Decay spectroscopy - the Golden Age?

Recent achievement and future prospects.

Robert Grzywacz
 University of Tennessee/ORNL

Query of about 200 papers from 2012-2022 identified more than 400 isotopes studied with decay spectroscopy methods. (Highly incomplete...)

Review papers:
Rev. Mod. Phys. 83, 1467 (2011).
Progress in Particle and Nuclear Physics 105 (2019) 214-251
Atomic Data and Nuclear Data Tables 132 (2020) 101323
Rep. Prog. Phys. 79 (2016) 076301
Rev. Mod. Phys., 84, (2012)
Rev. Mod. Phys. 851541 (2013)
arXiv:2206.09271 (2022)

Decay spectroscopy - relevance

Radioactive decays:

"...radiation is emitted spontaneously by a system whose nuclear and atomic degrees of freedom are close to equilibrium."

Nuclear decays are also sensitive to subnucleonic degrees of freedon (e.g. weak interactions, 3N forces)
and atomic properties (interaction with electrons).

Decay spectroscopy - discover and explain

... what phenomena emerge?

Decay measurements, first step with/after isotope/isomer identification

- Nuclear lifetime
- Primary decay mode.

Provides very first test of nuclear models and sets the stage for future experiments.

How does subatomic matter organize itself ...

- Energy of emitted radiation
- Relative branching ratios
- Establish decay sequences
- Correlations, angular distributions

Universal!

What quantum effects influence decay properties?
Can we extrapolate?
Impact on other fields !

Looking back into last decade

The power of the fragmentation reaction as a production method.
New isotope/isomer discoveries, lifetime measurements.
Gamma-ray spectroscopy,
owing to its high resolving power,
played a major role in these studies.

PRL 113, 032505 (2014) PR C 90, 034317 (2014) PR C 93, 061301(R) (2016) PR C 95, 051601(R) (2017) PR C 96, 034604 (2017) PR C 100, 044311 (2019) PR C 101, 042801(R) (2020) PRL 114, 192501 (2015) PRL 116, 162501 (2016) PRL 118, 072701 (2017) PRL 119, 192503 (2017)

Single step particle radioactivity

- Alpha decay Precise Q_{α} and $T_{1 / 2}$ measurement, Discovery tool for heavy and SHE nuclei Alpha preformation
Superallowed alpha decay near ${ }^{100}$ Sn. Microscopic mechanism of alpha decay Revisit the Gamow-Model ?
- Proton emission

"Spectroscopic factors" - nuclear structure at the drip-line.
3D barrier tunneling for deformed proton emitters.
- Two-proton emission: $\quad{ }^{45} \mathrm{Fe},{ }^{48} \mathrm{Ni},{ }^{54} \mathrm{Zn},{ }^{67} \mathrm{Kr}$

PRL 110, 222501 (2013). PRL 121, 182501 (2018) PR C 90, 014311 (2014) PR C 90, 034317 (2014) EPJ. A (2016) 52: 89 EPJ. A (2015) 51 PR C 97, 051301(R) (2018) PRL 127, 202501 (2021) PRL 128, 112501 (2022) Rev.Mod.Phys., 84, (2012)
"nucleon-nucleon correlations" and links to nuclear structure

- Discovery of 3p emission (${ }^{31} \mathrm{~K} \mathrm{~T}_{1 / 2}<10 \mathrm{ps}$) pRL $123,092502(2019)$

Can we observe neutron or two-neutron radioactivity?

Isomer spectroscopy - addiction to gambling

- Short lived isomers populated directly in the reaction surviving the transit time through electromagnetic separators (>100ns).
- Isomers populated through radioactive decays
(\sim Ins or longer).
Discovery tool, nuclear structure effects spin isomers, seniority isomers, shape isomers, K-isomers Lifetimes. levels schemes, conversion electrons, g-factors

\qquad

Shell evolution, nuclear shapes
Very sensitive studies achievable with low isotope rates. High-resolving power of HPGe arrays.

[^0]
Beta decay: the most common decay mode

The strength distribution within Q_{β} determines decay properties.

$$
\frac{1}{T_{1 / 2}}=\sum_{E_{i} \geq 0}^{E_{i} \leq Q_{\beta}} S_{\beta}\left(E_{i}\right) \times f\left(Z, Q_{\beta}-E_{i}\right)
$$

Lifetime measurements are difficult to provide feedback into nuclear models due to the distributed nature of the decay strength.

$$
S_{\beta}\left(E_{i}\right)=\left\langle\psi_{f}\right| \hat{O}_{\beta}\left|\psi_{\text {mother }}\right\rangle
$$

Connects strong and weak interactions Requires the knowledge of the structure of parent and daughter.

Beta decay ... powerful and sophisticated (difficult)

The strength distribution within Q_{β} determines decay properties.

$$
\frac{1}{T_{1 / 2}}=\sum_{E_{i} \geq 0}^{E_{i} \leq Q_{\beta}} S_{\beta}\left(E_{i}\right) \times f\left(Z, Q_{\beta}-E_{i}\right)
$$

Lifetime measurements are difficult to provide feedback into nuclear models due to the distributed nature of the decay strength.

$$
S_{\beta}\left(E_{i}\right)=\left\langle\psi_{f}\right| \hat{O}_{\beta}\left|\psi_{\text {mother }}\right\rangle
$$

Connects strong and weak interactions Requires the knowledge of the structure of parent and daughter.

Beta-decay strenght and nuclear structure

Allowed vs. forbidden

Phys. Rev. C 105 054312 (2022)

Shape

PR C 95, 024308 (2017)
Isospin mixing Mirror symmetry breaking

Nature 580 (2019).

GT quenching

[^1]
Beta decay and the shell structure

Beta decay "heats" the nucleus.

Allowed GT forbidden (mostly FF) N $>\mathrm{Z}$
${ }^{132}$ Sn

Allowed GT, FF and Fermi decays to IAS $\mathrm{N} \leq \mathrm{Z}$
${ }^{100} \mathrm{Sn}$

Роияепия

Total absorption gamma-ray spectroscopy (TAS)

"Synthetic" view on strength distribution!

Modern TAS are Nal based detectors are large and segmented enabling g-g coincidences. (level schemes, beta-Oslo method) Applications: decay heat, anti-neutrino, BSM

Multi-step processes - beta delayed protons

Charged particle spectroscopy a sensitive tool for nuclear structure Gas detectors (TPC) enable suppression of the βp summing.

