving β -decay properties using total absorption spectroscopy

Total Absorption Spectroscopy: What and Why

High efficiency γ -ray calorimeters (MTAS, SuN, HECTOR, etc.)

- Sensitive to small-feeding branches
- More accurate determination of I_{β}
- Variations in set-ups based on expected $T_{1/2}$ (tapestations, implantation detectors, etc.)

Nucleosynthesis sensitivity studies demonstrate orders of magnitude variation based on varying the β -decay rates and half-lives for short-lived nuclei.

M.R. Mumpower, et al., Prog. in Part. and Nuc. Phys., Vol. 86, Jan 2016, (86-126)

Measurement of I_{β} offers a more stringent test of global theoretical calculations.

$$\frac{1}{T_{1/2}} \propto \sum_{0 \le E_X \le Q_\beta} f(Z, Q_\beta)$$

Measured vs. predicted β -decay half-lives

Nuclear Physics A **514**, 1-48 (**1990**)

$_{\beta} - E_{\chi} B(\text{GT}, E_{\chi})$

Physics of Atomic Nuclei 83, 613-620 (**2020**)

The fan-TAS-tic future

Current and future facilities will enable the refinement of theoretical calculations

- Use of cocktail beams enables multiple nuclei to be measured in a single experiment
- Direct r-process path nuclei will be able to be measured with TAS
- Measurement campaigns can provide systematics for regions of interest

 $10^{-2} - 10^{0} \text{ s}^{-1}$ $10^{-4} - 10^{-2} \text{ s}^{-1}$ $10^{-6} - 10^{-4} \text{ s}^{-1}$

Bill Walters

Fig. XI-8B. Average masses of the light and heavy fission product groups as functions of the masses of the fissioning nucleus. [After Flynn et al. (1972b).]

Theory for indirect reaction measurements

Determining capture rates for unstable nuclei directly is hard

- Short-lived target make measurements difficult to impossible
- Statistical Hauser-Feshbach (HF) calculations lack predictive power away from stability

Surrogate reactions provide a solution

- A transfer or inelastic scattering experiment produces the compound nucleus and the decay is measured
- Advanced reaction theory turns this data into constraints for calculations of the desired neutron capture rate

Status:

- Capture cross sections have been obtained from surrogate reactions using (p,d) and (d,p) transfers and inelastic scattering.
- Cross sections for capture involving isomers have been obtained.

Theory for indirect reaction measurements: Opportunities

Opportunity: inverse-kinematics experiments - leverage surrogate reaction applications and structure studies

- Inelastic scattering can serve as surrogate mechanism and provide information on collective motion in exotic nuclei
- The (d,p) reaction can serve as surrogate mechanism and provide information on single-particle structure

Opportunity: Surrogate reactions for fission applications

- Observe fission properties in coincidence with surrogate ejectile
- Control over energy of fissioning nucleus, including sub-threshold
- Multiple surrogate reactions in one experiment

Schematic view of fission

Opportunity: β -delayed n/ γ emission

- β-decay to states above/below particle thresholds allows us to study subsequent decays
- Improved understanding of β -delayed processes will tell us when the process is statistical
- Statistical decay can provide constraints for HF calculations

Needs:

- Extend our theoretical tools to be applicable to broader range of nuclei (exotic, deformed) and reactions ((α,γ), (n,p),...)
- Revisit past assumptions of simplified (Weisskopf-Ewing) treatment of surrogate applications to fission
- Study conditions for statistical n/γ emission
- Close collaboration with experiment: plan, interpret, validate
- Contemplate new applications: can we modify the method to deal with reactions proceeding through isolated or weakly-overlapping resonances?

The Surrogate Reactions Method provides essential constraints on neutron-induced reactions we can't measure directly.

- SRM: a surrogate reaction is chosen that forms the "same" compound nucleus as the desired reaction. <u>Measuring the decay of</u> <u>the CN as a function of excitation</u> <u>energy</u> provides constraints on Hauser-Feshbach parameters which are used to calculate the desired reaction.
 - This means that the SRM can provide constraints on quantities calculated by or input into Hauser-Feshbach codes (cross sections, gSF, NLD, etc).
- Indirect techniques like the SRM provide essential constraints on neutron-induced important for nuclear astrophysics.

LLNL-PRES-XXXXXX

Exploiting the opportunities offered by FRIB requires timely construction of a high-acceptance spectrograph on ReA12.

