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Introduction to Pion DA

Pion Distribution Amplitude (DA)

Pion lightfront DA 𝜙 𝑥 : probability amplitude of pion in the bound
state’s minimal Fock component |𝑞&𝑞⟩
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Introduction to Pion DA

Factorization of hard exclusive process

Beneke, et al. NPB(2001)DA as important input to hard exclusive process at 𝑄! ≫ 𝛬"#$! :

: Nonperturbative, IR

: Perturbative, UV



Previous DA Calculations

Ø Theoretical calculations
1. QCD sum rule
2. Dyson-Schwinger Equation
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Introduction to Pion DA

Ø Moment calculations on Lattice 

1. Current-current correlators
2. Local twist-2 operators

Chernyak, et al., NPB (1982)
HOPE PRD (2022)
RQCD PRD (2019)

Braun, et al., EPJC (2007)
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Pros: Precise lowest moment
Cons: Unable to extract x-dependenceModel-dependent

𝜉! = '
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𝑑𝑥 𝜙(𝑥)(2𝑥 − 1)!

Local operators

Braun & Filyanov ZPC (1989)
Chang, et al. PRL (2013)
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Ø Large Momentum Effective Theory
Ø quasi-DA: Same IR behavior/ different UV behavior

Ø Approach 𝑃 → ∞ limit through large 𝑃0 expansion
Ø Matching to lightcone distribution

Pros: Direct x-dependence calculation, works well in mid-x region
Cons: Large 𝑃* expansion breaks down near endpoints

More complicated renormalization

X-dependence calculation

Xiong, et al., PRD (2014) 
Ma, et al., PRD (2018)
Izubuchi, et al., PRD (2018) 
Liu, et al., PRD, (2019)
Ji, et al., RMP  (2021)
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;𝜙 𝑥, 𝑃* =
1
𝑖𝑓!
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;𝜙 𝑥, 𝑃* = )
,

$
𝑑𝑦 𝐶 𝑥, 𝑦, 𝜇, 𝑃* 𝜙 𝑦, 𝜇 + O

Λ-./%

x%𝑃*%
,

Λ-./%

(1 − x)%𝑃*%

Ji, et al., RMP (2021) 

Introduction to Pion DA

https://doi.org/10.1103/PhysRevD.90.014051
https://doi.org/10.1103/PhysRevD.98.074021
https://doi.org/10.1103/PhysRevD.98.056004
https://doi.org/10.1103/RevModPhys.93.035005
https://doi.org/10.1103/RevModPhys.93.035005


Progress in x-dependence calculations
Ø Lattice efforts

– Boost to large momentum 
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Introduction to Pion DA

LP3 PRD (2017)



LP3 PRD (2017)

MSULAT PRD (2020)

Progress in x-dependence calculations
Ø Lattice efforts

– Boost to large momentum 
– Continuum extrapolation

8

Introduction to Pion DA



LP3 PRD (2017)

LPC PRL (2022)MSULAT PRD (2020)

Progress in x-dependence calculations
Ø Lattice efforts

– Boost to large momentum 
– Continuum extrapolation
– Physical pion mass
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Introduction to Pion DA



LP3 PRD (2017)

LPC PRL (2022)MSULAT PRD (2020)

Progress in x-dependence calculations
Ø Lattice efforts

– Boost to large momentum 
– Continuum extrapolation
– Physical pion mass

Ø Theory: renormalization scheme

10

Introduction to Pion DA



Renormalization

Perturbative 
matching

Endpoint region

???

Theory:
renormalization

Lattice 
efforts

What is still missing?
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Constraints from SDF

IR renormalon
Large log resummation

IR renormalon

Introduction to Pion DA
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Ø Non-local operator: .𝑂 𝑧 = &𝑞 𝑧 𝑊 𝑧, 0 Γ𝑞(0)

Ø Wilson line self energy: 𝛿𝑚 ∼ 1
2

, linear divergence!

