Frame-independent methods to access GPDs from lattice QCD

Martha Constantinou

in collaboration with:

S. Bhattacharya, K. Cichy, J. Dodson, X. Gao, A. Metz, A. Scapellato, F. Steffens, S. Mukherjee, Y. Zhao

LaMET 2022 - ANL

December 2, 2022

Generalized Parton Distributions

★ Crucial in understanding hadron tomography

1_{mom} + 2_{coord} tomographic images of quark distribution in nucleon at fixed longitudinal momentum

3-D image from FT with respect to longitudinal momentum transfer

★ GPDs may be accessed via exclusive reactions (DVCS, DVMP)

[X.-D. Ji, PRD 55, 7114 (1997)]

★ New class of observables involve a pair of high-transverse mom. particles in the final state

[J. Qiu et al, arXiv:2205.07846]

Generalized Parton Distributions

- ★ GPDs are not well-constrained experimentally:
 - x-dependence extraction is not direct. DVCS amplitude: *#* =

$$\mathscr{U} = \int_{-1}^{+1} \frac{H(x,\xi,t)}{x-\xi+i\epsilon} dx$$

(SDHEP [J. Qiu et al, arXiv:2205.07846] gives access to x)

- independent measurements to disentangle GPDs
- GPDs phenomenology more complicated than PDFs (multi-dimensionality)
- and more challenges ...

Generalized Parton Distributions

- \star GPDs are not well-constrained experimentally:
 - x-dependence extraction is not direct. DVCS amplitude: $\mathscr{H} = \int_{-1}^{+1} \frac{H(x,\xi,t)}{x-\xi+i\epsilon} dx$

(SDHEP [J. Qiu et al, arXiv:2205.07846] gives access to x)

- independent measurements to disentangle GPDs
- GPDs phenomenology more complicated than PDFs (multi-dimensionality)
- and more challenges ...
- **★** Essential to complement the knowledge on GPD from lattice QCD
- ★ Lattice data may be incorporated in global analysis of experimental data and may influence parametrization of t and ξ dependence

local operators

★ Matrix elements of non-local operators (LaMET, pseudo-GPDs, …)

 $\langle N(P_f) | \bar{\Psi}(z) \Gamma \mathcal{W}(z,0) \Psi(0) | N(P_i) \rangle_{\mu}$

$$\langle N(P')|O_V^{\mu}(x)|N(P)\rangle = \overline{U}(P') \left\{ \gamma^{\mu}H(x,\xi,t) + \frac{i\sigma^{\mu\nu}\Delta_{\nu}}{2m_N}E(x,\xi,t) \right\} U(P) + \text{ht},$$

$$\langle N(P')|O_A^{\mu}(x)|N(P)\rangle = \overline{U}(P') \left\{ \gamma^{\mu}\gamma_5 \widetilde{H}(x,\xi,t) + \frac{\gamma_5\Delta^{\mu}}{2m_N}\widetilde{E}(x,\xi,t) \right\} U(P) + \text{ht},$$

$$\langle N(P')|O_T^{\mu\nu}(x)|N(P)\rangle = \overline{U}(P') \left\{ i\sigma^{\mu\nu}H_T(x,\xi,t) + \frac{\gamma^{[\mu}\Delta^{\nu]}}{2m_N}E_T(x,\xi,t) + \frac{\overline{P}^{[\mu}\Delta^{\nu]}}{m_N^2}\widetilde{H}_T(x,\xi,t) + \frac{\gamma^{[\mu}\overline{P}^{\nu]}}{m_N}\widetilde{E}_T(x,\xi,t) \right\} U(P) + \text{ht},$$

★ Matrix elements of non-local operators (LaMET, pseudo-GPDs, …)

$$\langle N(P_f) | \bar{\Psi}(z) \Gamma \mathcal{W}(z,0) \Psi(0) | N(P_i) \rangle_{\mu}$$

Wilson line

$$\langle N(P')|O_V^{\mu}(x)|N(P)\rangle = \overline{U}(P') \left\{ \gamma^{\mu}H(x,\xi,t) + \frac{i\sigma^{\mu\nu}\Delta_{\nu}}{2m_N}E(x,\xi,t) \right\} U(P) + \mathrm{ht} ,$$

$$\langle N(P')|O_A^{\mu}(x)|N(P)\rangle = \overline{U}(P') \left\{ \gamma^{\mu}\gamma_5 \widetilde{H}(x,\xi,t) + \frac{\gamma_5\Delta^{\mu}}{2m_N}\widetilde{E}(x,\xi,t) \right\} U(P) + \mathrm{ht} ,$$

$$\langle N(P')|O_T^{\mu\nu}(x)|N(P)\rangle = \overline{U}(P') \left\{ i\sigma^{\mu\nu}H_T(x,\xi,t) + \frac{\gamma^{[\mu}\Delta^{\nu]}}{2m_N}E_T(x,\xi,t) + \frac{\overline{P}^{[\mu}\Delta^{\nu]}}{m_N^2}\widetilde{H}_T(x,\xi,t) + \frac{\gamma^{[\mu}\overline{P}^{\nu]}}{m_N}\widetilde{E}_T(x,\xi,t) \right\} U(P) + \mathrm{ht} ,$$

Through non-local matrix elements of fast-moving hadrons

Light-cone GPDs

★ Off-forward matrix elements of non-local light-cone operators

$$F^{[\gamma^+]}(x,\Delta;\lambda,\lambda') = \frac{1}{2} \int \frac{dz^-}{2\pi} e^{ik \cdot z} \langle p';\lambda' | \bar{\psi}(-\frac{z}{2}) \gamma^+ \mathcal{W}(-\frac{z}{2},\frac{z}{2}) \psi(\frac{z}{2}) | p;\lambda \rangle \bigg|_{z^+=0,\vec{z}_\perp=\vec{0}_\perp}$$

★ Parametrization in two leading twist GPDs

$$F^{[\gamma^+]}(x,\Delta;\lambda,\lambda') = \frac{1}{2P^+} \bar{u}(p',\lambda') \left[\gamma^+ H(x,\xi,t) + \frac{i\sigma^{+\mu}\Delta_{\mu}}{2M} E(x,\xi,t) \right] u(p,\lambda)$$

★ How can one define GPDs on a Euclidean lattice?