Resurgence of efforts with light nuclei Isospin mixing, mirror symmetry astrophysically relevant resonances p-capture rates in novae
Proxy for reactions measurement!
Hevy nuclei - "Pandemonium"
PR C 91, 064309 (2015) PR C 93, 044336 (2016) PR C 95, 034315 (2017) PR C 93, 064320 (2016) PR C 95, 024301 (2017) PR C 99, 064312 (2019) PR C 99, 065801 (2019) PR C 102, 045810 (2020)

Multi-step processes - beta delayed neutrons

Prevalent decay mode for majority of neutron rich nuclei Input data for the r-process models.

Data to predict properties of the nuclei that we cannot measure (yet).

Neutron unbound strenght distribution 1n/2n/gamma competition

Is the statistical model always valid in beta-delayed neutron emission?

T. Kawano, P. Talou, I. Stetcu, and M. B. Chadwick, Nuclear Physics A 913, 51 (2013).
M. R. Mumpower, T. Kawano, and P. Möller, PR C 94, 064317 (2016).

Beta delayed neutrons - for the future!

Neutron counting:

$P_{2 n} / P_{1 n}$ measurements with BRIKEN array
3He based neutron counter best know method to measure $P_{x n}$.

Neutron spectroscopy:

Strength distribution

Challenges for the next decade:

- $\beta 2 n$ emission

- widths of neutron emitting states. Improve resolving power of neutron detectors.

First βn experments with neutron tracking array

PRL 117, 092502 (2016) PR C 99, 045805 (2019) PR C 100, 031302(R) (2019) NIM A 681, (2012) 94 PRL 129, 172701 (2022)

PR C 106, 044320 (2022).

14

It's the beam, stupid!

FRIB Decay Station

FDS combines multiple detector systems in two-focal plane arrangement, implemented in a single experiment. FDS enables efficient discrete spectroscopy, neutron counting and total absorption spectroscopy.

FDS is designed for discovery science with nuclear decays at FRIB.
Next generation array for decay spectroscopy!
The purpose of FDSi is to utilize FRIB beams of rare isotopes as effectively as possible and shorten the gap between the discovery and detailed measurements.

Hunger for discovery: FDS initiator ntros//dsomismoovinintioter/

Demonstrating the FDS principle with collection

 of the community detectors.Crossing $N=28$ Toward the Neutron Drip Line: First Measurement of Half-Lives at FRIB
H.L. Crawford et ot
Phys. Rev. Lett. 129, 212501 - Published 14 November 2022

Physicics

Hybrid Super-3Hen (neutron counter)

Modular Total Absorption Spectrometer

Collaborative
effort of
ORNL/UTK/FRIB/ANL
and several universities
and national labs
(LBNL and LLNL)

FDSi PAC 1 proposals (FRIB 10kW)

Polyphonic nature of decay spectroscopy

FDSi:

- Gamow-Teller quenching in ${ }^{100}$ Sn
- Shape transitions and r-process in neutron rich A~100
- Shell-evolution near closed shells ${ }^{60} \mathrm{Ca},{ }^{78} \mathrm{Ni},{ }^{226} \mathrm{~Pb}$
- Island of inversion $N \sim 28$
- Astrophysical resonances ${ }^{21} \mathrm{Mg}$
- Gamma-strength function for the r-process near ${ }^{132}$ Sn OTPC:
- pp-correlations in ${ }^{48} \mathrm{Ni}$

PAC2: More to come

Next decade - continuation but not a sequel?

Decay spectroscopy efforts at leading RIB facilities worldwide with sophisticated multi-detector arrays and a significant amount of $R I$ beam time, involving many institutions.
Unparallel potential in discovery: new lifetimes, decay modes, SHE. Impacts nuclear astrophysics, particle physics, nuclear energy ...

FDS for the $400 \mathrm{MeV} / \mathrm{u}$ FRIB! continue the discoveries towards

 the outer bounds of the nuclear chart.Deliver high-quality data and stimulate theory efforts. Explore, question established paradigms. Educate and train!

Prepare a foundation for the future of the field and ~ 2030 LRP. What will be our physics focus, and how will we justify it? How to maintain productivity without losing sight of new physics?

Direct Reactions

LRP TOWNHALL

November 2022

CALEM R. HOFFMAN

Physicist
Argonne National Laboratory

REACTIONS LINK VARIOUS ASPECTS OF NUCLEAR SCIENCE

REACTIONS LINK VARIOUS ASPECTS OF NUCLEAR SCIENCE

DIRECT REACTIONS

Single-nucleon transfer: (d,p), (3He,d), ($\left.{ }^{13} \mathrm{C},{ }^{12} \mathrm{C}\right)$

- ~few - 10's MeV/u
- Highly selective
- Direct probe of single-particle aspects

- Surrogate ($\mathrm{p}, \mathrm{\gamma}$) / ($\mathrm{n}, \mathrm{\gamma}$)
- resurgence in the RIB era
- Beam production

Extract: orbital angular momenta, spectroscopic overlaps, energy centroids Deduce: nucleon occupancies, single-particle energies, two-body matrix elements

RECENT RESULTS \& ONGOING WORK

${ }^{11-14} \mathrm{~B}\left(\mathrm{~d},{ }^{3} \mathrm{He}\right)$: Rapidly evolving structure at the limits of binding

Single-nucleon adding on 56Ni to inform on the (p, γ) capture rate

49,50Ti(d,p): Complete single-
particle information around $\mathrm{N}=28$

Riley PRC 103, 064309 (2021)
Spieker et al.,

RECENT RESULTS \& ONGOING WORK

${ }^{23} \mathrm{Na}\left({ }^{3} \mathrm{He}, \mathrm{d}\right){ }^{24} \mathrm{Mg}$ data to inform on the (p, γ) capture rate

Marshall et al., PRC 104, L032801 (2021)
E Nccentral Nc STATI Duke Tillunc
${ }^{28} \mathrm{Mg}(\mathrm{d}, \mathrm{p})^{29} \mathrm{Mg}$: Mapping the singleparticle evolution near the $\mathrm{N}=20$ island of inversion

McGregor PRC 104, L051301 (2021)

Observation of a near threshold proton decay state via ${ }^{10} \mathrm{Be}(\mathrm{d}, \mathrm{n})$

