# Origin and Resummation of Threshold Logarithms in the Lattice QCD Calculations of PDFs

Xiang Gao **Argonne National Laboratory** 

Based on Phys.Rev.D 103 (2021) 9, 094504 with Kyle Lee, Swagato Mukherjee, Charles Shugert, and Yong Zhao

LaMET 2022, Dec 1 – 3, Chicago







Non-perturbative PDFs

 $\sigma = \sum f_i(x, Q^2) \circledast \sigma \{eq_i(xP) \to eq_i(xP+q)\}$ 

Perturbative parton process

## Hadron Structure and Tomography:

- How hadrons are built.
- Mass and spin decomposition of hadron.

# **High-energy phenomenology:**

- Standard Model backgrounds.
- Higgs physics and search for physics beyond the Standard Model.



# Large momentum effective theory (LaMET)

## **Quasi-PDFs** Factorization

З

• X. Ji, PRL 110 (2013); SCPMA57 (2014);

- X. Xiong, X. Ji, et al, PRD 90 (2014);
- Y.-Q. Ma, et al, PRD98 (2018), PRL 120 (2018);
- T. Izubuchi, X. Ji, et al PRD98 (2018).
- X. Ji, Y. Zhao, et al, RMP 93 (2021).









# **Pseudo PDF / short distance factorization**

## **Short-distance** factorization:

- V. Braun et al., EPJC 55 (2008)
- A. V. Radyushkin et al., PRD 96 (2017)
- Y. Ma et al., PRL 120 (2018)
- T. Izubuchi et al., PRD 98 (2018)

$$h^{R}(\lambda, z^{2}, \mu) = h^{R}(z, P_{z}, \mu)$$

$$= \int_{-1}^{1} d\alpha \mathscr{C}(\alpha, \mu^{2} z^{2}) \int_{-1}^{1} dy e^{-iy\alpha\lambda} q(y, \mu) + \mathscr{O}(z^{2} \Lambda_{Q}^{2})$$

$$\lambda = z P_{z}$$
Perturbative kernel

- The perturbative matching is valid in short range of z.
- The information that lattice data contains is limited by the range of finite  $\lambda = z P_{\tau}$ .



Pion valence quark PDF: fixed order 5

### Moments of pion valence quark PDF



 Lattice prediction of pion valence PDF show good agreement with most recent Global analysis from JAM, xFitter.

### **Pion valence quark PDF**



Pion valence quark PDF: fixed order

### Moments of pion valence quark PDF



### Improvement:

• ...

6

- Higher statistics.
- Power correction: larger momentum.

### **Pion valence quark PDF**

• Lattice artifacts: smaller lattice spacing, chiral fermion calculations.

• Perturbative matching: higher order, resummation.





### **Quasi-PDFs Factorization:**

$$\tilde{q}(x, P_z) = \int \frac{dy}{|y|} C(\frac{x}{y}, \frac{\mu}{yF})$$

## **One-loop matching:**

$$C^{(1)}(\xi, \frac{\mu}{|y|P_z}) = \frac{\alpha_s C_F}{2\pi} \delta(1-\xi) \left[ \frac{3}{2} \ln \frac{\mu^2}{4y^2 P_z^2} - \frac{5}{2} \right]$$
$$+ \frac{\alpha_s C_F}{2\pi} \begin{cases} \left( \frac{1+\xi^2}{1-\xi} \ln \frac{\xi}{\xi-1} + 1 \right)_+ & \xi > 1 \\ \frac{1+\xi^2}{1-\xi} \left[ -\ln \frac{\mu^2}{4y^2 P_z^2} - \ln \frac{\xi}{1-\xi} - 1 \right]_+ 0 < \xi < 1 \\ \left( -\frac{1+\xi^2}{1-\xi} \ln \frac{-\xi}{1-\xi} - 1 \right)_+ & \xi < 0 \end{cases}$$

# Large momentum effective theory (LaMET)

 $\frac{\mu}{P_{z}})q(y,\mu) + \mathcal{O}(\frac{\Lambda_{QCD}^{2}}{x^{2}P_{z}^{2}},\frac{\Lambda_{QCD}^{2}}{(1-x)P^{2}})$ 

**DGLAP** evolution • X. Ji, Y. Zhao, et al, RMP 93 (2021). • Y. Su et al, arXiv: 2209.01236  $\frac{dC^{(1)}(\xi,\frac{\mu}{yP_z})}{d\ln(yP_z)} = \frac{\alpha_s}{\pi} \left[ P_{qq}^{(0)}(\xi) - \frac{3}{2}(1-\xi) \right]$ 