Off forward correlators with nonlocal (equal-time) operators [X. Ji, PRL 110 (2013) 262002]

$$\tilde{q}_{\mu}^{\text{GPD}}(x,t,\xi,P_{3},\mu) = \int \frac{dz}{4\pi} e^{-ixP_{3}z} \langle N(P_{f}) | \bar{\Psi}(z) \gamma^{\mu} \mathcal{W}(z,0) \Psi(0) | N(P_{i}) \rangle_{\mu}$$

Variables of the calculation:

- length of the Wilson line (z)
- nucleon momentum boost (P₃)
- momentum transfer (t)
- skewness (ζ)

Off forward correlators with nonlocal (equal-time) operators [X. Ji, PRL 110 (2013) 262002]

$$\tilde{q}_{\mu}^{\text{GPD}}(x,t,\xi,P_3,\mu) = \int \frac{dz}{4\pi} e^{-ixP_3 z} \left\langle N(P_f) \left| \bar{\Psi}(z) \gamma^{\mu} \mathcal{W}(z,0) \Psi(0) \left| N(P_i) \right\rangle_{\mu} \right\rangle_{\mu} \right\rangle_{\mu}$$

Variables of the calculation:

- length of the Wilson line (z)
- nucleon momentum boost (P₃)
- momentum transfer (t)
- skewness (ξ)

\star Potential parametrization (γ^+ inspired)

$$F^{[\gamma^{0}]}(x,\Delta;\lambda,\lambda';P^{3}) = \frac{1}{2P^{0}}\bar{u}(p',\lambda') \left[\gamma^{0}H_{Q(0)}(x,\xi,t;P^{3}) + \frac{i\sigma^{0\mu}\Delta_{\mu}}{2M}E_{Q(0)}(x,\xi,t;P^{3})\right]u(p,\lambda)$$

$$F^{[\gamma^3]}(x,\Delta;\lambda,\lambda';P^3) = \frac{1}{2P^0} \bar{u}(p',\lambda') \left[\gamma^3 H_{Q(0)}(x,\xi,t;P^3) + \frac{i\sigma^{3\mu}\Delta_{\mu}}{2M} E_{Q(0)}(x,\xi,t;P^3) \right] u(p,\lambda)$$

 $\Delta = P_f - P_i$

 $\xi = \frac{Q_3}{2P_3}$

 $t = \Delta^2 = -Q^2$

Off forward correlators with nonlocal (equal-time) operators [X. Ji, PRL 110 (2013) 262002]

$$\tilde{q}_{\mu}^{\text{GPD}}(x,t,\xi,P_3,\mu) = \int \frac{dz}{4\pi} e^{-ixP_3z} \left\langle N(P_f) \left| \bar{\Psi}(z) \gamma^{\mu} \mathcal{W}(z,0) \Psi(0) \left| N(P_i) \right\rangle_{\mu} \right\rangle_{\mu} \right\rangle_{\mu}$$

Variables of the calculation:

- length of the Wilson line (z)
- nucleon momentum boost (P₃)
- momentum transfer (t)
- skewness (ζ)

\star Potential parametrization (γ^+ inspired)

$$F^{[\gamma^{0}]}(x,\Delta;\lambda,\lambda';P^{3}) = \frac{1}{2P^{0}}\bar{u}(p',\lambda') \left[\gamma^{0}H_{Q(0)}(x,\xi,t;P^{3}) + \frac{i\sigma^{0\mu}\Delta_{\mu}}{2M}E_{Q(0)}(x,\xi,t;P^{3})\right]u(p,\lambda)$$

reduction of power corrections in fwd limit [Radyushkin, PLB 767, 314, 2017]

 $\Delta = P_f - P_i$

 $\xi = \frac{Q_3}{2P_3}$

 $t = \Delta^2 = -Q^2$

$$F^{[\gamma^3]}(x,\Delta;\lambda,\lambda';P^3) = \frac{1}{2P^0} \bar{u}(p',\lambda') \left[\gamma^3 H_{Q(0)}(x,\xi,t;P^3) + \frac{i\sigma^{3\mu}\Delta_{\mu}}{2M} E_{Q(0)}(x,\xi,t;P^3) \right] u(p,\lambda)$$

Off forward correlators with nonlocal (equal-time) operators [X. Ji, PRL 110 (2013) 262002]

$$\tilde{q}_{\mu}^{\text{GPD}}(x,t,\xi,P_3,\mu) = \int \frac{dz}{4\pi} e^{-ixP_3 z} \left\langle N(P_f) \left| \bar{\Psi}(z) \gamma^{\mu} \mathcal{W}(z,0) \Psi(0) \left| N(P_i) \right\rangle_{\mu} \right\rangle_{\mu} \right\rangle_{\mu}$$

Variables of the calculation:

- length of the Wilson line (z)
- nucleon momentum boost (P₃)
- momentum transfer (t)
- skewness (ζ)

\star Potential parametrization (γ^+ inspired)

$$F^{[\gamma^{0}]}(x,\Delta;\lambda,\lambda';P^{3}) = \frac{1}{2P^{0}}\bar{u}(p',\lambda') \left[\gamma^{0}H_{Q(0)}(x,\xi,t;P^{3}) + \frac{i\sigma^{0\mu}\Delta_{\mu}}{2M}E_{Q(0)}(x,\xi,t;P^{3})\right]u(p,\lambda)$$

$$F^{[\gamma^3]}(x,\Delta;\lambda,\lambda';P^3) = \frac{1}{2P^0} \bar{u}(p',\lambda') \left[\gamma^3 H_{Q(0)}(x,\xi,t;P^3) + \frac{i\sigma^{3\mu}\Delta_{\mu}}{2M} E_{Q(0)}(x,\xi,t;P^3) \right] u(p,\lambda)$$

reduction of power corrections in fwd limit [Radyushkin, PLB 767, 314, 2017]

 $\Delta = P_f - P_i$

 $\xi = \frac{Q_3}{2P_3}$

 $t = \Delta^2 = -Q^2$

finite mixing with scalar [Constantinou & Panagopoulos (2017)]

Off forward correlators with nonlocal (equal-time) operators [X. Ji, PRL 110 (2013) 262002]

$$\tilde{q}_{\mu}^{\text{GPD}}(x,t,\xi,P_3,\mu) = \int \frac{dz}{4\pi} e^{-ixP_3z} \left\langle N(P_f) \left| \bar{\Psi}(z) \gamma^{\mu} \mathcal{W}(z,0) \Psi(0) \left| N(P_i) \right\rangle_{\mu} \right\rangle_{\mu} \right\rangle_{\mu}$$

Variables of the calculation:

- length of the Wilson line (z)
- nucleon momentum boost (P₃)
- momentum transfer (t)
- skewness (ζ)