A surprisingly large branching ratio of the
${ }^{11} \mathrm{Be} \rightarrow{ }^{10} \mathrm{Be} \beta$-delayed proton decay
prompted speculations on the nature of the
decay. [Ayyad et al., PRL 123, 082501 (2019)]
[Risager et al., PLB 732, 305 (2014)]
E. Lopez-Saavedra PRL 129, 012502 (2022)

DIRECT REACTIONS

KEY POINTS

Multi-nucleon transfer e.g., (p,t), (3He,p), (6Li,d)

- ~few - 10's MeV/u
- selective
- Alpha-like transfer: (α, Y), (α, X)
- Sensitive to paring
- Exploratory - cluster / rotational states
- Resurgence in the RIB era
$\underline{0^{+}, 69 \%} \quad \underline{0^{+}, 86 \%} \quad \underline{0^{+}, 100 \%} \quad \underline{0^{+}, 77 \%} \quad-\quad 0^{+} \quad 0^{+}$
${ }^{96} \mathrm{Mo}_{54}{ }^{98} \mathrm{Mo}_{56}{ }^{100} \mathrm{Mo}_{58}{ }^{102} \mathrm{Mo}_{60}{ }^{104} \mathrm{Mo}_{62}{ }^{106} \mathrm{Mo}_{64}$
Transitions strengths normalised to ${ }^{100} \mathrm{Mo}$ gs.

Extract: final state angular momenta, spectroscopic overlaps, resonance widths Deduce: resonance strengths, reaction rates, pair occupancies, collectivity

RECENT RESULTS \& ONGOING WORK

${ }^{26} \mathrm{Mg}(\mathrm{t}, \mathrm{p})^{28} \mathrm{Mg}:$ Pairing \& configuration mixing towards $N=20$
${ }^{52} \mathrm{Fe},{ }^{56 \mathrm{Ni}(3 \mathrm{He}, \mathrm{p}): ~ N o ~ e v i d e n c e ~ f o r ~}$ isoscalar pairing ($\mathrm{S}=1, \mathrm{~T}=0$) condensate
${ }^{22} \mathrm{Ne}\left({ }^{6} \mathrm{Li}, \mathrm{d}\right):$ a capture rates $\&$ the neutron flux during the s-process

Jayatisaa PLB 802, 135267 (2020)

DIRECT REACTIONS

Charge-exchange:(p,n), (3He,t), (d,2p [²He])

KEY POINTS

- ~5-400 MeV/u
- Isobaric analog states

S. Giraud et al. arXiv:2210.15866

- Gamow-Teller strengths
- Astrophysics
- Neutrino physics
- Radii from chargechanging $\sigma_{c c}$

E. Koshchiy et al., NIMA 957, 163398 (2020)
D.P. Scriven et al., NIMA 1010, 165492 (2021)

Argonne

DIRECT REACTIONS

Single or multi-nucleon knockout: (-1p), (-2p), (-1n)
Quasi-free knockout: (p,2p), (p,pn), (p,Xp)

KEY POINTS

- >50 MeV/u knockout
- >250 MeV/u quasi-free
- Highly selective: valuable in-beam spectroscopy tool
- Study of overlaps w/ established tools
- Pairing force, short/ long range correlations

Longfellow PRC 101, 031303(R) (2020)

Final nucleus [recoil]

Theoretical cross-section

residue moment distribution
$\rightarrow \ell$-value of knocked-out n

RECENT RESULTS \& ONGOING WORK

Probing the key nucleus ${ }^{42} \mathrm{Si}$ in one-nucleon knockout

$-2 p$ knockout from ${ }^{27} \mathrm{Ne}$ to populate 3-neutron decay from ${ }^{25} \mathrm{O}$

Cross sections from nucleon removal reactions in mirror systems

SCATTERING REACTIONS

Inelastic scattering: ($\mathrm{p}, \mathrm{p}^{\prime}$), ($\left.\mathrm{d}, \mathrm{d}^{\prime}\right)$, ($\left.\alpha, \mathrm{a}^{\prime}\right),\left({ }^{12} \mathrm{C},{ }^{12} \mathrm{C}^{\prime}\right)$

KEY POINTS

- Few to 100 's of $\mathrm{MeV} / \mathrm{u}$
- Selective to probes:
- Proton - isovector
- Deuteron isoscalar
- Resonance structures
- Cluster structures
- Collective features in nuclei $\left[\mathrm{M}_{\mathrm{n}} / \mathrm{M}_{\mathrm{p}}\right.$]

Extract: Distributions, resonance strengths

Deduce: unique excitation modes, clustering prob., isoscalar / isovector modes, deformation length

REQUISITE TOOLS

(3) ENERGY

KEY ROLE PLAYED BY REACTION THEORY Importance of robust theoretical modeling

Reliance on theoretical approaches to disentangle reaction dynamics from the nuclear structure properties

DWBA, ADWA, CC, CDCC, CRS, Glauber theory, R-Matrix, DWIA, PWIA, and many others
Continuing developments into unifying structure+reaction calculations
Berggren basis, Gamov Shell model, NCSM, Halo EFT, continuum-coupling, and many others
Critical that developments continue into all aspects of reaction theory:
e.g., optical potential from ab initio, understanding quenching, global description of reactions involving near / beyond threshold states ...

https://arxiv.org/abs/2211.06281

Aumann PPNP 118, 103847 (2021)

Marshall PRC 102, 024609 (2020)
[Bayesian DWBA] Argonne

STATE OF THE ART INSTRUMENTATION

Full range of experimental equipment

Active target devices: AT-TPC, TexACT, MUSIC, ...
Solenoid spectrometers: HELIOS, SOLARIS, SSNAP
Multi-functional arrays: ORRUBA, HIRA, DAPPER, HYPERION, NIMROD, ...

Spectrographs/Spectrometers: Split-pole, Super Enge SPS + CeBrA/SABRE, MDM, ...

Neutron arrays: MoNA-LISA, TexNeut, LENDA, CATRiNA, VANDLE, ...

Recoil Selection: HRS, S800, SECAR, ISLA, ...

y-ray detection: GRETA, Clarion, Gammasphere, SeGA, CAESAR, ...

Targets: Solid (3He,t), Liquid (high luminosity), Gases
Bapper

BEAMS

Availability of beams of interest with the requisite properties
[energies, intensities, spatial \& timing structures, purities ...]