- FRIB will make a large number of radioactive beams available for study, at rates sufficient for SRM measurements.
- The SRM gives the best results with ~10 MeV/A beams and small beam spot (~1 mm) sizes.
 - We can run in front of the S800 with degraded beams (~40 MeV/A), but this would impose rate limitations and require beam tracking.
- ReA12 will provide the beams we need for SRM measurements. However, we need highacceptance spectrograph on ReA12 to enable event-by-event recoil detection.
- ISLA is ideally suited for these measurements; we should build it.

Indirect (n, γ) constraints using the β -Oslo method

Lawrence Livermore National Laboratory

*M. Wiedeking *et al.*, PRC **104**, 014311 (2021) R. Lewis *et al.*, PRC **99**, 034601 (2019)

β-Oslo Measurements: Current and Future

A neutron target facility would revolutionize our understanding of neutron reactions on short-lived nuclei

Shea Mosby, LANL

- Neutron-induced reaction rates are critical for nucleosynthesis as well as a range of other applications, yet remain stubbornly resistant to reliable prediction.
- We've developed a LANSCE-based concept to directly measure these reactions by interacting a radioactive ion beam with a standing neutron field or "neutron target".
- Such a facility would dramatically expand our reach for astrophysically-relevant cases.
- Direct reaction rates off stability provide stringent constraints testing theoretical models to enable predictive capability.
- We should begin the necessary technical maturation to make the concept a reality.
 - NNSA anticipated buy-in: \$38M
 - NP ISOL development: \$30M

See Discussion of First Experiments by A. Cooper In Facilities!

DICER: a new device to constrain (n,γ) rates on tiny radioactive samples through innovative transmission experiments

Thanos Stamatopoulos, LANL athanasios.stamatopoulos@lanl.gov

- •(n,γ) rates on radionuclides are important for nucleosynthesis but very few have been measured.
- •DICER performs transmission studies on tiny radioactive samples.
- •Transmission data can be used to tightly constrain (n,γ) rates.
- •DICER measurements on a 66 ng ⁸⁸Zr sample are revealing the reason for the extremely large thermal cross section.
- •50 radionuclides are within DICER's reach ($t_{1/2} \sim 10$'s days, $D_0 \sim 10$'s eV).

- The sensitivity study by R.H. Cyburt *et al.* showed there are important astrophysical reaction rates affecting a large variation of energy generation and final ash in X-ray burst model.
- Limited experimental measurements of (p, y), (α, y) and (α, p) performed to reduce the uncertainties of reaction rates.