\star Potential parametrization (γ^+ inspired)

$$F^{[\gamma^0]}(x,\Delta;\lambda,\lambda';P^3) = \frac{1}{2P^0} \bar{u}(p',\lambda') \left[\gamma^0 H_{Q(0)}(x,\xi,t;P^3) + \frac{i\sigma^{0\mu}\Delta_{\mu}}{2M} E_{Q(0)}(x,\xi,t;P^3) \right] u(p,\lambda)$$

reduction of power corrections in fwd limit [Radyushkin, PLB 767, 314, 2017]

$$F^{[\gamma^3]}(x,\Delta;\lambda,\lambda';P^3) = \frac{1}{2P^0} \bar{u}(p',\lambda') \left[\gamma^3 H_{Q(0)}(x,\xi,t;P^3) + \frac{i\sigma^{3\mu}\Delta_{\mu}}{2M} E_{Q(0)}(x,\xi,t;P^3) \right] u(p,\lambda)$$

finite mixing with scalar [Constantinou & Panagopoulos (2017)]

$$\Delta = P_f - P_i$$
$$t = \Delta^2 = -Q^2$$
$$\xi = \frac{Q_3}{2P_3}$$

Off forward correlators with nonlocal (equal-time) operators [X. Ji, PRL 110 (2013) 262002]

$$\tilde{q}_{\mu}^{\text{GPD}}(x,t,\xi,P_3,\mu) = \int \frac{dz}{4\pi} e^{-ixP_3 z} \left\langle N(P_f) \left| \bar{\Psi}(z) \gamma^{\mu} \mathcal{W}(z,0) \Psi(0) \left| N(P_i) \right\rangle_{\mu} \right\rangle_{\mu} \right\rangle_{\mu}$$

Variables of the calculation:

- length of the Wilson line (z)
- nucleon momentum boost (P₃)
- momentum transfer (t)
- skewness (ξ)

\star Potential parametrization (γ^+ inspired)

$$F^{[\gamma^0]}(x,\Delta;\lambda,\lambda';P^3) = \frac{1}{2P^0} \bar{u}(p',\lambda') \left[\gamma^0 H_{Q(0)}(x,\xi,t;P^3) + \frac{i\sigma^{0\mu}\Delta_{\mu}}{2M} E_{Q(0)}(x,\xi,t;P^3) \right] u(p,\lambda)$$

$$F^{[\gamma^3]}(x,\Delta;\lambda,\lambda';P^3) = \frac{1}{2P^0} \bar{u}(p',\lambda') \left[\gamma^3 H_{Q(0)}(x,\xi,t;P^3) + \frac{i\sigma^{3\mu}\Delta_{\mu}}{2M} E_{Q(0)}(x,\xi,t;P^3) \right] u(p,\lambda)$$

- Lorentz non-invariant parametrization
- Typically used in symmetric frame
- A non-symmetric setup may result to different functional form

for GPDs compared to the symmetric one

reduction of power corrections in fwd limit [Radyushkin, PLB 767, 314, 2017]

finite mixing with scalar [Constantinou & Panagopoulos (2017)]

 $\Delta = P_f - P_i$ $t = \Delta^2 = -Q^2$ $\xi = \frac{Q_3}{2P_2}$

- ★ Calculation expected to be performed in symmetric frame to extract the "standard" GPDs
- **\star** Symmetric frame requires separate calculations at each *t*

- ★ Calculation expected to be performed in symmetric frame to extract the "standard" GPDs
- **\star** Symmetric frame requires separate calculations at each *t*

Let's rethink calculation of GPDs !

- ★ Calculation expected to be performed in symmetric frame to extract the "standard" GPDs
- **\star** Symmetric frame requires separate calculations at each *t*

Let's rethink calculation of GPDs !

1st goal:

Extraction of GPDs in the symmetric frame using lattice correlators calculated in non-symmetric frames

- ★ Calculation expected to be performed in symmetric frame to extract the "standard" GPDs
- **\star** Symmetric frame requires separate calculations at each *t*

Let's rethink calculation of GPDs !

1st goal:

Extraction of GPDs in the symmetric frame using lattice correlators calculated in non-symmetric frames

2nd goal:

New definition of Lorentz covariant quasi-GPDs that may have faster convergence to light-cone GPDs

Theoretical setup

[S. Bhattacharya et al., arXiv:2209.05373]

★ Parametrization of matrix elements in Lorentz invariant amplitudes

$$F^{\mu}_{\lambda,\lambda'} = \bar{u}(p',\lambda') \left[\frac{P^{\mu}}{M} A_1 + z^{\mu} M A_2 + \frac{\Delta^{\mu}}{M} A_3 + i\sigma^{\mu z} M A_4 + \frac{i\sigma^{\mu \Delta}}{M} A_5 + \frac{P^{\mu} i\sigma^{z\Delta}}{M} A_6 + \frac{z^{\mu} i\sigma^{z\Delta}}{M} A_7 + \frac{\Delta^{\mu} i\sigma^{z\Delta}}{M} A_8 \right] u(p,\lambda)$$

Advantages

- Applicable to any kinematic frame and A_i have definite symmetries
- Lorentz invariant amplitudes A_i can be related to the standard H, E GPDs
- Quasi H, E may be redefined (Lorentz covariant) to eliminate $1/P_3$ contributions:

Theoretical setup

[S. Bhattacharya et al., arXiv:2209.05373]

★ Parametrization of matrix elements in Lorentz invariant amplitudes

$$F^{\mu}_{\lambda,\lambda'} = \bar{u}(p',\lambda') \left[\frac{P^{\mu}}{M} A_1 + z^{\mu} M A_2 + \frac{\Delta^{\mu}}{M} A_3 + i\sigma^{\mu z} M A_4 + \frac{i\sigma^{\mu \Delta}}{M} A_5 + \frac{P^{\mu} i\sigma^{z\Delta}}{M} A_6 + \frac{z^{\mu} i\sigma^{z\Delta}}{M} A_7 + \frac{\Delta^{\mu} i\sigma^{z\Delta}}{M} A_8 \right] u(p,\lambda)$$

Advantages

- Applicable to any kinematic frame and A_i have definite symmetries
- Lorentz invariant amplitudes A_i can be related to the standard H, E GPDs
- Quasi H, E may be redefined (Lorentz covariant) to eliminate $1/P_3$ contributions:

$$H(z \cdot P, z \cdot \Delta, t = \Delta^2, z^2) = A_1 + \frac{\Delta_{s/a} \cdot z}{P_{avg,s/a} \cdot z} A_3$$

$$E(z \cdot P, z \cdot \Delta, t = \Delta^2, z^2) = -A_1 - \frac{\Delta_{s/a} \cdot z}{P_{avg,s/a} \cdot z} A_3 + 2A_5 + 2P_{avg,s/a} \cdot zA_6 + 2\Delta_{s/a} \cdot zA_8$$

Theoretical setup

[S. Bhattacharya et al., arXiv:2209.05373]