### **Quasi-PDFs Factorization:**

$$\tilde{q}(x, P_z) = \int \frac{dy}{|y|} C(\frac{x}{y}, \frac{\mu}{yF})$$

## **One-loop matching:**

$$C^{(1)}(\xi, \frac{\mu}{|y|P_z}) = \frac{\alpha_s C_F}{2\pi} \delta(1-\xi) \left[ \frac{3}{2} \ln \frac{\mu^2}{4y^2 P_z^2} - \frac{5}{2} \right]$$
$$+ \frac{\alpha_s C_F}{2\pi} \begin{cases} \left( \frac{1+\xi^2}{1-\xi} \ln \frac{\xi}{\xi-1} + 1 \right)_+ & \xi > 1 \\ \frac{1+\xi^2}{1-\xi} \left[ -\ln \frac{\mu^2}{4y^2 P_z^2} - \ln \frac{\xi}{1-\xi} - 1 \right]_+ & 0 < \xi < 1 \\ \left( -\frac{1+\xi^2}{1-\xi} \ln \frac{-\xi}{1-\xi} - 1 \right)_+ & \xi < 0 \end{cases}$$

# Large momentum effective theory (LaMET)

 $\frac{\mu}{P_{\tau}})q(y,\mu) + \mathcal{O}(\frac{\Lambda_{QCD}^2}{x^2 P_{\tau}^2}, \frac{\Lambda_{QCD}^2}{(1-x)P^2})$ 



 $\xi \rightarrow 1$  approaching Landau pole



# 9 The pseudo distribution

**Short-distance Factorization:** 

$$h^{R}(\lambda, z^{2}, \mu) = \int_{-1}^{1} d\alpha \mathscr{C}(\alpha, \mu) d\alpha \mathscr{C}(\alpha, \mu) d\alpha \mathscr{C}(\alpha, \mu) = \int_{-1}^{1} d\alpha \mathscr{C}(\alpha, \mu) d\alpha$$

## **One-loop matching:**

$$\mathscr{C}^{(1)}(\alpha, z^{2}\mu^{2}) = \delta(1-\alpha)\frac{\alpha_{s}C_{F}}{2\pi} \left[\frac{3}{2}\ln\frac{z^{2}\mu^{2}e^{2\gamma_{E}}}{4} + \frac{5}{2}\right] + \frac{\alpha_{s}C_{F}}{2\pi} \left\{\left(\frac{1+\alpha^{2}}{1-\alpha}\right)_{+}\left[-\ln\frac{z^{2}\mu^{2}e^{2\gamma_{E}}}{4} - 1\right] - \left(\frac{4\ln(1-\alpha)}{1-\alpha}\right)_{+} + 2(1-\alpha)_{+}\right\}\theta(\alpha)\theta(1)\right\}$$

 $,\mu^{2}z^{2})\int_{-1}^{1}dy e^{-iy\alpha\lambda}q(y,\mu)+\mathcal{O}(z^{2}\Lambda_{QCD}^{2})$ 

## **DGLAP** evolution

 $-\alpha$ )

- A. V. Radyushkin, Phys.Lett.B 781 (2018).
- X. Ji, Y. Zhao, et al, RMP 93 (2021).
- Y. Su et al, arXiv: 2209.01236

$$\frac{d\mathscr{C}(\alpha, \mu^2 z^2)}{d \ln z^2} = \frac{\alpha_s}{2\pi} \left[ -P_{qq}^{(0)}(\alpha) - \frac{3}{2}(1-\alpha) \right]$$



# **10** The pseudo distribution

**Short-distance Factorization:** 

$$h^{R}(\lambda, z^{2}, \mu) = \int_{-1}^{1} d\alpha \mathscr{C}(\alpha, \mu^{2} z^{2}) \int_{-1}^{1} dy e^{-iy\alpha\lambda} q(y, \mu) + \mathscr{O}(z^{2} \Lambda_{QCD}^{2})$$

