2022 Meeting on Lattice Parton Physics from Large Momentum Effective Theory (LaMET2022)

Contribution ID: 7

Type: not specified

Resumming Quark's Longitudinal Momentum Logarithms in LaMET Expansion of Lattice PDFs

Thursday, December 1, 2022 12:00 PM (25 minutes)

In the large-momentum expansion for parton distribution functions (PDFs), the natural physics scale is the longitudinal momentum (p_z) of the quarks (or gluons) in a large-momentum hadron. We show how to expose this scale dependence through resumming logarithms of the type $\ln^n p_z/\mu$ in the matching coefficient, where μ is a fixed renormalization scale. The result enhances the accuracy of the expansion at moderate $p_z > 1$ -GeV, and at the same time, clearly shows that the partons cannot be approximated from quarks with $p_z \sim \Lambda_{\rm QCD}$ which are not predominantly

collinear with the parent hadron momentum, consistent with power counting of the large-momentum effective theory. The same physics mechanism constrains the coordinate space expansion at large distances z, the conjugate of p_z ,

as illustrated in the example of fitting the moments of the PDFs.

Presenter: SU, Yushan (University of Maryland)

Session Classification: Session II