★ Parametrization of matrix elements in Lorentz invariant amplitudes

$$F^{\mu}_{\lambda,\lambda'} = \bar{u}(p',\lambda') \left[\frac{P^{\mu}}{M} A_1 + z^{\mu} M A_2 + \frac{\Delta^{\mu}}{M} A_3 + i\sigma^{\mu z} M A_4 + \frac{i\sigma^{\mu \Delta}}{M} A_5 + \frac{P^{\mu} i\sigma^{z\Delta}}{M} A_6 + \frac{z^{\mu} i\sigma^{z\Delta}}{M} A_7 + \frac{\Delta^{\mu} i\sigma^{z\Delta}}{M} A_8 \right] u(p,\lambda)$$

Advantages

- Applicable to any kinematic frame and A_i have definite symmetries
- Lorentz invariant amplitudes A_i can be related to the standard H, E GPDs
- Quasi H, E may be redefined (Lorentz covariant) to eliminate $1/P_3$ contributions:

$$H(z \cdot P, z \cdot \Delta, t = \Delta^2, z^2) = A_1 + \frac{\Delta_{s/a} \cdot z}{P_{avg,s/a} \cdot z} A_3$$

$$E(z \cdot P, z \cdot \Delta, t = \Delta^2, z^2) = -A_1 - \frac{\Delta_{s/a} \cdot z}{P_{avg,s/a} \cdot z} A_3 + 2A_5 + 2P_{avg,s/a} \cdot zA_6 + 2\Delta_{s/a} \cdot zA_8$$

 $\overrightarrow{p}_{f}^{s} = \overrightarrow{P} + \frac{\overrightarrow{Q}}{2}, \qquad \overrightarrow{p}_{i}^{s} = \overrightarrow{P} - \frac{\overrightarrow{Q}}{2} \qquad t^{s} = -\overrightarrow{Q}^{2}$

 $\overrightarrow{p}_{f}^{a} = \overrightarrow{P}, \qquad \overrightarrow{p}_{i}^{a} = \overrightarrow{P} - \overrightarrow{Q} \qquad t^{a} = -\overrightarrow{Q}^{2} + (E_{f} - E_{i})^{2}$

Proof-of-concept calculation (zero quasi-skewness):

- symmetric frame:

- asymmetric frame:

Matrix element decomposition

$$\begin{aligned} \text{Symmetric} & \Pi_{s}^{0}(\Gamma_{0}) = C_{s} \left(\frac{E\left(E(E+m)-P_{s}^{2}\right)}{2m^{3}} A_{1} + \frac{(E+m)\left(-E^{2}+m^{2}+P_{s}^{2}\right)}{m^{3}} A_{5} + \frac{EP_{3}\left(-E^{2}+m^{2}+P_{s}^{2}\right)z}{m^{3}} A_{6} \right) \\ C_{s} &= \frac{2m^{2}}{E(E+m)} & \Pi_{s}^{0}(\Gamma_{1}) = iC_{s} \left(\frac{EP_{3}Q_{2}}{4m^{3}} A_{1} - \frac{(E+m)P_{3}Q_{2}}{2m^{3}} A_{5} - \frac{E\left(P_{s}^{2}+m(E+m)\right)zQ_{2}}{2m^{3}} A_{6} \right) \\ \Gamma_{j} &= \frac{i}{4}(1+\gamma^{0})y^{5}\gamma^{j} & \Pi_{s}^{0}(\Gamma_{2}) = iC_{s} \left(-\frac{EP_{3}Q_{1}}{4m^{3}} A_{1} + \frac{(E+m)P_{3}Q_{1}}{2m^{3}} A_{5} + \frac{E\left(P_{s}^{2}+m(E+m)\right)zQ_{2}}{2m^{3}} A_{6} \right) \\ \text{Asymmetric} & \Pi_{0}^{0}(\Gamma_{0}) = C_{a} \left(-\frac{(E_{f}+E_{i})(E_{f}-E_{i}-2m)(E_{f}+m)}{8m^{3}} A_{1} - \frac{(E_{f}-E_{i}-2m)(E_{f}+m)(E_{f}-E_{i})}{4m^{3}} A_{5} \right) \\ C_{a} &= \frac{2m^{2}}{\sqrt{E_{i}E_{f}(E_{i}+m)(E_{f}+m)}} & + \frac{(E_{i}-E_{f})P_{3}z}{4m^{3}} A_{4} + \frac{(E_{f}+E_{i})(E_{f}-E_{i})}{4m^{3}} A_{5} + \frac{E_{f}(E_{f}+E_{i})P_{3}(E_{f}-E_{i})z}{4m^{3}} A_{6} \\ & + \frac{E_{f}P_{3}(E_{f}-E_{i})^{2}z}{4m^{3}} A_{8} \right) \\ \Pi_{0}^{a}(\Gamma_{1}) &= iC_{a} \left(\frac{(E_{f}+E_{i})P_{3}Q_{2}}{8m^{3}} A_{1} + \frac{(E_{f}-E_{i})P_{3}Q_{2}}{4m^{3}} A_{3} + \frac{(E_{f}+m)Q_{2}z}{4m^{3}} A_{4} - \frac{(E_{f}+E_{i}+2m)P_{3}Q_{2}}{4m^{3}} A_{5} \\ & -\frac{E_{f}(E_{f}+E_{i})(E_{f}+m)Q_{2}z}{4m^{3}} A_{6} - \frac{E_{f}(E_{f}-E_{i})(E_{f}+m)Q_{2}z}{4m^{3}} A_{4} - \frac{(E_{f}+E_{i}+2m)P_{3}Q_{2}}{4m^{3}} A_{5} \\ & -\frac{E_{f}(E_{f}+E_{i})(E_{f}+m)Q_{2}z}{4m^{3}} A_{1} - \frac{(E_{f}-E_{i})P_{3}Q_{1}}{4m^{3}} A_{3} - \frac{(E_{f}+E_{i}+2m)P_{3}Q_{2}}{4m^{3}} A_{5} \\ & -\frac{E_{f}(E_{f}+E_{i})(E_{f}+m)Q_{2}z}{4m^{3}} A_{6} - \frac{E_{f}(E_{f}-E_{i})(E_{f}+m)Q_{2}z}{4m^{3}} A_{6} + \frac{E_{f}(E_{f}+E_{i}+2m)P_{3}Q_{2}}{2m^{3}} A_{5} \\ & -\frac{E_{f}(E_{f}+E_{i})(E_{f}+m)Q_{2}z}{4m^{3}} A_{6} - \frac{E_{f}(E_{f}-E_{i})(E_{f}+m)Q_{2}z}{4m^{3}} A_{6} + \frac{E_{f}(E_{f}-E_{i})(E_{f}+m)Q_{2}z}{4m^{3}} A_{6} \\ & +\frac{E_{f}(E_{f}+E_{i})(E_{f}+m)Q_{2}z}{4m^{3}} A_{6} + \frac{E_{f}(E_{f}-E_{i})(E_{f}+m)Q_{2}z}{4m^{3}} A_{6} \\ & +\frac{E_{f}(E_{f}+E_{i})(E_{f}+m)Q_{2}z}{4m^{3}} A_{6} + \frac{E_{f}(E_{f}-E_{i})(E_{f}+m)Q_{2}z}{4m^{3}} A_{6} \\ & +\frac{E_{f}(E_{f}+E_{i})(E_{f}+m)Q_{2}z}{4$$