Ø Multiplicative renormalization

13

.𝑂3 𝑧, 𝑎 = .𝑂4256 𝑧, 𝑎 /𝑍3 𝑧, 𝑎
𝑎 → 0😀 𝑎 → 0😰

Renormalization of DA

Why is renormalization necessary

∼ 𝑒01 *



Renormalization with lattice data
Use lattice data with the same divergence
Ø Ratio scheme:

The lattice correlator vanishes for 𝑃0 = 0, not applicable

Ø RI/MOM scheme:

Extra non-perturbative effects at large 𝑧.
The scheme conversion to MS scheme at large 𝑧 is not perturbative.

14

Renormalization of DA

𝑍3 𝑧, 𝑎 = 𝑃0 = 0 .𝑂 𝑧 0

𝑍3 𝑧, 𝑎 =
𝑞 .𝑂 𝑧 𝑞

𝑞 .𝑂 𝑧 𝑞 7899

Martinelli, et al. NPB (1995)
Zhang, et al. PRD (2020)

Radyushkin, PRD (2017)



Improvements from perturbation theory
Ø Self renormalization:

o Fit the 𝑎 dependence from 𝑃! = 0 lattice data
o Match the lattice data to perturbative results in MS scheme

Hybrid scheme framework:
Short distance 𝑧 < 𝑧" : 𝑍# 𝑧, 𝑎 from another scheme
Long distance 𝑧 > 𝑧" : 𝑍# 𝑧", 𝑎 𝑒$%( ! '!$)

The scheme conversion to MS scheme is perturbative in all regions.

How to determine 𝛿𝑚?
o Perturbation theory/Fit lattice data (from self-renormalization)?

15

Renormalization of DA

Ji, et al., NPB (2021)
LPC, PRL (2022)

LPC, NPB (2021)



Outline
Introduction to Pion DA

Renormalization

Power Accuracy in LaMET

Application to DA Analysis

16



Renormalon in perturbation series
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Power Accuracy in LaMET

Data from Bali, et al. PRD(2013)

Ø 𝛿𝑚 = 1
2
∑𝛼:;<1 𝑎 𝑟;

Ø At higher orders:
o 𝑟2 ∼ 𝑛!
o Divergent for any α3
o No well-defined sum

𝑛! growth comes from IR renormalon

Need a regularization!

Ambiguity Δ 𝛿𝑚 ∼ 𝑂 Λ"#$
The matching 𝐶 𝑥, 𝑦, 𝜇, 𝑃0 also contains renormalons

Braun, et al. PRD (2019)

Gerard	't	Hooft
1999	Nobel	Prize

u2π
β0

4π
β0

8π
β0

12π
β0

16π
β0

Borel Plane



Ambiguity in extracting 𝛿𝑚 from data
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Power Accuracy in LaMET

LPC, NPB (2021)

Ø Following the self-renormalization, we can parametrize the linear 
divergence and logarithmic divergence in 𝑎 for 𝐶=(𝑧, 𝑎)

Ø When fitting to lattice data, 𝑘 and Λ are correlated and uncertain
Δ 𝛿𝑚 = Δ

𝑘
𝑎 ln 𝑎Λ ∼ 𝑂 Λ"#$

This uncertainty comes from the renormalon ambiguity
Δ 𝑔 𝑧 ∼ 𝑂 𝑧Λ"#$

The physical 𝑧 dependence is dependent on our choice of 𝑘 and Λ

𝐶" 𝑧, 𝑎 = exp[𝑔 𝑧 ] exp
𝑘𝑧

𝑎 ln 𝑎Λ exp
3𝐶%
𝛽"

ln ln
1
𝑎Λ + ln(1 +

𝑑
ln 𝑎Λ)

Physical 𝑧 dependence 



Power Accuracy
■ Leading renormalon ambiguity results in O

O!"#
PQ$

correction in the LaMET
matching

Ø 𝑃* → ∞: 𝛰
4$%&
&+#

not important

Ø 𝑃* ∼ GeV: 𝛰
4$%&
&+#

dominate the power correction
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Need an approach to eliminate O
O!"#
PQ$

in the matching: Power Accuracy!

