

Resuming Small-Momentum Large Logarithms in LaMET PDF Matching

Yushan Su, University of Maryland

Y. Su, J. Holligan, X. Ji, F. Yao, J. Zhang, R. Zhang, arXiv: 2209.01236

High Precision LaMET PDFs from Lattice

High Precision Lattice Data

- Large Momentum Limit
- Excited State Contamination
- Discretization Effect (O(a) Effect, O(a/z))
- Physical Pion Mass
- Infinite Volume Limit

High Accuracy Perturbation Theory

- Hybrid Renormalization and Self Renormalization
- Renormalon Uncertainty and Power Accuracy
- Small-Momentum Logarithms Resummation($\Lambda_{\rm QCD} \ll p_z \ll P_z$)
- Threshold Logarithms Resummation $(p_z \sim P_z)$

Outline

Motivations for Resummation

Resummation in LaMET PDF Matching

Resummation Effects in Pion PDF

QCD Resummation for a single physics scale

QCD perturbation series with single log terms

(LaMET PDF matching kernel is under this framework)

$$\begin{split} \tilde{a}(Q,\mu) &= 1 + \alpha_s(\mu) [c_{11}L + c_{10}] \\ &+ \alpha_s^2(\mu) [c_{22}L^2 + c_{21}L + c_{20}] \\ &+ \alpha_s^3(\mu) [c_{33}L^3 + c_{32}L^2 + c_{31}L + c_{30}] \\ &+ \alpha_s^4(\mu) [c_{44}L^4 + c_{43}L^3 + c_{42}L^2 + c_{41}L + c_{40}] \\ &+ \cdots \end{split}$$

Q: physics scale μ : renormalization scale $L = \ln(\mu^2/Q^2)$

If Q differs from μ by orders of magnitude, $\alpha_s(\mu) L$ is large.

e.g. Q = 10 GeV and $\mu = 2$ GeV, $\alpha_s(\mu) L \sim O(1)$.

One has to resum the log terms.

QCD Resummation

QCD perturbation series with single log terms

$$\tilde{h}(Q,\mu) = 1 + \alpha_s(\mu)[c_{11}L + c_{10}] + \alpha_s^2(\mu)[c_{22}L^2 + c_{21}L + c_{20}] + \cdots$$

Q: physics scale μ : renormalization scale $L = \ln(\mu^2/Q^2)$

Renormalization group equation constrains the coefficients of log terms $\frac{d\tilde{h}(Q,\mu)}{d\ln\mu^2} = \gamma(\mu)\tilde{h}(Q,\mu)$ Recursive relations between the coefficients

Resummation of the log terms

QCD Resummation

QCD perturbation series with single log terms

$$\tilde{h}(Q,\mu) = 1 + \alpha_s(\mu)[c_{11}L + c_{10}] + \alpha_s^2(\mu)[c_{22}L^2 + c_{21}L + c_{20}] + \cdots$$

Q: physics scale μ : renormalization scale $L = \ln(\mu^2/Q^2)$

The log terms are generated from RG evolution

$$\tilde{h}_{\rm RGR}(Q,\mu) = \tilde{h}(Q,Q) \exp\left[\int_Q^{\mu} d\ln(\mu'^2) \ \gamma(\mu')\right]$$

Solving the RG equation is equivalent to resuming the log terms

If $\mu \sim Q$, use the infinitesimal transformation

$$\exp\left[\int_{Q}^{\mu} d\ln(\mu'^{2}) \gamma(\mu')\right] \sim 1 + \int_{Q}^{\mu} d\ln(\mu'^{2}) \gamma(\mu')$$

If $\mu \gg Q$ or $\mu \ll Q$, keep $\exp\left[\int_{Q}^{\mu} d \ln(\mu'^2) \gamma(\mu')\right]$