ᄟ

Matrix element decomposition

$$\begin{aligned} \text{Symmetric} & \Pi_{a}^{0}(\Gamma_{0}) = C_{s} \left(\frac{E\left(E\left(E+m\right) - P_{s}^{2}\right)}{2m^{3}} A_{1} + \frac{(E+m)\left(-E^{2}+m^{2} + P_{s}^{2}\right)}{m^{3}} A_{5} + \frac{EP_{3}\left(-E^{2}+m^{2} + P_{s}^{2}\right)z}{m^{3}} A_{6} \right) \\ C_{s} &= \frac{2m^{2}}{E(E+m)} & \Pi_{a}^{0}(\Gamma_{1}) = i C_{a} \left(\frac{EP_{3}Q_{2}}{4m^{3}} A_{1} - \frac{(E+m)P_{3}Q_{2}}{2m^{3}} A_{5} - \frac{E\left(P_{s}^{2}+m(E+m)\right)zQ_{2}}{2m^{3}} A_{6} \right) \\ \Gamma_{0} &= \frac{1}{2}(1+\gamma^{0}) & \Pi_{a}^{0}(\Gamma_{2}) = i C_{a} \left(-\frac{EP_{3}Q_{1}}{4m^{3}} A_{1} + \frac{(E+m)P_{3}Q_{1}}{2m^{3}} A_{5} + \frac{E\left(P_{s}^{2}+m(E+m)\right)zQ_{1}}{2m^{3}} A_{6} \right) & \text{Novel feature:} \\ \Gamma_{j} &= \frac{i}{4}(1+\gamma^{0})r^{5}r^{j} & \Pi_{a}^{0}(\Gamma_{2}) = i C_{a} \left(-\frac{(E_{f}+E_{i})(E_{f}-E_{i}-2m)(E_{f}+m)}{2m^{3}} A_{5} + \frac{E\left(P_{s}^{2}+m(E+m)\right)zQ_{1}}{2m^{3}} A_{6} \right) & \text{Novel feature:} \\ Z-\text{dependence} & Z-\text{dependence} \\ \Lambda_{symmetric} & \Pi_{0}^{a}(\Gamma_{0}) = C_{a} \left(-\frac{(E_{f}+E_{i})(E_{f}-E_{i}-2m)(E_{f}+m)}{4m^{3}} A_{1} - \frac{(E_{f}-E_{i}-2m)(E_{f}+m)(E_{f}-E_{i})}{4m^{3}} A_{5} + \frac{E_{f}(E_{f}-E_{i})P_{3}(E_{f}-E_{i})z}{4m^{3}} A_{6} \right) \\ \Gamma_{0}^{a}(\Gamma_{1}) &= i C_{a} \left(\frac{(E_{f}+E_{i})P_{3}Q_{2}}{\sqrt{E_{i}E_{j}(E_{i}+m)(E_{j}+m)}} A_{1} - \frac{(E_{f}-E_{i})P_{3}Q_{2}}{4m^{3}} A_{3} + \frac{(E_{f}+E_{i})P_{3}(E_{f}-E_{i})z}{4m^{3}} A_{6} \right) \\ \Pi_{0}^{a}(\Gamma_{1}) &= i C_{a} \left(\frac{(E_{f}+E_{i})P_{3}Q_{2}}{8m^{3}} A_{1} + \frac{(E_{f}-E_{i})P_{3}Q_{2}}{4m^{3}} A_{3} + \frac{(E_{f}+E_{i}+2m)P_{3}Q_{2}}{2m^{3}} A_{5} \right) \\ \Pi_{0}^{a}(\Gamma_{2}) &= i C_{a} \left(-\frac{(E_{f}+E_{i})P_{3}Q_{2}}{8m^{3}} A_{1} - \frac{(E_{f}-E_{i})P_{3}Q_{2}}{4m^{3}} A_{3} - \frac{(E_{f}+E_{i}+2m)P_{3}Q_{2}}{4m^{3}} A_{4} + \frac{(E_{f}+E_{i}+2m)P_{3}Q_{2}}{4m^{3}} A_{5} \right) \\ \Pi_{0}^{a}(\Gamma_{2}) &= i C_{a} \left(-\frac{(E_{f}+E_{i})P_{3}Q_{1}}{8m^{3}} A_{1} - \frac{(E_{f}-E_{i})P_{3}Q_{1}}{4m^{3}} A_{3} - \frac{(E_{f}+E_{i}+2m)P_{3}Q_{2}}{4m^{3}} A_{3} \right) \\ \Pi_{0}^{a}(\Gamma_{2}) &= i C_{a} \left(-\frac{(E_{f}+E_{i})P_{3}Q_{1}}{4m^{3}} A_{1} - \frac{(E_{f}-E_{i})P_{3}Q_{1}}{4m^{3}} A_{3} - \frac{(E_{f}+E_{i}+E_{i}+2m)P_{3}Q_{2}}{4m^{3}} A_{5} \right) \\ \Pi_{0}^{a}(\Gamma_{2}) &= i C_{a} \left(-\frac{(E_{f}+E_{i})P_{3}Q_{1}}{4m^{3}} A_{1} - \frac{(E_{f}-E_{i})P_{3}Q_{1}}{4m^$$