		Rank	Reaction	Type ^a	Sensitivity ^b	Category	Rank	Reaction	Type ^a	Sensitivity ^b	Category
	$-\frac{30}{30} = \frac{30}{30} \frac{30}{30} \frac{(\alpha, p)^{33} Cl}{Up}$	P - 1	⁵⁶ Ni(α , p) ⁵⁹ Cu	U	12.5	1	1	$^{15}O(\alpha \ \gamma)^{19}Ne$	D	16	1
~	$ \frac{26}{3} Si(\alpha, p)^{29} P U p$	2	59 Cu(p, γ) 60 Zn	D	12.1	1	2	56Ni(a, p) 59Cu		64	1
⁸ ergs/sec)	$ \stackrel{60}{=} 2n(\alpha, p)^{e3}Ga Up$ $ \stackrel{20}{=} Mg(\alpha, p)^{2e}Al Dn$ $ \stackrel{29}{=} S(\alpha, p)^{3e}Cl Up$ $ \stackrel{28}{=} S(\alpha, p)^{3e}Na Dn$	p] 3	$^{15}\mathrm{O}(\alpha, \gamma)^{19}\mathrm{Ne}$	D	7.9	1	2	59 (α , p) Cu	0	0.4	1
		1 4	$^{30}S(\alpha, p)^{33}Cl$	U	7.8	1	3	$\int Cu(\mathbf{p}, \gamma)^{00} Z\mathbf{n}$	D	5.1	1
		- 5	$^{26}\text{Si}(\alpha, p)^{29}\text{P}$	U	5.3	1	4	${}^{61}\text{Ga}(p, \gamma){}^{62}\text{Ge}$	D	3.7	1
		n 6	${}^{61}\text{Ga}(p, \gamma){}^{62}\text{Ge}$	D	5.0	1	5	$^{22}Mg(\alpha, p)^{25}Al$	D	2.3	1
103	$ {}^{25}Si(\alpha,p){}^{28}P Up$	7	$^{23}\text{Al}(p, \gamma)^{24}\text{Si}$	U	4.8	1	6	$^{14}O(\alpha, p)^{17}F$	D	5.8	1
×	¹ 3 ⁴ Ar(α,p) ³⁷ K Up		$^{27}P(p, \gamma)^{28}S$	D	4.4	1	7	$^{23}Al(p_{\gamma})^{24}Si$	D	4.6	1
ty	Baseline	- 9	60 Ga(p, γ) 63 Ge	D	3.8	1	0	$18Ne(\alpha, p)^{21}Na$	U L	1.0	1
osi		- 10	$^{00}Zn(\alpha, p)^{00}Ga$	U	3.6	1	0	$63C_{\alpha}(\alpha, p) = 14a$	D	1.0	1
nin		- 11	$^{22}Mg(\alpha, p)^{23}Al$	D	3.5	1	9	10 Ga(p, γ) 16 Ge	D	1.4	2
цц			$^{30}Ni(p, \gamma)^{37}Cu$	D	3.4	1	10	$^{19}\mathrm{F}(\mathrm{p}, \alpha)^{10}\mathrm{O}$	U	1.3	2
п		13	$^{28}S(\alpha, p)^{32}C1$	U	2.8	1	11	$^{12}\mathrm{C}(\alpha, \gamma)^{16}\mathrm{O}$	U	2.1	2
		- 14	$^{20}S(\alpha, p)^{31}C1$	U	2.7	1	12	$^{26}\text{Si}(\alpha, p)^{29}\text{P}$	U	1.8	2
		- 15	35 K (p, γ) 36 Ca	U	2.7	1	13	${}^{17}F(\alpha, p){}^{20}Ne$	U	3.5	2
		17	$R(p, \gamma) Ca$	D	2.3	2	14	$^{24}Mg(\alpha, \gamma)^{28}Si$	U	1.2	2
	time (s)	18	$^{25}\text{Si}(\alpha, \mathbf{p})^{28}\text{P}$	U	1.9	2	15	$57Cu(p_{10})$ 58Zp	D	13	2
	thile (s)	19	${}^{57}Cu(p, \gamma){}^{58}Zn$	D	1.7	2	16	$607n(p, p)^{63}Ca$		1.5	2
		20	${}^{34}\text{Ar}(\alpha, p){}^{37}\text{K}$	Ū	1.6	3	10	$17\pi(\alpha, p)^{18}$	U	1.1	2
		21	$^{24}Si(\alpha, p)^{27}P$	U	1.4	3	17	$^{17}F(p, \gamma)^{10}Ne$	U	1.7	2
		22	$^{22}Mg(p, \gamma)^{23}Al$	D	1.1	3	18	40 Sc(p, γ) 41 Ti	D	1.1	2
		23	${}^{65}As(p, \gamma){}^{66}Se$	U	1.0	3	19	⁴⁸ Cr(p, γ) ⁴⁹ Mn	D	1.2	2
		24	$^{14}O(\alpha, p)^{17}F$	U	1.0	3					
		25	40 Sc(p, γ) ⁴¹ Ti	D	0.9	3					
		26	${}^{34}{\rm Ar}({\rm p},\gamma){}^{35}{\rm K}$	D	0.8	3					
		27	${}^{47}Mn(p, \gamma){}^{48}Fe$	D	0.8	3					
		28	$^{39}Ca(p, \gamma)^{40}Sc$	D	0.8	3					

(Left) Calculated light curves of X-ray burst

(Middle) Reactions that impact the burst light curve in the single-zone X-ray burst model (Right) Reactions that impact the burst light curve in the multi-zone X-ray burst model R. H. Cyburt *et al.* ApJ 830:55 (2016)

- What we need to do is:
 - 1. Updates of the sensitivity studies with measured reaction rates
 - 2. Experimental efforts to reduce the uncertainties of key reaction rates.

*R***-PROCESS STUDIES WITH THE CPT AT ANL**

- Need access to masses, etc. for neutron rich isotopes of interest to understand the rprocess abundance pattern
- Multi-nucleon transfer reactions in the N=126 Factory will provide access to new masses for the rare earth peak and the heaviest, N=126, r-process peak that are difficult to reach with fragmentation.

R. Kruecken, arXiv:1006.2520 (2010), M.R. Mumpower et al., PPNP, 86 (2016)

CHICAGO CHICAGO A department or Argonne National Laboratory is a US. Department of Energy laboratory us. Separtment of Energy laboratory and argonne LLC.

*R***-PROCESS STUDIES WITH THE CPT AT ANL**

Many neutron- rich nuclei can be produced at the N=126 Factory through the use of different targets

Phase Imaging Ion Cyclotron Resonances at the Canadian Penning Trap provide precise and accurate mass measurements.