Motivations for Resummation

e.g. Leading Log Resummation

QCD perturbation series with large log terms

$$\begin{split} \tilde{h}(Q,\mu) &= \begin{array}{l} 1 + \alpha_s(\mu) [c_{11}L + c_{10}] \\ &+ \alpha_s^2(\mu) [c_{22}L^2 + c_{21}L + c_{20}] \\ &+ \alpha_s^3(\mu) [c_{33}L^3 + c_{32}L^2 + c_{31}L + c_{30}] \\ &+ \cdots \\ & \\ & \\ \mathsf{LO+RGR} \end{split}$$

Q: physics scale μ : renormalization scale $L = \ln(\mu^2/Q^2)$

 γ_0, b_0

Leading log resummation through recursive relation

$$\frac{d\tilde{h}(Q,\mu)}{d\ln\mu^{2}} = \gamma(\mu)\tilde{h}(Q,\mu)$$

$$\frac{d\alpha_{s}}{d\ln\mu^{2}} = -b_{0}\alpha_{s}^{2} + \cdots$$

$$\gamma = \gamma_{0}\alpha_{s} + \cdots$$

$$\tilde{h}_{\text{LO+RGR}}(Q,\mu) = 1 + \alpha_{s}(\mu)\gamma_{0}L + \alpha_{s}^{2}(\mu)\frac{1}{2}\gamma_{0}(b_{0} + \gamma_{0})L^{2} + \cdots = \left(\frac{1}{1 - b_{0}\alpha_{s}(\mu)L}\right)^{\gamma_{0}/b_{0}}$$

Yushan Su @ UMD

• Leading log resummation through RG evolution $\tilde{h}_{\text{LO}+\text{RGR}}(Q,\mu) = \tilde{h}(Q,Q) \exp\left[\int_{0}^{\mu} d\ln(\mu'^{2}) \gamma(\mu')\right] = \left(\frac{\alpha_{s}(Q)}{\alpha_{s}(\mu')}\right)$

physics scale appears in the running coupling
$$\frac{\alpha_s(Q)}{\alpha_s(\mu)} \int_{-b_0}^{\gamma_0/b_0} = \left(\frac{1}{1-b_0 \alpha_s(\mu) L}\right)_{-7}^{\gamma_0/b_0}$$

Motivations for Resummation

e.g. Leading Log Resummation

QCD perturbation series with large log terms

$$\tilde{h}(Q,\mu) = \begin{array}{l} 1 + \alpha_{s}(\mu)[c_{11}L + c_{10}] \\ + \alpha_{s}^{2}(\mu)[c_{22}L^{2} + c_{21}L + c_{20}] \\ + \alpha_{s}^{3}(\mu)[c_{33}L^{3} + c_{32}L^{2} + c_{31}L + c_{30}] \\ + \cdots \end{array}$$

Q : physics scale μ : renormalization scale $L = \ln(\mu^2/Q^2)$

 γ_0, b_0 $\gamma_{0,1}, b_{0,1}, c_{10}$ $\gamma_{0,1,2}, b_{0,1,2}, c_{10}, c_{20}$ Leading log resummation through recursive relation

NLUTRGR

$$\frac{d\tilde{h}(Q,\mu)}{d\ln\mu^{2}} = \gamma(\mu)\tilde{h}(Q,\mu)$$

$$\frac{d\alpha_{s}}{d\ln\mu^{2}} = -b_{0}\alpha_{s}^{2} + \cdots$$

$$\gamma = \gamma_{0}\alpha_{s} + \cdots$$

$$\tilde{h}_{\text{LO+RGR}}(Q,\mu) = 1 + \alpha_{s}(\mu)\gamma_{0}L + \alpha_{s}^{2}(\mu)\frac{1}{2}\gamma_{0}(b_{0} + \gamma_{0})L^{2} + \cdots = \left(\frac{1}{1 - b_{0}\alpha_{s}(\mu)L}\right)^{\gamma_{0}/b_{0}}$$