Stable beams

[both normal \& inverse kinematics]
Radioactive (\& isomeric) beams

POSSIBLE FUTURE IMPACT AREAS

(1) ENERGY

CHARAGTERIZING EMERGENT Direct reaction provide selective \& efficient methods in order to study nuclei from stability to beyond the drip lines study nuclei from stability to beyond the drip lines

As done previously, will be used to
probe along regions of shell evolution: $N / Z=6,8,20,28,40,50$, etc \ldots
spectroscopy

Search for isoscalar condensate (pn pairing) in $\mathrm{N}=\mathrm{Z}$ nuclei

Competitive multiparticle decays

Emergent behavior in loosely bound light nuclei

Spectroscopy at
In addition to prolific use of contemporary techniques, growth in pair transfer, quasi-free scattering \& inelastic scatter reactions the drip lines

QUENCHING OF THE (SINGLE-PARTICLE) STRENGTH

Reduced cross sections: Knockout -vs- Transfer

Reaction data from various probes is converging (converged?)

Open challenge in direct reactions (exp \& theory) [transfer, knockout, quasi-free] Overlaps with SRC work

- $|\Delta S|>10 \mathrm{MeV}$
- $|\Delta S|>15 \mathrm{MeV}$
- $|\Delta S|>18 \mathrm{MeV}$
- $|\Delta S|>20 \mathrm{MeV}$

DIRECT REACTIOS ON ISOMERIC BEAMS.

Enhanced reach without compromise

Te	129	130	131	132	133	134	135	136	137
Sb	128	129	130	131	132	133	134	135	136
Sn	127	128	129	130	131	132	133	134	135
In	126	127	128	129	130	131	132	133	134
Cd	125	126	127	128	129	130	131	132	133

127	At least one isomer that β-decays	128	At least one isomer that or electron conversion

129 At least one isomer that β-decays and
At least one isomer that β-decay
at least one that decays via γ or electron conversion

Isotope	$\begin{gathered} \hline E_{m} \\ (\mathrm{keV}) \end{gathered}$	${ }_{8}{ }_{8}^{\pi}$	$J_{m}^{\text {m }}$	$\bar{T}_{\substack{1 / 2, z}}$	$\begin{gathered} T_{1 / 2, m} \\ \hline(\mathrm{~s}) \end{gathered}$	$\begin{aligned} & \substack{B_{m 3} \\ (\%) \\ (\%)} \end{aligned}$	\# States	$\begin{aligned} & T_{T_{\text {tuem }}}(\mathrm{keV}) \end{aligned}$	Site ${ }^{\text {a }}$	Notes
${ }^{26} \mathrm{Al}$	228.31	5^{+}	${ }^{+}$	2.26×10^{13}	6.35×10^{0}	100	67	35	p	$\lambda_{32}, \lambda_{43}$ unmeasured
${ }^{34} \mathrm{Cl}$	146.36	0^{+}	3^{+}	1.53×10^{0}	1.92×10^{3}	55	30	20	Sne	λ_{32} poorly constrained
${ }^{58} \mathrm{Mn}$	71.77	1^{+}	4^{+}	3.00×10^{0}	6.54×10^{1}	90	30	5	PSne	$\lambda_{i j}$ unmeasured for 3-7
${ }^{85} \mathrm{Kr}$	304.87	9/2+	1/2-	3.39×10^{8}	1.61×10^{4}	78.8	30	25	s	$\lambda_{i j}$ poorly measured for 3-7
${ }^{113} \mathrm{Cd}$	263.54	$1 / 2^{+}$	11/2-	2.54×10^{23}	4.45×10^{8}	99.86	30	5	r	λ_{12} unmeasured
${ }^{122} \mathrm{Sn}$	6.31	$3 / 2^{+}$	11/2-	9.73×10^{4}	1.39×10^{9}	22.4	30	20	s, r	$\lambda_{i j}$ unmeasured for 3-6
${ }^{123} \mathrm{Sn}$	24.6	11/2 ${ }^{-}$	$3 / 2^{+}$	1.12×10^{7}	2.4×10^{3}	100	30	30	r	$\lambda_{i j}$ unmeasured for 3-7
${ }^{125} \mathrm{Sn}$	27.50	11/2-	$3 / 2^{+}$	8.33×10^{5}	5.71×10^{2}	100	30	30	r	$\lambda_{i j}$ unmeasured for 3-8
${ }^{127} \mathrm{Sn}$	5.07	11/2-	$3 / 2^{+}$	7.56×10^{3}	2.48×10^{2}	100	30	30	r	$\lambda_{i j}$ unmeasured for 3-8
${ }^{1288}$ Sb	$0.0+\mathrm{x}$	8	5^{+}	3.26×10^{4}	6.25×10^{2}	96.4	9	unknown	r	E_{m} unknown; Note 2 below
${ }^{170} \mathrm{Ho}$	120	(6)	$\left(1^{+}\right)$	1.66×10^{2}	4.3×10^{1}	100	2	unknown	r	Note c below
${ }^{176} \mathrm{Lu}$	122.845	7^{-}	1^{-}	1.19×10^{18}	1.32×10^{4}	100	30	10	s	$\lambda_{i j}$ unmeasured for 5-13, 16, 17
${ }^{182} \mathrm{Hf}$	1172.87	0^{+}	(8)	2.81×10^{14}	3.69×10^{3}	54	30	10	s, r	$\lambda_{i j}$ unmeasured for 2-9, 11, 12

Macchiavelli PRC 101, 044319 (2020), Tang PRC (2022), Milne PRL 117, 083502 (2016), Misch AJSS (2021), Jones PRC 105, 024602 (2022)

IN SUMMARY

(Direct) reactions play a central role in experimental nuclear science
Robust tools, techniques \& equipment have been developed for inverse kinematics

These are now in place in order to leverage the next generation of available radioactive beams

Stable beams remain vital for both precise reaction in normal kinematic reactions \& to leverage advantages of inverse kinematics

A link to \& continued developments from theory remain strong \& are arguably as important as ever

The entirety of our success hinges on the people in our field, if the U.S. is to lead, the best must be recognized, retained \& given the resources to succeed

THE END

Recent achievements and future prospects for in-beam gamma-ray spectroscopy

+ Clover Share (at, e.g., HIgS), γ^{3}, \ldots
Several arrays are available to tackle science questions at the frontiers of low-energy nuclear physics and nuclear astrophysics!