## **One-loop matching:**

$$\mathscr{C}^{(1)}(\alpha, z^{2}\mu^{2}) = \delta(1-\alpha)\frac{\alpha_{s}C_{F}}{2\pi} \left[\frac{3}{2}\ln\frac{z^{2}\mu^{2}e^{2\gamma_{E}}}{4} + \frac{5}{2}\right] + \frac{\alpha_{s}C_{F}}{2\pi} \left\{\left(\frac{1+\alpha^{2}}{1-\alpha}\right)_{+}\left[-\ln\frac{z^{2}\mu^{2}e^{2\gamma_{E}}}{4} - 1\right]\right\} - \left(\frac{4\ln(1-\alpha)}{1-\alpha}\right)_{+} + 2(1-\alpha)_{+}\right\}\theta(\alpha)\theta(1-\alpha)$$

Threshold logarithms  
• X. Gao, et al, Phys.Rev.D 103 (2021) 9  

$$\lim_{\alpha \to 1} \mathscr{C}^{(1)}(\alpha, z^2 \mu^2)$$

$$\sim \frac{\alpha_s C_F}{2\pi} \left[ -\frac{4\ln(1-\alpha)}{1-\alpha} - \frac{2}{(1-\alpha)} \ln \frac{z^2 \mu^2 e^{2\gamma_E}}{4} - \frac{2}{1-\alpha} \right]_+$$

$$-\frac{2}{1-\alpha} \ln \frac{4e^{-2\gamma_E}}{(1-\alpha)^2 z^2 \mu^2}$$

 $\alpha \rightarrow 1$  approaching UV fixed point



**3D** momentum distribution

$$\tilde{q}(x, \vec{k}_{\perp}, P^{z}) = \frac{1}{2P^{0}} \int \frac{db_{z} d^{2} \vec{b}_{\perp}}{(2\pi)^{3}} e^{i\vec{k}_{\perp} \cdot \vec{b}_{\perp} + ib_{z}(x, \vec{k}_{\perp})} \\ \times \langle P | \bar{\psi}(b) W(b, 0) \gamma^{t} \psi(0) | P \rangle$$

- Straight-line gauge link
- Different from normal TMD distribution with a staple shaped gauge link





**3D** momentum distribution

$$\tilde{q}(x, \vec{k}_{\perp}, P^{z}) = \frac{1}{2P^{0}} \int \frac{db_{z} d^{2} \vec{b}_{\perp}}{(2\pi)^{3}} e^{i\vec{k}_{\perp} \cdot \vec{b}_{\perp} + ib_{z}(xP^{z})} \\ \times \langle P | \bar{\psi}(b) W(b, 0) \gamma^{t} \psi(0) | P \rangle$$

• Relation to the quasi-PDF

$$\int d^{2}\vec{k}_{\perp} \ \tilde{q}(x,\vec{k}_{\perp},P^{z}) = \tilde{q}(x,P^{z})$$
  
Or  

$$\lim_{b_{\perp}\to 0} \tilde{q}(x,\vec{b}_{\perp},P^{z}) = \tilde{q}(x,P^{z})$$



• Quasi-PDF

13

$$\frac{2}{|1-\xi|} \ln \frac{|1-\xi| P_z^2}{\mu^2}$$

 $\xi \rightarrow 1$  approaching Landau pole

Since  $k_1$  is integrated over, the limit  $x \rightarrow 1$  includes contributions from both hard and soft transverse momentum modes, with the latter being sensitive to **IR** physics.

$$\int d^2 \vec{k}_{\perp} \ \tilde{q}(x, \vec{k}_{\perp}, P^z) = \tilde{q}(x, P^z)$$

# Pseudo-PDF

$$\frac{2}{1-\alpha}\ln\frac{4e^{-2\gamma_E}}{(1-\alpha)^2z^2\mu^2}$$

## $\alpha \rightarrow 1$ approaching UV fixed point

Since pPDF corresponds to the primordial TMD, the emitted gluon remains off-shell with virtual mass  $k_{\perp}$  in the limit of  $x \rightarrow 1$ . In coordinate space, small  $b_{\perp}$  corresponds to large  $k_{\perp}$ , so the gluon is in the UV region.

$$\lim_{P^z \to \infty} \tilde{q}(x, \vec{b}_{\perp}, P^z)$$

![](_page_12_Picture_12.jpeg)

![](_page_13_Picture_0.jpeg)

# In the I

Mellin-moment space (OPE)  

$$a_N(\mu) = \int_{-1}^1 dy \ y^N q(y,\mu)$$

$$\tilde{h}_{\gamma^t}(\lambda, z^2 \mu^2) = \sum_{N=0}^\infty \frac{(-i\lambda)^N}{N!} C_N(\alpha_s(\mu), z_0^2 \mu^2) a_N(\mu) + \dots$$