N=126 Region

Many previously-unmeasured masses near N=126 shell closure

Rare Earth Region

Exploring feature around N~104

Orford, Vassh, et al., PRC 105, L052802 (2022)

Probing the Equation of State of Neutron Stars with Heavy Ion Collisions at FRIB

EOS at FRIB:

More precision symmetry energy data at 1.5-2.5 ρ_{0}

Primary observables:

- pion and n/p differential flow \rightarrow Symmetry energy
- proton flow \rightarrow symmetric matter constraints

What we need:

Investment in detector development to measure pions, charged particles and neutron with high granularity

PREX-II 10^{2} HIC(m) Ċ. HIC(n/p flow) P_{sym} (MeV/fm³) 101 95% C.I. prior 100 95% C.I. posterior 68% C.I. posterior 0.0 0.5 2.5 1.0 2.0 3.0 1.5 ρ/ρ_0

Zbigniew Chajecki, WMU

Need for Centers in Nuclear Astrophysics

Nuclear Astrophysics has a special need for exchange and communication across field boundaries

- Everything we do on the nuclear side depends on the astrophysics connection
- New results in astrophysics can change major activities and science priorities in nuclear physics
- New results in nuclear physics are essential for addressing some astrophysical science questions
- Nuclear astrophysics defines its own science questions at the intersection of the fields
- There is now a special opportunity to take advantage of the unique combination of novel capabilities in the multi-messenger era in nuclear physics, gravitational wave physics, computational modeling, astronomy (JWST, COSI, NICER, astero-seismolog...), cosmo-chemistry

Centers like JINA and JINA-CEE play an important role in facilitating these exchanges, building research bridges, and forming the necessary communities and collaborations to generate new ideas and directions

Center for Nuclear Astrophysics Across Messengers

CeNAM addresses this need in the multi-messenger era

- Community building
 - Connect nuclear astrophysics experiments with theory, observations, and other fields
 - Connect university labs, national labs, small and large universities, MSI
 - Connects to new areas needed for new science
- Open interdisciplinary collaborations on (1) Novel dynamic nucleosynthesis in stars (2) Origin of the heavy elements in the multi-messenger era

- Build community through targeted workshops and annual Frontiers meeting all open to the community
- Dissemination of data, tools, codes, results to the community across field boundaries
- Foster an interdisciplinary community of students and postdocs and provide professional development opportunities
- Connect US community to international nuclear astrophysics communities and partner networks through International Research Network for Nuclear Astrophysics (IReNA) (NSF supported)
- Contribute to a diverse nuclear astrophysics community (10 MSI partners)

CeNAM status:

- This year DOE NP support for 3 community building CeNAM workshops/conferences
 - A CeNAM Frontiers meeting May 21-26 at MSU, including a workshop on new observational opportunities for nuclear astrophysics
 - A stellar nuclear astrophysics workshop (TBA)
- New (smaller) proposal for a CeNAM center submitted to DOE

Neutron-induced reactions in the high-density plasma at the National Ignition Facility M. Paul, A. Zylstra et al.

Laser energy/power: 1.8 MJ/400 TW

⁴⁰Ar added to DT as probe for neutron-induced reactions

~ 10²² ncm⁻³

Closest laboratory analog to explosive stellar conditions

Zylstra et al., Nature (2022) Abu-Shawareb et al., PRL (2022)

DT+Ar shot at NIF ^{39,41}Ar collected and detected

- ${}^{40}Ar(n,2n){}^{39}Ar(t_{1/2} = 268 y)$: fast-neutron monitor
- ⁴⁰Ar(n,γ)⁴¹Ar (t_{1/2} = 110 min): sensitive to neutron downscattered fluence
- Search for ⁴⁰Ar(2n,γ)⁴²Ar (t_{1/2} = 33 y): rapid two neutroncapture ("mini r-process") sensitive to neutron density

Ca40	Ca41	Ca42	Ca43	Ca44
0+	7/2-	0+	7/2-	0+
96.941	EC	0.647	0.135	2.086
K39	K40 1.277E+9 y	K41	K42 12.360 h	K43 22.3 h
3/2+	4-	3/2+	2-	3/2+
93.2581	EC,β- 0.0117	6.7302	β-	β-
Ar38	Ar39	Ar40	Ar41	Ar42
0+	209 y 7/2-	0+	7/2-	32.9 y 0+
0.063	β-	99.600	β-	β-