Power Accuracy in LaMET

;𝜙 𝑥, 𝑃* = )
,

$
𝑑𝑦 𝐶 𝑥, 𝑦, 𝜇, 𝑃* 𝜙 𝑦, 𝜇 + O

Λ567
𝑥𝑃*

+ O
Λ567%

𝑥%𝑃*%
,

Λ567%

(1 − 𝑥)%𝑃*%
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How to Achieve Power Accuracy?

;𝜙 𝑥, 𝑃* = )
,

$
𝑑𝑦 𝐶 𝑥, 𝑦, 𝜇, 𝑃* 𝜙 𝑦, 𝜇 + O

Λ567%

𝑥%𝑃*%

■ LaMET Matching:

Power Accuracy in LaMET
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How to Achieve Power Accuracy?

;𝜙 𝑥, 𝑃* = )
,

$
𝑑𝑦 𝐶 𝑥, 𝑦, 𝜇, 𝑃* 𝜙 𝑦, 𝜇 + O

Λ567%

𝑥%𝑃*%

■ LaMET Matching:

Power Accuracy in LaMET

+O
Λ567
𝑥𝑃*
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How to Achieve Power Accuracy?

;𝜙 𝑥, 𝑃* = )
,

$
𝑑𝑦 𝐶 𝑥, 𝑦, 𝜇, 𝑃* 𝜙 𝑦, 𝜇 + O

Λ567%

𝑥%𝑃*%

■ LaMET Matching:

+O
Λ567
𝑥𝑃*

Leading
Renormalon

Resummation

Power Accuracy in LaMET

Bali, et al. PRD(2013)
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How to Achieve Power Accuracy?

;𝜙 𝑥, 𝑃* = )
,

$
𝑑𝑦 𝐶 𝑥, 𝑦, 𝜇, 𝑃* 𝜙 𝑦, 𝜇 + O

Λ567%

𝑥%𝑃*%

■ LaMET Matching:

+O
Λ567
𝑥𝑃*

Leading
Renormalon

Resummation

Power Accuracy in LaMET

Bali, et al. PRD(2013)

Large 𝛽" approximation 

Why large-𝛽= approximation?
1. Pert theory very difficult at high order
2. The approximation is good in 𝛿𝑚
3. Independent of Dirac structure and hadron momentum

="
!

tadpole

n

=n . . .

Braun, et al. PRD (2019)
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How to Achieve Power Accuracy?

;𝜙 𝑥, 𝑃* = )
,

$
𝑑𝑦 𝐶 𝑥, 𝑦, 𝜇, 𝑃* 𝜙 𝑦, 𝜇 + O

Λ567%

𝑥%𝑃*%

■ LaMET Matching:

+O
Λ567
𝑥𝑃*

Renormalization
with 𝑒&'⋅)*'!⋅)

Leading
Renormalon

Resummation ="
!

tadpole

n

=n . . .

Large 𝛽" approximation 

Power Accuracy in LaMET

Why large-𝛽= approximation?
1. Pert theory very difficult at high order
2. The approximation is good in 𝛿𝑚
3. Independent of Dirac structure and hadron momentum

Bali, et al. PRD(2013)

Braun, et al. PRD (2019)
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How to Achieve Power Accuracy?

;𝜙 𝑥, 𝑃* = )
,

$
𝑑𝑦 𝐶 𝑥, 𝑦, 𝜇, 𝑃* 𝜙 𝑦, 𝜇 + O

Λ567%

𝑥%𝑃*%

■ LaMET Matching:

Renormalization
with 𝑒&'⋅)*'!⋅)

Leading
Renormalon

Resummation ="
!

tadpole

n

=n . . .

Large 𝛽" approximation 

Power Accuracy in LaMET

Why large-𝛽= approximation?
1. Pert theory very difficult at high order
2. The approximation is good in 𝛿𝑚
3. Independent of Dirac structure and hadron momentum

Bali, et al. PRD(2013)

Braun, et al. PRD (2019)



How to calculate 𝑚#
■ Work with 𝑃* = 0 lattice data
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𝑒S%⋅0𝑒US⋅0 𝑃0 = 0 &𝑞 𝑧 𝛾V𝑊 𝑧, 0 𝑞 0 𝑃0 = 0 = 𝐶=WX 𝑧, 𝑎