Connecting to big science ideas

The quest to observe rare nuclear decays and to answer the question of why there is more matter than antimatter in our universe.

Experiments were performed determining the degree of triaxiality for ${ }^{76} \mathrm{Ge}$ and ${ }^{76} \mathrm{Se}$ to inform searches for the ${ }^{76} \mathrm{Ge} \rightarrow{ }^{76} \mathrm{Se} 0 \nu \beta \beta$ decay searches. Detailed comparisons to configuration-interaction shell-model calculations were made. These are important steps towards constraining the $0 v \beta \beta$ nuclear matrix element.

Two results are highlighted here:

1. Projectile multi-step CoulEx with GRETINA and CHICO-2 at ANL of ${ }^{76} \mathrm{Ge}$.
[A.D. Ayangeakaa, R.V.F. Janssens, S. Zhu, et al., PRL 123, 102501 (2019)]
2. Sub-barrier CoulEx of ${ }^{76}$ Se using the JANUS setup at ReA (NSCL/FRIB).
[J. Henderson, C.Y. Wu, et al., PRC 99, 054313 (2019)]
In principle, model-independent study of the quadrupole triaxial degree of freedom, based on measured E2 transition matrix elements, is possible. Detailed γ ray spectroscopy experiments with high-resolution arrays provide the sensitivity to resolve several transitions needed for this kind of analysis.

Neutrinoless double $\boldsymbol{\beta}$ decay (Sidebars 5.1 \& 5.2 of 2015 NSAC LRP)

The quest to observe rare nuclear decays and to answer the question of why there is more matter than antimatter in our universe.

Experiments at
University of Kentucky
PHYSICAL REVIEW C 95, 014327 (2017)
Nuclear structure of ${ }^{76}$ Ge from inelastic neutron scattering measurements and shell model calculations

Mukhopadhyay, ${ }^{1,2,{ }^{*}}$ B. P. Crider, ${ }^{1}$ B. A. Brown, ${ }^{3,4}$ S. F. Ashley, ${ }^{1,2}$ A. Chakraborty, ${ }^{1,2, \dagger}$ A. Kumar, ${ }^{1,2}$ M. T. McEllistrem, ${ }^{1}$

E. E. Peters, ${ }^{2}$ F. M. Prados-Estevez, ${ }^{\text {,2 }}$ and S. W. Yates
${ }^{1}$ Department of Physics and Astronomy, University of Kentuccy, Len, Kentucky 40506-0055, USA
${ }^{2}$ Department of Chemistry, University of Kentucky, Lexington, Ke, East Lansing, Michigan 48824, USA
${ }^{3}$ National Superconducting Cyclotron Laboratory, Michigan State Univers ast Lansing, Michigan 48824, USA
${ }^{4}$ Department of Physics and Astronomy, Michigan State University, East Lansing, Mabs 25 January 2017)
(Received 25 September 2016; revised manuscript received 4 December 2016;
PHYSICAL REVIEW C 99, 014313 (2019)

Inelastic neutron scattering studies of ${ }^{76} \mathrm{Se}$

S. Mukhopadhyay, ${ }^{1,2,{ }^{*}}$ B. P. Crider, ${ }^{1, \dagger}$ B. A. Brown, ${ }^{3,4}$ A. Chakraborty, ${ }^{1,2, \ddagger}$ A. Kuma
E. E. Peters, ${ }^{2}$ F. M. Prados-Estévez, ${ }^{1,2}$ and S. W. Yates ${ }^{2}$ 40506-0055, USA
${ }^{1}$ Department of Physics and Astronomy, University of Kentucky, Lexington, Kentucky 40506-0055, USA
${ }^{2}$ Department of Chemistry, University of Kentucky, Lexiniversity, East Lansing, Michigan 48824, USA
National Superconducting Cyclotron Laboratory, Michigan State University, East Lang, Michigan 48824, USA
${ }^{4}$ Department of Physics and Astronomy, Michigan State University, East Lansing,

Neutrinoless double $\boldsymbol{\beta}$ decay (Sidebars 5.1 \& 5.2 of 2015 NSAC LRP)

The quest to observe rare nuclear decays and to answer the question of why there is more matter than antimatter in our universe.

Test structure of nuclei in entire mass region and verify reliability of model predictions.
(+ANL CoulEx program).

Triaxial degrees of freedom are very important in this mass region!

Electric Dipole Moment (Sidebar 5.2 of 2015 NSAC LRP)

Why is there more matter than antimatter in the present universe?

Statically octupole deformed odd-A nuclei will enhance a possible experimental EDM signal by orders of magnitude! To answer whether a nucleus is statically octupole deformed, we need to measure the E3 matrix elements (amongst other observables).

Highlighted experiment: Coulomb excitation of ${ }^{223}$ Ra with GRETINA and CHICO-2 at ANL to test whether ${ }^{223} \mathrm{Ra}$ is statically octupole deformed (parity doublet $\Delta \mathrm{E}=50 \mathrm{keV}$). Experiment used $400 \mathrm{ng} \mathrm{Ra}\left(\mathrm{NO}_{3}\right)_{2}$ target (70% enriched sample; dose rate of $60 \mathrm{mR} / \mathrm{hr})$. Experiment happened during last GRETINA campaign. Analysis is ongoing.

The observation of several γ-ray transitions with energies between 100 keV and 300 keV reinforces the need to perform these studies of heavy odd-A nuclei with high-resolution γ-ray spectrometers like GRETINA/GRETA/SeGA/GAMMASPHERE. A letter of intent was submitted to FRIB PAC-1 to encourage beam developments for sub-barrier CoulEx experiments of nuclei in the $A=223-229$ mass region at ReA.
 Future experiments could also be high highly enriched actinide is maty laboratories, could

Statically octupole deformed odd-A nuclei will enhance a possible experimental EDM signal by orders of magnitude! To answer whether a nucleus is statically octupole deformed, we need to measure the E3 matrix elemente raphs. - rvables).
Why is there more matter than antimatter in the present universe? necessary. Such studies, possibly to be per studies at FRIB and ANL. complement detailed γ-ray spectroscop

The observation of several γ-ray transitions with energies between 100 keV and 300 keV reinforces the need to perform these studies of heavy odd-A nuclei with high-resolution γ-ray spectrometers like GRETINA/GRETA/SeGA/GAMMASPHERE. A letter of intent was submitted to FRIB PAC-1 to encourage beam developments for sub-barrier CoulEx experiments of nuclei in the $A=223-229$ mass region at ReA.