At NLO 

$$C_N^{\text{NLO}} = \int_0^1 dw \ w^N \mathscr{C}^{\text{NLO}}(w, z^2 \mu^2)$$
  
=  $\frac{\alpha_s(\mu)C_F}{2\pi} \left[ \left( \frac{3 + 2N}{2 + 3N + N^2} + 2H_N \right) \ln(z_0^2 \mu^2) + \frac{5 + 2N}{2 + 3N + N^2} + 2(1 - H_N)H_N - 2H_N^{(2)} \right]$ 

# Threshold resummation at NLL accuracy

![](_page_13_Figure_6.jpeg)

![](_page_13_Picture_7.jpeg)

### Threshold resummation at NLL accuracy 15

$$\ln C_N^{\text{NLL}} = \int dx \frac{x^{N-1} - 1}{1 - x} \left[ \int_{\mu^2}^{\frac{(1 - x)^{-2}}{z_0^2}} \frac{dk^2}{k^2} A(\alpha_s(k^2)) + B(\alpha_s((1 - x)^{-2}/z_0^2)) \right]$$

$$A(\alpha_s) = A^{(0)}a_s + A^{(1)}a_s^2 + \dots ,$$

Leading logarithm (LL)  $\bullet$ 

$$A^{(0)} = -B^{(0)} = 2C_F$$

• For NLL which neglects  $\mathcal{O}(\alpha_s^2 \ln N')$ terms

$$A^{(1)} = 2C_F \left[ C_A \left( \frac{67}{18} - \frac{\pi^2}{6} \right) - \frac{10}{9} n_f T_F \right]$$

Using the standard technique of threshold resummation

$$B(\alpha_s) = B^{(0)}a_s + B^{(1)}a_s^2 + \dots$$

 DGLAP evolution may also be considered

$$\left[\frac{\partial}{\partial \ln \mu^2} + \beta(a_s(\mu))\frac{\partial}{\partial a_s} - \gamma_N\right]C_N = 0$$

![](_page_14_Picture_12.jpeg)

### Threshold resummation at NLL accuracy 16

NLL threshold resummation + LL DGLAP evolution (evo)

 $C_{N}^{\text{NLL+evo}}(\alpha_{s}(\mu), z_{0}^{2}\mu^{2}) = C_{N}^{\text{NL}}$ 

 $\ln C_N^{\rm NLL}(\alpha_s(z_0^{-1}), 1) = -\frac{1}{2}$ 

## • Using the inverse Mellin transform, we can eventually obtain the resummed matching coefficient

 $\mathscr{C}^{\text{NLL}+\text{evo}}(w, z^2 \mu^2) = e^{-\frac{\pi^2}{3}a_s C}$ 

 $\times \exp \left| \ln N' g_1(\tau, 0) + g_2 \right|$ 

$$L^{L}(\alpha_{s}(z_{0}^{-1}),1)\left(\frac{\alpha_{s}(z_{0}^{-1})}{\alpha_{s}(\mu)}\right)^{\frac{\gamma_{N}^{(0)}}{\beta_{0}}}$$

$$\frac{\pi^2}{3} a_s C_F + \ln N' g_1(\tau, 0) + g_2(\tau, 0)$$
• Phys.

Phys.Rev.D 103 (2021) 9, 094504

$$C_{F} \frac{1}{2\pi i} \int_{C-i\infty}^{C+i\infty} dN w^{-N}$$

$$T_{2}(\tau,0) \left[ \left( \frac{\alpha_{s}(z_{0}^{-1})}{\alpha_{s}(\mu)} \right)^{\frac{\gamma_{N}^{(0)}}{\beta_{0}}} \right]$$

![](_page_15_Picture_12.jpeg)

![](_page_16_Picture_0.jpeg)

# The Wilson coefficient at LO, NLO, NLOevo, and NLOevo+NLL accuracy

![](_page_16_Figure_2.jpeg)

- DGLAP evolution is important when  $1/z_0$  is far from  $\mu$ .

 $\alpha_{\rm s} \ln^2 N'$ ,  $\alpha_{\rm s} \ln N'$ 

• Threshold resummation is necessary for either large  $\alpha_s$  or large N

![](_page_16_Picture_8.jpeg)

18

# Impacts of NLL resummation

 $\langle x^2 \rangle$  by fitting a = 0.04 fm lattice results with pion boosted up to 2.42 GeV

![](_page_17_Figure_3.jpeg)

 $z_0 = |z| e^{\gamma_E}/2$ 

- At LO one can clearly observe the *z*-dependence.
- Beyond LO, one can find a plateau indicating that the coefficients can explain the *z*. -dependence.
- Threshold resummation slightly improve the plateau.