Matrix element decomposition

$$\begin{aligned} & \text{Symmetric} \\ & \Pi_{9}^{0}(\Gamma_{0}) = C_{s} \left(\frac{E\left(E(E+m) - P_{3}^{2}\right)}{2m^{3}} A_{1} + \frac{(E+m)\left(-E^{2}+m^{2} + P_{3}^{2}\right)}{m^{3}} A_{5} + \frac{EP_{3}\left(-E^{2}+m^{2} + P_{3}^{2}\right)}{m^{3}} A_{6} \right) \\ & C_{s} = \frac{2m^{2}}{E(E+m)} \\ & \Pi_{9}^{0}(\Gamma_{1}) = i C_{s} \left(\frac{EP_{3}Q_{2}}{4m^{3}} A_{1} - \frac{(E+m)P_{3}Q_{2}}{2m^{3}} A_{5} - \frac{E\left(P_{3}^{2}+m(E+m)\right)}{2m^{3}} 2Q_{2}}{2m^{3}} A_{6} \right) \\ & \Gamma_{j} = \frac{i}{4}(1+\gamma^{0})\gamma^{5}\gamma^{j} \\ & \Pi_{9}^{0}(\Gamma_{2}) = i C_{s} \left(-\frac{EP_{3}Q_{1}}{4m^{3}} A_{1} + \frac{(E+m)P_{3}Q_{1}}{2m^{3}} A_{5} + \frac{E\left(P_{3}^{2}+m(E+m)\right)}{2m^{3}} 2Q_{1}} A_{6} \right) \\ & \text{Asymmetric} \\ & \Pi_{9}^{0}(\Gamma_{0}) = C_{s} \left(-\frac{(E_{f}+E_{i})(E_{f}-E_{i}-2m)(E_{f}+m)}{8m^{3}} A_{1} - \frac{(E_{f}-E_{i}-2m)(E_{f}+m)(E_{f}-E_{i})}{4m^{3}} A_{6} \right) \\ & C_{a} = \frac{2m^{2}}{\sqrt{F_{i}F_{j}(E_{i}+m)(E_{f}+m)}} \\ & + \frac{(E_{i}-E_{j})P_{3}}{2m^{3}} A_{4} + \frac{(E_{f}+E_{i})(E_{f}+m)(E_{f}-E_{i})}{4m^{3}} A_{5} + \frac{E_{f}(E_{f}+E_{i})P_{3}(E_{f}-E_{i})z}{4m^{3}} A_{6} \\ & + \frac{E_{f}P_{3}(E_{f}-E_{i})^{2}z}{2m^{3}} A_{8} \right) \\ & \Pi_{0}^{0}(\Gamma_{1}) = i C_{a} \left(\frac{(E_{f}+E_{i})P_{3}Q_{2}}{2m^{3}} A_{1} + \frac{(E_{f}-E_{i})P_{3}Q_{2}}{4m^{3}} A_{3} + \frac{(E_{f}+m)Q_{2}z}{4m^{3}} A_{4} - \frac{(E_{f}+E_{i}+2m)P_{3}Q_{2}}{4m^{3}} A_{5} \\ & - \frac{E_{f}(E_{f}+E_{i})(E_{f}+m)Q_{2}z}{4m^{3}} A_{1} - \frac{(E_{f}-E_{i})P_{3}Q_{1}}{4m^{3}} A_{3} - \frac{(E_{f}+E_{i}+2m)P_{3}Q_{2}}{2m^{3}} A_{8} \right) \\ & \Pi_{0}^{0}(\Gamma_{1}) = i C_{a} \left(-\frac{(E_{f}+E_{i})P_{3}Q_{1}}{4m^{3}} A_{1} - \frac{(E_{f}-E_{i})P_{3}Q_{1}}{4m^{3}} A_{3} - \frac{(E_{f}+m)Q_{2}z}{4m^{3}} A_{8} \right) \\ & \frac{E_{f}(E_{f}-E_{i})(E_{f}+m)Q_{2}z}{4m^{3}} A_{1} - \frac{(E_{f}-E_{i})P_{3}Q_{1}}{4m^{3}} A_{4} + \frac{(E_{f}+E_{i}+2m)P_{3}Q_{2}}{4m^{3}} A_{8} \right) \\ & \frac{E_{f}(E_{f}+E_{i})(E_{f}+m)Q_{2}z}{4m^{3}} A_{1} - \frac{(E_{f}-E_{i})P_{3}Q_{1}}{4m^{3}} A_{3} - \frac{(E_{f}+E_{i}+2m)P_{3}Q_{2}}{4m^{3}} A_{8} \right) \\ & \frac{E_{f}(E_{f}+E_{i})(E_{f}+m)Q_{2}z}{4m^{3}} A_{1} - \frac{(E_{f}-E_{i})P_{3}Q_{1}}{4m^{3}} A_{2} - \frac{(E_{f}+E_{i}+2m)P_{3}Q_{2}}{4m^{3}} A_{8} \right) \\ & \frac{E_{f}(E_{f}+E_{i})(E_{f}+m)Q_{2}}{4m^{3}} A_{6} + \frac{E_{f}(E_{f}-E_{i})(E_{f}+m)Q_{2}$$

Lorentz-Invariant amplitudes

Symmetric

$$A_1 = \frac{\left(m(E+m) + P_3^2\right)}{E(E+m)} \Pi_0^s(\Gamma_0) - i \frac{P_3 Q_1}{2E(E+m)} \Pi_0^s(\Gamma_2) - \frac{Q_1}{2E} \Pi_2^s(\Gamma_3)$$

$$A_5 = -\frac{E}{Q_1} \Pi_2^s(\Gamma_3)$$

$$A_{6} = \frac{P_{3}}{2Ez(E+m)}\Pi_{0}^{s}(\Gamma_{0}) + i \frac{\left(P_{3}^{2} - E(E+m)\right)}{EQ_{1}z(E+m)}\Pi_{0}^{s}(\Gamma_{2}) + \frac{P_{3}}{EQ_{1}z}\Pi_{2}^{s}(\Gamma_{3})$$

$$\begin{array}{ll} \text{Asymmetric} \quad A_{1} = \frac{2m^{2}}{E_{f}(E_{i}+m)} \frac{\Pi_{0}^{a}(\Gamma_{0})}{C_{a}} + i \, \frac{2(E_{f}-E_{i})P_{3}m^{2}}{E_{f}(E_{f}+m)(E_{i}+m)Q_{1}} \frac{\Pi_{0}^{a}(\Gamma_{2})}{C_{a}} + \frac{2(E_{i}-E_{f})P_{3}m^{2}}{E_{f}(E_{f}+E_{i})(E_{f}+m)(E_{i}+m)} \frac{\Pi_{1}^{a}(\Gamma_{2})}{C_{a}} \\ + i \, \frac{2(E_{i}-E_{f})m^{2}}{E_{f}(E_{i}+m)Q_{1}} \frac{\Pi_{1}^{a}(\Gamma_{0})}{C_{a}} + \frac{2(E_{i}-E_{f})P_{3}m^{2}}{E_{f}(E_{f}+E_{i})(E_{f}+m)(E_{i}+m)} \frac{\Pi_{2}^{a}(\Gamma_{1})}{C_{a}} + \frac{2(E_{f}-E_{i})m^{2}}{E_{f}(E_{i}+m)Q_{1}} \frac{\Pi_{2}^{a}(\Gamma_{3})}{C_{a}} \end{array}$$

$$A_5 = \frac{m^2 P_3}{E_f(E_f + m)(E_i + m)} \frac{\Pi_2^a(\Gamma_1)}{C_a} - \frac{(E_f + E_i)m^2}{E_f(E_i + m)Q_1} \frac{\Pi_2^a(\Gamma_3)}{C_a}$$