Examples of recent achievements and how they pave the way towards future experiments.

At National Laboratories and University Laboratories.

- Safe Coulex of ${ }^{48,49,50}$ Ti at FSU John D. Fox Laboratory with TRINITY and CLARION2.
- Search for early signs of emerging collectivity in A=50 mass region and around $\mathbf{N}=\mathbf{2 8}$
\rightarrow Effect of particle-core coupling on strength and strength fragmentation
- Compare total quadrupole excitation strength in oddmass ${ }^{49} \mathrm{Ti}$ to ${ }^{48,50} \mathrm{Ti}$ neighbors to find signature of emerging collectivity.

CLARION2-TRINITY:
[T.J. Gray, J.M. Allmond et al., NIM A 1041, 167392 (2022)]

- Safe Coulex of ${ }^{48,49,50}$ T Contribution by V. Tripathi (FSU) with TRINITY and CLAR "Detailed γ-ray spectroscopy s

- Compare total quadrupole excitation strength in oddmass ${ }^{49} \mathrm{Ti}$ to ${ }^{48,50} \mathrm{Ti}$ neighbors to find signature of emerging collectivity.
Search for early signs 0 . $\quad-\quad$-...5 cullectivity in $A=50$ mass region and around $\mathbf{N}=28$
\rightarrow Effect of particle-core coupling on strength and strength fragmentation

NSCL Experiment with CAESAR+S800 near $\mathrm{N}=\mathbf{2 8}$ Island of Inversion

- Observation of collective $1532-\mathrm{keV}$ transition built on shape-coexisting $7 / 2^{-}$isomer at 320 keV ($\mathrm{T}_{1 / 2}=415 \mathrm{~ns}$) and other collective transitions built on $3 / 2^{-}$ground state of ${ }^{43}$ S.
[T. Otsuka, J. Phy. G 43, 024009 (2016)]

Detailed studies of shape coexistence and of the collectivity of different configurations will be possible with CAESAR, GRETINA/GRETA, the S800, and isomer beams at FRIB in even more neutron-rich nuclei!

In coincidence with isomer decay at S800 focal plane

Reference: B. Longfellow et al., PRL 125, 232501 (2020)

Pushing for the extremes at FRIB - fast-beam in-flight γ-ray spectroscopy at $\mu \mathrm{b}$ cross sections

The power of GRETINA/GRETA \& spectrometers

- Exotic ${ }^{9} \mathrm{Be}\left({ }^{38} \mathrm{Ca},{ }^{40} \mathrm{~S}+\gamma\right) \mathrm{X}$ reaction channel discovered in a ${ }^{38} \mathrm{Ca}+{ }^{9}$ Be reaction setting
- Very clean γ-ray spectrum with only two transitions
\rightarrow This was the first γ-ray spectroscopy of ${ }^{40} \mathrm{Sc}$, the last bound Sc isotope.

This experiments proves that in-beam γ-ray spectroscopy with fast beams is possible at $\mu \mathrm{b}$ cross sections! Similar experiments can be performed by coupling GRETA/GRETINA to a fast-beam spectrometer at FRIB.

Great promise for reactions with GRETINA/GRETA at the S800 \& HRS at FRIB/FRIB400.

Reference: A. Gade et al., PLB 808, 135637 (2020)

Pushing for the extremes at FRIB - fast-beam in-flight γ-ray spectroscopy at $\mu \mathrm{b}$ cross sections

The power of GRETINA/GRETA \& spectrometers

- Exotic ${ }^{9} \mathrm{Be}\left({ }^{38} \mathrm{Ca},{ }^{40} \mathrm{~S}+\gamma\right) \mathrm{X}$ reaction channel discovered in a ${ }^{38} \mathrm{Ca}+{ }^{9}$ Be reaction setting
- Very clean γ-ray spectrum with only two transitions
\rightarrow This was the first γ-ray spectroscopy of ${ }^{40} \mathrm{Sc}$, the last bound Sc isotope.

This expr. . with fas "In-beam γ-ray spectroscopy and direct rea. experimı "In-beam γ-ray spectron berins! Similar to a fast-beam spectrometer at FRIB.

Great promise for reactions with GRETINA/GRETA at the S800 \& HRS at FRIB/FRIB400.

Reference: A. Gade et al., PLB 808, 135637 (2020)

GRETINA@ANL - Response function and superdeformed rotational band in ${ }^{152}$ Dy

- First extraction of a response function for a γ ray tracking array. Happened during last GRETINA campaign at ANL. The unfolded ${ }^{152} \mathrm{Eu}$ spectrum is shown below in red.

Goal: Determine the entry distribution (HK distribution), i.e., the location in the spin and energy plane from which gamma deexcitation starts, after the last particle has been evaporated.

Example of ${ }^{108} \mathrm{Cd}$ from GRETA
Final Design Report.

Rotational motion provides a striking example of emergent phenomena in many-body quantum systems and is a sensitive tool to study the underlying microscopic structure of atomic nuclei. GRETA will allow the study of previously undetectable rotational structures at the extremes of angular momentum due to the significant gain in resolving power.

Pushing the limits towards previously undetectable structures

The study at ANL during the last GRETINA campaign was critical to achieve this goal!

Pushing for the extremes at FRIB - First fragmentation of ${ }^{198}$ Pt beam at NSCL (decay spectroscopy)

- First fragmentation of ${ }^{198} \mathrm{Pt}$ beam
- Three different A1900 settings for studying nuclei south of $Z=82$ and west of $N=126$
- Challenging particle identification accomplished
\rightarrow UML Si stack designed in collaboration with O . Tarasov using careful LISE++ calculations to guide the design
- K-Isomers identified in neutron-rich Hf-W region
- States with angular momentum as high as $18 \hbar$ populated.
- New neutron-rich isotopes in Hf region identified.

Important development for fast-beam experiments and needed as long as HRS is not available to reach heavier isotopes (S800 Bp limit).