Yushan Su @ UMD

Leading log resummation through RG evolution $\tilde{h}_{\text{LO+RGR}}(Q,\mu) = \tilde{h}(Q,Q) \exp\left[\int_{0}^{\mu} d\ln(\mu'^{2}) \gamma(\mu')\right] =$

physics scale appears in the running coupling
$$\left(\frac{\alpha_s(Q)}{\alpha_s(\mu)}\right)^{\gamma_0/b_0} = \left(\frac{1}{1-b_0 \alpha_s(\mu) L}\right)^{\gamma_0/b_0}$$
8

Log terms in MS scheme matching kernel

■ LaMET factorization

 $\tilde{f} = C \otimes f$

where \tilde{f} is the quasi-PDF, f is the light-cone PDF and C is the matching kernel.

e.g. Leading Log terms in the NLO, NNLO matching kernels

$$C_{\rm NLO}^{\overline{\rm MS}}\left(\xi,\frac{\mu}{|x|P_z}\right) = \frac{\alpha_s(\mu)c_F}{2\pi} \frac{1+\xi^2}{1-\xi} \left(-L\right)\theta(1-\xi)\theta(\xi) + \frac{\alpha_s(\mu)c_F}{2\pi}\delta(1-\xi)\left(\frac{3}{2}L+\frac{5}{2}\right) + \cdots$$

$$C_{\rm NNLO}^{\overline{\rm MS}}\left(\xi,\frac{\mu}{|x|P_z}\right) = \left(\frac{\alpha_s(\mu)}{2\pi}\right)^2 C_F^2 \frac{(3\xi^2+1)\ln[\xi]-4(1+\xi^2)\text{Log}[1-\xi]+2(1-\xi)^2}{2(\xi-1)} L^2\theta(1-\xi)\theta(\xi)$$

$$+ \left(\frac{\alpha_s(\mu)}{2\pi}\right)^2 \frac{1+\xi^2}{2(\xi-1)} C_F b_0 2\pi L^2\theta(1-\xi)\theta(\xi) + \cdots$$

Leading Log terms satisfy the recursive relations

$$\tilde{f} = C \otimes f$$

$$\frac{d\tilde{f}}{d \ln \mu^2} = \gamma \tilde{f}$$

$$\frac{df}{d \ln \mu^2} = P \otimes f$$

$$\frac{dC}{d \ln \mu^2} = -C \otimes P + \gamma C \bigoplus c_{m+1,m+1} = c_{m,m} \frac{-\otimes P_0 + \gamma_0 + b_0 m}{m+1}$$

$$DGLAP \quad \text{Heavy light quark}$$

$$\text{kernel} \quad \text{anomalous dimension}$$

$$Yushan Su @ UMD$$

X. Xiong et al., PRD (2014) T. Izubuchi et al., PRD (2018) W. Wang et al., PRD (2019) Z. Li et al., PRL (2021) L. Chen et al., PRL (2021) $\xi = \frac{x}{y}$ $2xP_z$: physics scale

 μ : renormalization scale

 $L = \ln\left(\frac{\mu^2}{4x^2 P_z^2}\right)$

Why the physics scale is $2xP_z$?

■ In Bjorken frame:

$$q^{\mu} = (0,0,0,-2xP_z)$$

$$p^{\mu} = (xP_z,0,0,xP_z)$$

$$(p+q)^{\mu} = (xP_z,0,0,-xP_z)$$

• The virtuality of photon $Q^2 = (2xP_z)^2$

Leading Logs in the Feynman Diagrams

Leading Logs in the Feynman Diagrams

DIS

Resummation in Hybrid scheme

- Hybrid renormalized matrix element is scale independent: X. Ji et al., NPB (2021) $\tilde{h}(z, P_z) = \frac{\tilde{h}^{\text{lat}}(z, a, P_z)}{\tilde{h}^{\text{lat}}(z, a, 0)} \theta(z_s - |z|) + \frac{\tilde{h}^{\text{lat}}(z, a, P_z)}{Z^R(z, a, \mu)\tilde{h}^{\overline{\text{MS}}}(z_s, \mu, 0)} \theta(|z| - z_s)$
- RG equation