$$\begin{split} A_{6} &= \frac{P_{3}m^{2}}{E_{f}^{2}(E_{f}+m)(E_{i}+m)z} \frac{\Pi_{0}^{a}(\Gamma_{0})}{C_{a}} + i \frac{(E_{f}-E_{i}-2m)m^{2}}{E_{f}^{2}(E_{i}+m)Q_{1}z} \frac{\Pi_{0}^{a}(\Gamma_{2})}{C_{a}} + i \frac{(E_{i}-E_{f})P_{3}m^{2}}{E_{f}^{2}(E_{f}+m)(E_{i}+m)Q_{1}z} \frac{\Pi_{1}^{a}(\Gamma_{0})}{C_{a}} \\ &+ \frac{(-E_{f}+E_{i}+2m)m^{2}}{E_{f}^{2}(E_{f}+E_{i})(E_{i}+m)z} \frac{\Pi_{1}^{a}(\Gamma_{2})}{C_{a}} + \frac{2(m-E_{f})m^{2}}{E_{f}^{2}(E_{f}+E_{i})(E_{i}+m)z} \frac{\Pi_{2}^{a}(\Gamma_{1})}{C_{a}} + \frac{2P_{3}m^{2}}{E_{f}^{2}(E_{i}+m)Q_{1}z} \frac{\Pi_{2}^{a}(\Gamma_{3})}{C_{a}} \end{split}$$

- ★ Asymmetric frame equations more complex
- \star A_i have definite symmetries
- \star System of 8 independent matrix elements to disentangle the A_i

Lorentz-Invariant amplitudes

Symmetric • $A_1 = \frac{\left(m(E+m) + P_3^2\right)}{E(E+m)} \Pi_0^s(\Gamma_0) - i \frac{P_3 Q_1}{2E(E+m)} \Pi_0^s(\Gamma_2) - \frac{Q_1}{2E} \Pi_2^s(\Gamma_3)$ $A_5 = -\frac{E}{\Omega_1} \Pi_2^s(\Gamma_3)$ $\mathbf{A}_{6} = \frac{P_{3}}{2Ez(E+m)}\Pi_{0}^{s}(\Gamma_{0}) + i\frac{\left(P_{3}^{2} - E(E+m)\right)}{EQ_{1}z(E+m)}\Pi_{0}^{s}(\Gamma_{2}) + \frac{P_{3}}{EQ_{1}z}\Pi_{2}^{s}(\Gamma_{3})$ $A_{1} = \frac{2m^{2}}{E_{f}(E_{i}+m)} \frac{\Pi_{0}^{a}(\Gamma_{0})}{C_{a}} + i \frac{2(E_{f}-E_{i})P_{3}m^{2}}{E_{f}(E_{f}+m)(E_{i}+m)Q_{1}} \frac{\Pi_{0}^{a}(\Gamma_{2})}{C_{a}} + \frac{2(E_{i}-E_{f})P_{3}m^{2}}{E_{f}(E_{f}+E_{i})(E_{f}+m)(E_{i}+m)} \frac{\Pi_{1}^{a}(\Gamma_{2})}{C_{a}}$ $+i\frac{2(E_{i}-E_{f})m^{2}}{E_{f}(E_{i}+m)Q_{1}}\frac{\Pi_{1}^{a}(\Gamma_{0})}{C_{i}}+\frac{2(E_{i}-E_{f})P_{3}m^{2}}{E_{f}(E_{f}+E_{i})(E_{f}+m)(E_{i}+m)}\frac{\Pi_{2}^{a}(\Gamma_{1})}{C}+\frac{2(E_{f}-E_{i})m^{2}}{E_{f}(E_{i}+m)Q_{1}}\frac{\Pi_{2}^{a}(\Gamma_{3})}{C}$ $A_{5} = \frac{m^{2}P_{3}}{E_{f}(E_{f} + m)(E_{i} + m)} \frac{\Pi_{2}^{a}(\Gamma_{1})}{C_{a}} - \frac{(E_{f} + E_{i})m^{2}}{E_{f}(E_{i} + m)Q_{1}} \frac{\Pi_{2}^{a}(\Gamma_{3})}{C_{a}}$ $A_{6} = \frac{P_{3}m^{2}}{E_{f}^{2}(E_{f}+m)(E_{i}+m)z} \frac{\Pi_{0}^{a}(\Gamma_{0})}{C_{a}} + i \frac{(E_{f}-E_{i}-2m)m^{2}}{E_{f}^{2}(E_{i}+m)Q_{1}z} \frac{\Pi_{0}^{a}(\Gamma_{2})}{C_{a}} + i \frac{(E_{i}-E_{f})P_{3}m^{2}}{E_{f}^{2}(E_{f}+m)(E_{i}+m)Q_{1}z} \frac{\Pi_{1}^{a}(\Gamma_{0})}{C_{a}}$ $+\frac{(-E_f+E_i+2m)m^2}{E_f^2(E_f+E_i)(E_i+m)z}\frac{\Pi_1^a(\Gamma_2)}{C_a}+\frac{2(m-E_f)m^2}{E_f^2(E_f+E_i)(E_i+m)z}\frac{\Pi_2^a(\Gamma_1)}{C_a}+\frac{2P_3m^2}{E_f^2(E_i+m)Q_1z}\frac{\Pi_2^a(\Gamma_3)}{C_a}$

- ★ Asymmetric frame equations more complex
- \star A_i have definite symmetries

 \star System of 8 independent matrix elements to disentangle the A_i

Parameters of calculation

★ Nf=2+1+1 twisted mass (TM) fermions & clover improvement

- isovector combination
- zero skewness
- T_{sink}=1 fm

Pion mass:	260 MeV				
Lattice spacing:	0.093 fm				
Volume:	32³ x 64				
Spatial extent:	3 fm				

frame	$P_3 \; [{ m GeV}]$	$\mathbf{Q}\;[rac{2\pi}{L}]$	$-t \; [{\rm GeV}^2]$	ξ	$N_{\rm ME}$	$N_{ m confs}$	$N_{ m src}$	$N_{ m tot}$
symm	1.25	$(\pm 2,0,0), (0,\pm 2,0)$	0.69	0	8	249	8	15936
non-symm	1.25	$(\pm 2,0,0), (0,\pm 2,0)$	0.64	0	8	269	8	17216

★ Computational cost:

- symmetric frame 4 times more expensive than asymmetric frame for same set of \overrightarrow{Q} (requires separate calculations at each *t*)

Parameters of calculation

★ Nf=2+1+1 twisted mass (TM) fermions & clover improvement

	W(z)
nation	$N(\vec{P}_f, 0)$

Pion mass:	260 MeV
Lattice spacing:	0.093 fm
Volume:	32³ x 64
Spatial extent:	3 fm