![](_page_17_Picture_8.jpeg)

Impacts of NLL resummation

19

![](_page_18_Figure_1.jpeg)

Our current lattice data are only sensitive to the first few moments, where threshold resummation has mild impact.

• Situation can be improved if we manage to get more precise data and increase the pion momentum aimed for higher moments.

![](_page_18_Picture_7.jpeg)

![](_page_19_Picture_0.jpeg)

- Precision lattice calculation of PDFs will require QCD evolution and resummation.
- The origin of threshold logarithms in the quasi-PDF and spatial correlators is identified, and resummed using standard techniques.
- Current lattice data are only sensitive to the lowest moments or finite-x range of the PDF, so the effect of threshold resummation is not significant.
- Threshold resummation will be important for future calculations with larger hadron momenta to study the large-x behavior of the PDF.

# Summary

![](_page_19_Picture_6.jpeg)

# Leading divergence in the one-loop diagram

 $\tilde{q}_{cs}^{(1)}(x,\vec{k}_{\perp},p^{z})$  $= \frac{g^2 \mu^{2\epsilon} C_F}{2(2\pi)^{d-1}} \int_0^1 ds \, \frac{(1-s)^{2-d}}{\vec{k}_\perp^2} \qquad k_t^2 = \vec{k}_\perp^2 / p_z^2$  $\times \left[ \frac{k_t^2 (1+x-2s) + (x-s)^3}{\left(k_t^2 + (s-x)^2\right)^{3/2}} - \frac{k_t^2 (1+x-2s) + (x-1)^3}{\left(k_t^2 + (x-1)^2\right)^{3/2}} \right]$ 

## To obtain the quasi-PDF

$$\tilde{q}_{cs}^{(1)}(x,p^{z}) = \int d^{d-2}k_{\perp} \ \tilde{q}_{cs}^{(1)}(x,\vec{k}_{\perp},p^{z})$$
$$\xrightarrow{x \to 1^{-}} - \frac{g^{2}C_{F}}{8\pi^{2}} \frac{1}{\epsilon} \frac{1+(1-x)^{-2\epsilon}}{1-x} \left(\frac{\mu^{2}}{p_{z}^{2}}\right)^{\epsilon}$$

By expanding in  $\epsilon$ , we can reproduce the leading threshold logarithm.

![](_page_20_Figure_7.jpeg)

Here the factor  $(1 - x)^{-2\epsilon}$  is crucial to reproduce the correct sign of leading threshold logarithm, which plays a similar role as the phase-space measure in DIS and DY cross sections.

![](_page_20_Picture_9.jpeg)

# Leading divergence in the one-loop diagram

 $\tilde{q}_{cs}^{(1)}(x,\vec{k}_{\perp},p^{z})$  $= \frac{g^2 \mu^{2\epsilon} C_F}{2(2\pi)^{d-1}} \int_0^1 ds \; \frac{(1-s)^{2-d}}{\vec{k}_\perp^2} \qquad k_t^2 = \vec{k}_\perp^2 / p_z^2$  $\times \left[ \frac{k_t^2 (1+x-2s) + (x-s)^3}{\left(k_t^2 + (s-x)^2\right)^{3/2}} - \frac{k_t^2 (1+x-2s) + (x-1)^3}{\left(k_t^2 + (x-1)^2\right)^{3/2}} \right]$ 

## To obtain the pseudo-PDF

22

$$\lim_{x \to 1} \tilde{q}_{cs}^{(1)}(x, \vec{b}_{\perp}, p^z = \infty)$$
$$= \frac{g^2 C_F}{8\pi^2} \Gamma(-\epsilon) \frac{2(1-x)^{2\epsilon}}{(1-x)} (b_{\perp}^2 \mu^2)^{\epsilon}$$

By expanding in  $\epsilon$ , we can reproduce the leading threshold logarithm.

![](_page_21_Figure_7.jpeg)

Since the factorization for the pPDF in the small  $b_{\perp}$  limit, the physical scale in the threshold logarithm is proportional to  $(1 - x)^{-2}b_{\perp}^{-2}$ , which approaches the UV fixed point in the  $x \rightarrow 1$  limit.

![](_page_21_Picture_9.jpeg)