Power Accuracy in LaMET

Lattice data

Perturbative calculationLPC, NPB (2021)



How to calculate 𝑚#
■ Work with 𝑃* = 0 lattice data
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𝑒S%⋅0𝑒US⋅0 𝑃0 = 0 &𝑞 𝑧 𝛾V𝑊 𝑧, 0 𝑞 0 𝑃0 = 0 = 𝐶=WX 𝑧, 𝑎

Power Accuracy in LaMET

Lattice data

Perturbative calculationLPC, NPB (2021)

"
!

tadpole

n

Large 𝛽! approximation 
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How to calculate 𝑚#
■ Work with 𝑃* = 0 lattice data
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𝑒S%⋅0𝑒US⋅0 𝑃0 = 0 &𝑞 𝑧 𝛾V𝑊 𝑧, 0 𝑞 0 𝑃0 = 0 = 𝐶=WX 𝑧, 𝑎

Power Accuracy in LaMET

Lattice data

Perturbative calculationLPC, NPB (2021)
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Large 𝛽! approximation 
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How to calculate 𝑚#
■ Work with 𝑃* = 0 lattice data
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𝑒S%⋅0𝑒US⋅0 𝑃0 = 0 &𝑞 𝑧 𝛾V𝑊 𝑧, 0 𝑞 0 𝑃0 = 0 = 𝐶=WX 𝑧, 𝑎

"
!

tadpole

n

Large 𝛽! approximation 
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)
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Power Accuracy in LaMET

Lattice data

Perturbative calculationLPC, NPB (2021)



How to calculate 𝑚#
■ Work with 𝑃* = 0 lattice data
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𝑒S%⋅0𝑒US⋅0 𝑃0 = 0 &𝑞 𝑧 𝛾V𝑊 𝑧, 0 𝑞 0 𝑃0 = 0 = 𝐶=WX 𝑧, 𝑎

"
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n

Large 𝛽! approximation 
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Power Accuracy in LaMET

Lattice data

Perturbative calculationLPC, NPB (2021)

Such an extraction is independent of Dirac structure and
external state’s momentum
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LRR-improved renormalization

■ Fixed order renormalization 
suggests a hump at small 𝑧

■ LRR improved 
renormalization suggests a 
decaying distribution

32

0.00 0.05 0.10 0.15
0.80

0.85

0.90

0.95

1.00

1.05

z(fm)

ℳ
(z
,P
z=
1.
72
G
eV
,0
)

LRR
Fixed order
OPE w/ 〈ξ2〉=0.3

Application to DA analysis

Fixed Order

LRR improved

Can be tested in short distance OPE



Testing renormalization through moments
extraction
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Yℎ+ 𝑧, 𝑃) , 𝜇 = ]
!,"

− 𝑖𝑧𝑃)2
!

𝑛! ]
',"

!

𝐶!'(𝑧-𝜇-)⟨𝜉'⟩ + 𝑂 𝑧-Λ./0-

Application to DA analysis

OPE (𝑧 ≪ Λ"#$d1 ):



Testing renormalization through moments
extraction
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lattice data

OPE w/ 〈ξ2〉=0.3

0.05 0.10 0.15 0.20 0.25
0.80
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(z
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z
=
1.
72
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)
hR

(z
,P

z
=
1.
29
G
eV

)

Yℎ+ 𝑧, 𝑃) , 𝜇 = ]
!,"

− 𝑖𝑧𝑃)2
!

𝑛! ]
',"

!

𝐶!'(𝑧-𝜇-)⟨𝜉'⟩ + 𝑂 𝑧-Λ./0-

Method 1:

■ Ratio: 
89' *,+(
89' *,+)

■ Renormalization independent

■ 𝜉% = 0.298(39)

Gao, et al., PRD (2022)

Application to DA analysis

OPE (𝑧 ≪ Λ"#$d1 ):



Testing renormalization through moments
extraction
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lattice data

OPE w/ 〈ξ2〉=0.3
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)
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29
G
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)

Yℎ+ 𝑧, 𝑃) , 𝜇 = ]
!,"

− 𝑖𝑧𝑃)2
!

𝑛! ]
',"

!