RG equation

$$\mu \frac{dC_{\mathrm{RGR}}^{-1}\left(\frac{x}{y},\frac{\mu}{|x|P_z}\right)}{d\mu} = \int_x^1 \frac{dw}{w} P[w,\alpha_s(\mu)] C_{\mathrm{RGR}}^{-1}\left(\frac{x/w}{y},\frac{\mu}{|x/w|P_z}\right)$$

where the initial condition is

$$C_{\text{RGR}}^{-1}\left(\frac{x}{y}, \frac{2xP_z}{|x|P_z}\right) = C_{\text{fixed order}}^{-1}\left(\frac{x}{y}, \frac{2xP_z}{|x|P_z}\right) \qquad \text{physics scale appears} \\ \text{in the running} \\ \text{coupling } \alpha_s(2xP_z)$$

Lattice Data and Renormalization

- Pion valence PDF matrix element from BNL/ANL collaboration: $\tilde{h}^{|\text{at}|}(z, a, P_z) = \langle \pi^+(P_z) | \bar{u}(z) \gamma^t U(z, 0) u(0) - \bar{d}(z) \gamma^t U(z, 0) d(0) | \pi^+(P_z) \rangle$
- Hybrid renormalized matrix element:

$$\tilde{h}(z,P_z) = \frac{\tilde{h}^{\text{lat}}(z,a,P_z)}{\tilde{h}^{\text{lat}}(z,a,0)} \theta(z_s - |z|) + \frac{\tilde{h}^{\text{lat}}(z,a,P_z)}{Z^R(z,a,\mu)\tilde{h}^{\overline{\text{MS}}}(z_s,\mu,0)} \theta(|z| - z_s)$$

Gao et al., PRD (2020) Gao et al., PRD (2021) Gao et al., PRL (2022)

Compare RGR matching with fixed order one

Compare RGR matching with fixed order one

Compare different momenta

Compare different momenta

Conclusions

- Resummation of small-momentum large logarithms improves the prediction accuracy at intermediate x
- RGR exposes the breakdown of perturbation theory at small x, which is consistent with the conclusion drawn from higher-twist power counting
- Small x can be improved if we increase the momentum, which is made clear by RGR matching

Resum large logarithms to recover the intrinsic physical scale

QED example:

Bhabha scattering $e^+e^- \rightarrow e^+e^-$

Resummation

Resummation improves prediction accuracy

Peskin&Shroeder QFT

Normalization in Hybrid scheme

■ MS scheme matching kernel

$$\begin{split} C^{\overline{\mathrm{MS}}} \left(\xi, \frac{\mu}{|x|P_{z}}\right) &= \delta(1-\xi) \\ &+ \frac{\alpha_{s}(\mu)C_{F}}{2\pi} \begin{cases} \left(\frac{1+\xi^{2}}{1-\xi}\ln\left(\frac{\xi}{\xi-1}\right) + 1 - \frac{3}{2(1-\xi)}\right)_{+(1)}^{\left[1,\infty\right]} & \xi > 1 \\ \left(\frac{1+\xi^{2}}{1-\xi}\left[-L + \ln\left(\frac{1-\xi}{\xi}\right) - 1\right] + 1 + \frac{3}{2(1-\xi)}\right)_{+(1)}^{\left[0,1\right]} & 0 < \xi < 1 + \frac{\alpha_{s}(\mu)C_{F}}{2\pi}\delta(1-\xi)\left(\frac{3}{2}L + \frac{5}{2}\right) \\ \left(-\frac{1+\xi^{2}}{1-\xi}\ln\left(\frac{-\xi}{1-\xi}\right) - 1 + \frac{3}{2(1-\xi)}\right)_{+(1)}^{\left[-\infty,0\right]} & \xi < 0 \end{cases} \end{split}$$