Studying the low-lying E1 and M1 response with quasi-monoenergetic and polarized real photons at HIgS

$0^{+} \rightarrow 1^{+} \rightarrow 0$

Courtesy of C. Illiadis and U. Gayer (UNC/TUNL/HIgS)

Clover Share (left) and γ^{3} (right) γ-ray spectroscopy setups at HIgS (TUNL) combining HPGe with CeBr_{3} and LaBr_{3} :Ce detectors, respectively.
[B. Löher, V. Derya et al., NIM A 723, 136 (2013)]

Particle- γ coincidence experiments to study the low-lying E1 response at FSU and TAMU

- Coincident γ-ray detection after nucleon transfer reactions with CeBrA at FSU SE-SPS
- $\left(\alpha, \alpha^{\prime} \gamma\right)$ with MDM and HYPERION at intermediate energies at TAMU cyclotron

Isospin structure of 1^{-}states?
[Isospin splitting in ${ }^{124}$ Sn: J. Endres, E. Litvinova, et al., PRL 105 (2010) 212503; Reviews: D. Savran et al., PPNP 70, 210 (2013) \& A. Bracco et al., PPNP 106, 360 (2019)]

Is there a unique E1 excitation mode different from the tail of the IVGDR? Does it depend on neutron excess or the neutron-skin thickness? If so, can it be used to constrain parameters of the EOS? What is the influence of this near-threshold mode on neutron capture?

Particle- γ coincidence experiments to study the low-lying E1 response at FSU and TAMU

- Coincident γ-ray detection after nucleon transfer reactions with CeBrA at FSU SE-SPS
- ($\alpha, \alpha^{\prime} \gamma$) with MDM and HYPERION at intermediate energies at TAMU cyclotron

Isospin structure of 1^{-}states?
[Isospin splitting in ${ }^{124} \mathrm{Sn}$: J. Endres, E. Litvinova, et al., PRL 105 (2010) 212503; Reviews: D. Savran et al., PPNP 70, 210 (2013) \& A. Bracco et al., PPNP 106, 360 (2019)]

Is there a unique E1 excitation mode different from the tail of the IVGDR? Does it depend on neutron excess or the neutron-skin thickness? If so, can it be used to constrain parameters of the EOS? What is the influence of this near-threshold mode on neutron capture?

Several arrays are available to tackle science questions at the frontiers of low-energy nuclear physics and nuclear astrophysics! The future is bright.

Solenoidal Spectrometer Programs at ATLAS and FRIB*

Ben Kay, Argonne National Laboratory (kay@anl.gov)
2022 NSAC Long-Range Plan Town Hall Meeting on Nuclear Structure, Reactions and Astrophysics

[^2]
The HELIOS program

The first of kind, continuous evolution of capabilities

- The "(d, p) machine" (mass 8-238), a broad class of reactions $\left[(d, p),(d, t),(d, 3 H e),(d, a),\left(d, d^{\prime}\right),\left(p, p^{\prime}\right),(6 L i, d),(a, p),(t, p), e t c.\right)$, isomeric beams (${ }^{26} \mathrm{Al},{ }^{18} \mathrm{~F},{ }^{16} \mathrm{~N}, \ldots$.)
- Expanding suite of auxiliary detectors, Apollo, LSU fastcounting ionization chamber, gas-cell targets, AT-TPC, SOLSTISE, fission-fragment detectors, etc.
- Future: RAISOR beams (inc. isomer beams), nuCARIBU beams, large demand for stable beams, actinides, AT-TPC campaigns

SOLARIS at ReA

A new dual-mode device to exploit the large dynamic range of beams at ReA

- Operates with the AT-TPC or with dual Si-arrays in vacuum
- Successful 2021 ReA standalone campaign (two AT-TPC runs, three Si-array-mode [using HELIOS DAQ/dets] runs), shows great potential
- Si-arrays under development (2023-)

> The (d, p) to locate p-strength in ${ }^{33}$ Si,
> J. Chen et al., in prep. (2022)

ATLAS \& FRIB solenoidal-spectrometer program

Highly complementary programs

SOLARIS at ReA, intense beams, best-in-class instrumentation (arrays, ATTPC), push for higher energy, competition with the fast beam program

$0809101112131415161718|19| 20|21| 22|23| 24|25| 26|27| 28|29| 30$

The ISOLDE Solenoidal Spectrometer, access to ISOL beams, limited operation hours (likely ~1000 hrs for HIE-ISOLDE), chemistry dependent beams

"The (d,p)	Develop new
machine" ...	techniques/
exploiting the	capabilities in prep.
for RAISOR beams,	
simple in-flight	next-generation
beams	devices
Dominantly sd-shell nuclei, over 5 years led to physics program on weak-binding, bubble-nucleus arguments, etc.	New complex reactions, gas targets, photon detection, recoil detection, new DAQ, new array

CERN, HELIOS OISS

First experiments with
 RAISOR at ATLAS

HELIOS: RAISOR/nuCARIBU exploitation

AT-TPC sharing ..., re-vamp controls systems, beam tracking gas-jet target with SOLSTISE, surrogate reactions (Apollo, upgrades for (d, p) and ($d, p f$) studies, develop new tritium targets

SOLARIS: PAC2 \rightarrow ultimate, dual-mode use, extends reach to the limits of ReA's potential, reactions with complex final states possible via AT-TPC, dual-arrays provide a wealth of data for the development of reaction theory, ..., etc.

ORRUBA/GODDESS program

ATLAS (RIB/SIB)
NSCL/FRIB (fast/ReA)
Hl γ S (γ-induced), ...

Couples to

GS, GT, JENSA, S800, FMA, SECAR,...

Stripping, pickup, chargeexchange, inelastic scattering, heavier-ion induced [eg (α, p), ($\mathrm{b}_{\mathrm{Li}, \mathrm{p})}$]

- Largest Si suite for RIB physics in US
- Designed around reaction kinematics
- Originally conceived as a standalone device, but increasingly coupled to other instruments
- Detector/FE compatibility (ANASEN, ND, ...)