𝐶!'(𝑧-𝜇-)⟨𝜉'⟩ + 𝑂 𝑧-Λ./0-

Method 1:

■ Ratio: 
89' *,+(
89' *,+)

■ Renormalization independent

■ 𝜉% = 0.298(39)

Method 2:
■ Renormalized ME: ;ℎ; 𝑧, 𝑃*, 𝜇

■ Fixed-order result suggests 𝜉% < 0

■ LRR result suggests 𝜉% ≈ 0.3

Gao, et al., PRD (2022)

Application to DA analysis

OPE (𝑧 ≪ Λ"#$d1 ):



Testing renormalization through moments
extraction
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lattice data

OPE w/ 〈ξ2〉=0.3
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Yℎ+ 𝑧, 𝑃) , 𝜇 = ]
!,"

− 𝑖𝑧𝑃)2
!

𝑛! ]
',"

!

𝐶!'(𝑧-𝜇-)⟨𝜉'⟩ + 𝑂 𝑧-Λ./0-

Method 1:

■ Ratio: 
89' *,+(
89' *,+)

■ Renormalization independent

■ 𝜉% = 0.298(39)

Method 2:
■ Renormalized ME: ;ℎ; 𝑧, 𝑃*, 𝜇

■ Fixed-order result suggests 𝜉% < 0

■ LRR result suggests 𝜉% ≈ 0.3

Gao, et al., PRD (2022)

Application to DA analysis

OPE (𝑧 ≪ Λ"#$d1 ):

Consistency suggests the LRR-
renormalization is correct!



How LRR improves matching?
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Matching with LRR (the same quasi-DA):

■ LRR introduces correction to the matching, 
more important near endpoints

(This is just the effect of LRR matching,  not the 
final result, which will be presented in Jack’s 
talk.)

Application to DA analysis

"
!

tadpole

n

Large 𝛽! approximation The diagrams are the same for different momenta/Dirac structure: 

Δ𝑄 𝑧, 𝑃) , 𝜇 = 𝐶"122 𝑧, 𝜇 − 𝐶" 𝑧, 𝜇 𝑒345)6"

Δ𝐶 𝑥, 𝑦, 𝜇, 𝑃) = '
) 7)#

𝑑𝑧
2𝜋 𝑒

348)6" Δ𝑄 𝑧, 𝑃)

Quasi-DA
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x
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Quasi-DA
LDA w/o LRR
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How LRR improves matching?
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Matching with LRR (the same quasi-DA):

■ LRR introduces correction to the matching, 
more important near endpoints

(This is just the effect of LRR matching,  not the 
final result, which will be presented in Jack’s 
talk.)

Application to DA analysis

"
!

tadpole

n

Large 𝛽! approximation The diagrams are the same for different momenta/Dirac structure: 

Δ𝑄 𝑧, 𝑃) , 𝜇 = 𝐶"122 𝑧, 𝜇 − 𝐶" 𝑧, 𝜇 𝑒345)6"

Δ𝐶 𝑥, 𝑦, 𝜇, 𝑃) = '
) 7)#

𝑑𝑧
2𝜋 𝑒

348)6" Δ𝑄 𝑧, 𝑃)



Quasi-DA
LDA w/o LRR
LDA w/ LRR
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How LRR improves matching?
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Matching with LRR (the same quasi-DA):

■ LRR introduces correction to the matching, 
more important near endpoints

(This is just the effect of LRR matching,  not the 
final result, which will be presented in Jack’s 
talk.)

Application to DA analysis

"
!

tadpole

n

Large 𝛽! approximation The diagrams are the same for different momenta/Dirac structure: 
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Conclusion
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Conclusion

o Renormalons exist in the renormalization of the LaMET operator, and 
the perturbative matching kernel

o The leading renormalon results in an O
O!"#
PQ$

correction to the 
LaMET factorization

o We perform a leading renormalon resummation in the large-𝛽= limit 
and use a term 𝑚=

9ii in renormalization to eliminate the correction

o The LRR-improved renormalization improves the lattice calculation of 
short distance correlations, consistent with OPE

o A corresponding modification is made in the matching kernel



THANK YOU!