Hybrid renormalized matrix element is scale independent:

$$\tilde{h}(z,P_z) = \frac{\tilde{h}^{\text{lat}}(z,a,P_z)}{\tilde{h}^{\text{lat}}(z,a,0)} \theta(z_s - |z|) + \frac{\tilde{h}^{\text{lat}}(z,a,P_z)}{Z^R(z,a,\mu)\tilde{h}^{\overline{\text{MS}}}(z_s,\mu,0)} \theta(|z| - z_s)$$

Heavy light quark term is eliminated in the matching kernel,

e.g. NLO Hybrid scheme matching kernel

$$C^{\text{hybrid}}\left(\xi,\frac{\mu}{|x|P_{z}}\right) = C^{\overline{\text{MS}}}\left(\xi,\frac{\mu}{|x|P_{z}}\right) - \frac{\alpha_{s}(\mu)C_{F}}{2\pi}\delta(1-\xi)\left(\frac{3}{2}L+\frac{5}{2}\right) + \frac{\alpha_{s}(\mu)C_{F}}{2\pi}\frac{3}{2}\left[-\frac{1}{|1-\xi|} + \frac{2\text{Si}[(1-\xi)|y|z_{s}P_{z}]}{\pi(1-\xi)}\right]_{+(1)}^{[-\infty,\infty]}$$

The physics scale after inversion

Before the inversion, the physics scale $2xP_z$ is for quasi parton

$$\tilde{f}(x, P_z) = C\left(\frac{x}{y}, \frac{\mu}{|x|P_z}\right) \otimes f(y, \mu) + \mathcal{O}\left[\frac{\Lambda_{\text{QCD}}^2}{x^2 P_z^2}, \frac{\Lambda_{\text{QCD}}^2}{(1-x)^2 P_z^2}\right]$$

■ Iterative inversion

$$\begin{split} \tilde{f}(x,P_z) &= \left[\delta \left(1 - \frac{x}{y} \right) + \delta C \left(\frac{x}{y}, \frac{\mu}{|x|P_z} \right) \right] \otimes f(y,\mu) \\ \tilde{f}(x,P_z) &= f(x,\mu) + \delta C \left(\frac{x}{y}, \frac{\mu}{|x|P_z} \right) \otimes f(y,\mu) \\ f(x,\mu) &= \tilde{f}(x,P_z) - \delta C \left(\frac{x}{y}, \frac{\mu}{|x|P_z} \right) \otimes f(y,\mu) \\ f(x,\mu) &= \tilde{f}(x,P_z) - \delta C \left(\frac{x}{y}, \frac{\mu}{|x|P_z} \right) \otimes \tilde{f}(y,P_z) + \delta C \otimes \delta C \otimes \tilde{f} - \delta C \otimes \delta C \otimes \delta C \otimes \tilde{f} + \cdots \end{split}$$

• After the inversion, the physics scale $2xP_z$ is for light cone parton

$$f(x,\mu) = \mathcal{C}^{-1}\left(\frac{x}{y},\frac{\mu}{|x|P_z}\right) \otimes \tilde{f}(y,P_z) + \mathcal{O}\left[\frac{\Lambda_{\text{QCD}}^2}{x^2 P_z^2},\frac{\Lambda_{\text{QCD}}^2}{(1-x)^2 P_z^2}\right]$$

An equivalent approach for the RGR matching

- RGR Matching formula $f = C_{\text{RGR}}^{-1} \otimes \tilde{f} = M\{e^{P}\} \otimes C^{-1} \otimes \tilde{f}$
- Two Steps for RGR matching
 - 1. Fixed order matching at physics scale: $f(x, 2xP_z) = C^{-1}\left(\frac{x}{y}, \frac{2xP_z}{|x|P_z}\right) \otimes \tilde{f}(y, P_z)$

2. DGLAP evolve
$$f(x, 2xP_z)$$
 to $f(x, \mu)$:

$$\mu \frac{df(x, \mu)}{d\mu} = \int_x^1 \frac{dw}{w} P[w, \alpha_s(\mu)] f\left(\frac{x}{w}, \mu\right)$$

Compare RGR matching with fixed order one

Yushan Su @ UMD