Si detector array
RRUBA
Experimental program
Some recent examples

Direct spectroscopic (α, p) for XRB JENSĂ ${ }^{56} \mathrm{Ni}(\alpha, p)$

Direct reactions with RIBs (esp. at FRIB)

- Cornerstone of structure and reactions program
- Provides detailed tests of structure models ($\mathrm{E}, \ell_{p}, J \pi, \mathrm{C}^{2} S, \ldots$)
- Can be used to determine energies and strengths of isolated resonances
- Guidance to the SECAR program; some resonances are out of reach of direct measurements

Direct reactions for determining (n, γ) cross sections

- DSD cross sections to bound states ($\mathrm{E}, \ell_{p}, J \pi, C^{2} S$) eg (d, p)
- Decay of γ emission probabilities for unbound states (ie constraint of decay of CN)
- eg via (d, pr) (p,dy) (p,p' γ) etc
- Crucial requirements
- Beam energy (to reach states above S_{n}) $>10 \mathrm{MeV} / \mathrm{A}$
- Charged-particle resolution

ReA is the place to do it @FRIB
${ }^{38} \mathrm{~K}, 38 \mathrm{Ar}(d, p) @ \sim 5 \mathrm{MeV} / \mathrm{u}$

- Energy
- Emittance

VASTLY improved CP resolution vs in-flight
(ReA ~100-200 keV vs In-flight 0.5-1 MeV)

Priority Requests

- ReA12 upgrade to populate above S_{n}, S_{p}
(comparatively minor investment away from world-leading facility)
- High-acceptance recoil separator (ISLA), critical for recoil detection at FRIB intensities
instantaneous beam rates = 10-100 xav.

Opportunities with lifetime measurements
 - tracking structural evolution of exotic nuclei

Hiro IWASAKI (FRIB/MSU)

Unified understanding of nuclear structure and its evolution

Integrated picture of structural evolution of exotic nuclei

- New experiments toward dripline (FRIB400), toward higher spins (ReA/ISLA), with higher precision and accuracy (GRETA/HRS/model independent methods)
- Coordinated efforts with nuclear data and theory (sensitivity studies)

FRIB400
White Paper

Opportunities with lifetime measurements at FRIB and FRIB400

\cdots Known isotopes (~3000 nuclides)
\cdots... Lifetime studied in the last 20 years (~ 5000 levels for ~ 700 nuclides)
\cdots. Lifetime studied with rare isotope beams (~ 250 levels for ~ 120 nuclides)

In-beam γ-ray spectroscopy with fast beams and direct reaction - the next decade

Alexandra Gade
Professor of Physics

$\frac{\text { MICHIGAN STATE }}{\text { U N I VER S I T Y }}$

Office of
Science

Enormous opportunities with in-beam γ-ray spectroscopy in the FRIB400 era - using GRETA and extended LH_{2} target

 luminosity gain because a thick LH_{2} target as being designed by LBNL (H. Crawford) can be used at the high beam energies

Fast-beam direct reactions in the FRIB400 era reaching the most exotic systems and majorly advancing their interpretation

- More nuclei with extreme skins come Example: Extreme skins in reach with FRIB400 into reach for scattering or interaction cross section measurements
- Quasi-free scattering - such as (p,2p) and ($p, p n$) reactions - become practical due to minimized distortions and greatly increased nuclear transparency, both of which are an advantage for all fastbeam direct reaction interpretations
- Kinematic focusing improves transmission/efficiency for reaction experiments and fission
- Glauber multiple-scattering theory in the optical limit using the eikonal and sudden approximations becomes more reliable

- Halo and skin studies via pion production become possible

Facility for Rare Isotope Beams
U.S. Department of Energy Office of Science

Michigan State University

Needed: FRIB400, HRS(S800), GRETA,
CAESAR 2022 Town Meeting - Facilities session, Slide 3

Systematic measurements along isotopic chains
Lawrence Livermore

Exotic nuclei probed by reactions

Fig. 1 Schematic representation of the possible reaction mechanisms that can be used to probe exotic nuclei at FRIB as a function of energy. Reactions beyond $200 \mathrm{MeV} / \mathrm{u}$ will require the FRIB400 upgrade. Figure adapted from FRIB400.

Typically analyzed in few-body models

One can infer nuclear properties, testing our predictions for exotic nuclei and refining theories of the nuclear force

Theory analyses require: 1. Reaction models (e.g. DWBA, ADWA, Eikonal, CDCC, etc)
 2. Overlap function of the projectile (not only bound states, scattering/resonant states too!)

3. Projectile-target interaction i.e. optical potentials

Simultaneous measurements of multiple channels along isotopic chains to support theory

Why Multiple Reaction Channels?

Measurements of reactions at different energies

Complex reactions (e.g. transfer/knockout) \& elastic scattering \rightarrow Improve our constrain of optical potentials for specific exp.

Why Full Isotopic Chains?

Support the development of use of EFT in reaction theory
\rightarrow Already successful for one-neutron halo (cf Papenbrock's \& Phillips' talks)
\rightarrow What about more complex \& bound systems?

Provide a testing grounds for our few-body reaction models

Improvements in reaction theory

Constrain different properties of the overlap function (e.g. low E for ANCs and high E for more internal part)

Develop more accurate global (dispersive) optical model with uncertainties

Which Isotopic Chains? One including exotic structures, e.g., haloes, exotic decay... \rightarrow Carbon, Magnesium (Crawford), ...
This is a theorist input... Experimental needs to make this possible: Active target? More workforce ? And ... ?

EO Searches Through Decay Spectroscopy

Ben Crider
NSAC Long Range Plan Town Hall on Nuclear
Structure, Reactions, and Astrophysics
Nuclear Structure \& Reactions Experiments
Working Group
November 14-16, 2022

Sensitive EO searches following beta decay require investment in ML methods

- E0 transitions provide model independent view of changes in nuclear structure
- Dependence on state mixing and difference in meansquared charged radii can help provide distinct fingerprint of configurations involved
- E0 searches enabled by implanting rare isotopes into solid state or scintillator detectors.
- Continued E0 searches in IoI during next LRP period
- Technique will also identify many lowenergy isomeric states
- Optimized searches require investment in ML architectures.

Science: Exploring Nuclear Structure with the FDS

- Uniquely positioned for discovery experiments at the extremes due to low-rate sensitivity
- Critical experiment inputs for theoretical comparison
- Half-lives
- Delayed neutron and γ branches
- Strength determination (above and below S_{n})
- Identification of isomeric states

- Required FDS detector configurations
- Charged particle detection for ions and electrons
- Neutrons (time-of-flight or thermal)
- Photons
- TAS

[^0]: K. Heyde and J.L. Wood, Rev. Mod. Phys. 83, 1467 (2019).

[^1]: Nature Physics 15, 428-431 (2019)

[^2]: *This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under Contracts No. DE-AC02-06CH11357