- \star Calculation:
 - isovector combination
 - zero skewness
 - T_{sink}=1 fm

frame	$P_3 \; [{ m GeV}]$	$\mathbf{Q}\;[rac{2\pi}{L}]$	$-t \; [{\rm GeV^2}]$	ξ	$N_{ m ME}$	$N_{ m confs}$	$N_{ m src}$	$N_{ m tot}$
symm	1.25	$(\pm 2,0,0), (0,\pm 2,0)$	0.69	0	8	249	8	15936
non-symm	1.25	$(\pm 2,0,0), (0,\pm 2,0)$	0.64	0	8	269	8	17216
			\rightarrow			\rightarrow		

Small difference:

$$t^s = -\overrightarrow{Q}^2$$
 $t^a = -\overrightarrow{Q}^2 + (E_f - E_i)^2$

 $A(-0.64 \text{GeV}^2) \sim A(-0.69 \text{GeV}^2)$

★ Computational cost:

- symmetric frame 4 times more expensive than asymmetric frame for same set of \vec{Q} (requires separate calculations at each *t*)

Results: matrix elements

 $\{+3, (-2, 0, 0)\}$ $\{+3, (+2, 0, 0)\}$ $\{+3, (0, -2, 0)\}$ $\{+3, (0, +2, 0)\}$ $\{-3, (-2, 0, 0)\}$ $\{-3, (+2, 0, 0)\}$ $\{-3, (0, -2, 0)\}$ $\{-3, (0, +2, 0)\}$

Imag

'זנ'

- Lattice data confirm symmetries where applicable (e.g., $\Pi_0^s(\Gamma_0)$ in $\pm P_3, \pm Q, \pm z$) \star
- ME in asymmetric frame do not have definite symmetries in $\pm P_3, \pm Q, \pm z$ \star
- ME decompose to different A_i \star
- Multiple ME contribute to the same quantity \star

Results: matrix elements

- ★ $\Pi_1(\Gamma_2)$ theoretically nonzero
- ★ Noisy contributions lead to challenges in extracting A_i of sub-leading magnitude

Results: A_i

★ A_1, A_5 dominant contributions

X

T

- **★** Full agreement in two frames for both Re and Im parts of A_1, A_5
 - Remaining A_i suppressed (at least for this kinematic setup and $\xi = 0$)

 $egin{array}{c} A_1^s \ A_1^a \ A_5^s \ A_5^a \ A_5^a \end{array}$

φ

★ Mapping of { \mathscr{H} , \mathscr{E} } to A_i using $F^{[\gamma^0]} \sim \left[\gamma^0 H_{Q(0)}(x,\xi,t;P^3) + \frac{i\sigma^{0\mu}\Delta_{\mu}}{2M}E_{Q(0)}(x,\xi,t;P^3)\right]$ in each frame leading to frame dependent relations:

★ Mapping of { \mathscr{H} , \mathscr{E} } to A_i using $F^{[\gamma^0]} \sim \left[\gamma^0 H_{Q(0)}(x,\xi,t;P^3) + \frac{i\sigma^{0\mu}\Delta_{\mu}}{2M}E_{Q(0)}(x,\xi,t;P^3)\right]$ in each frame leading to frame dependent relations:

$$\begin{aligned} \Pi_{H}^{s} &= A_{1} + \frac{zQ_{1}^{2}}{2P_{3}}A_{6} \\ \Pi_{E}^{s} &= -A_{1} - \frac{m^{2}z}{P_{3}}A_{4} + 2A_{5} - \frac{z\left(4E^{2} + Qx^{2} + Qy^{2}\right)}{2P_{3}}A_{6} \\ \Pi_{H}^{a} &= A_{1} + \frac{Q_{0}}{P_{0}}A_{3} + \frac{m^{2}zQ_{0}}{2P_{0}P_{3}}A_{4} + \frac{z(Q_{0}^{2} + Q_{1}^{2})}{2P_{3}}A_{6} + \frac{z(Q_{0}^{3} + Q_{0}Q_{1}^{2})}{2P_{0}P_{3}}A_{8} \\ \Pi_{E}^{a} &= -A_{1} - \frac{Q_{0}}{P_{0}}A_{3} - \frac{m^{2}z(Q_{0} + 2P_{0})}{2P_{0}P_{3}}A_{4} + 2A_{5} \\ &- \frac{z\left(Q_{0}^{2} + 2P_{0}Q_{0} + 4P_{0}^{2} + Q_{1}^{2}\right)}{2P_{3}}A_{6} - \frac{zQ_{0}\left(Q_{0}^{2} + 2Q_{0}P_{0} + 4P_{0}^{2} + Q_{1}^{2}\right)}{2P_{0}P_{3}}A_{8} \end{aligned}$$

 $(\xi$

★ Mapping of { \mathscr{H} , \mathscr{E} } to A_i using $F^{[\gamma^0]} \sim \left[\gamma^0 H_{Q(0)}(x,\xi,t;P^3) + \frac{i\sigma^{0\mu}\Delta_{\mu}}{2M}E_{Q(0)}(x,\xi,t;P^3)\right]$ in each frame leading to frame dependent relations:

$$\begin{aligned} \Pi_{H}^{s} &= A_{1} + \frac{zQ_{1}^{2}}{2P_{3}}A_{6} \\ \Pi_{E}^{s} &= -A_{1} - \frac{m^{2}z}{P_{3}}A_{4} + 2A_{5} - \frac{z\left(4E^{2} + Qx^{2} + Qy^{2}\right)}{2P_{3}}A_{6} \\ \Pi_{H}^{a} &= A_{1} + \frac{Q_{0}}{P_{0}}A_{3} + \frac{m^{2}zQ_{0}}{2P_{0}P_{3}}A_{4} + \frac{z(Q_{0}^{2} + Q_{1}^{2})}{2P_{3}}A_{6} + \frac{z(Q_{0}^{3} + Q_{0}Q_{1}^{2})}{2P_{0}P_{3}}A_{8} \\ \Pi_{E}^{a} &= -A_{1} - \frac{Q_{0}}{P_{0}}A_{3} - \frac{m^{2}z(Q_{0} + 2P_{0})}{2P_{0}P_{3}}A_{4} + 2A_{5} \\ &- \frac{z\left(Q_{0}^{2} + 2P_{0}Q_{0} + 4P_{0}^{2} + Q_{1}^{2}\right)}{2P_{3}}A_{6} - \frac{zQ_{0}\left(Q_{0}^{2} + 2Q_{0}P_{0} + 4P_{0}^{2} + Q_{1}^{2}\right)}{2P_{0}P_{3}}A_{8} \end{aligned}$$

★ Definition of Lorentz invariant \mathcal{H}, \mathcal{E}

$$\begin{array}{ll} (\xi = 0) & \Pi_{H}^{\rm impr} = A_{1} \\ & \Pi_{E}^{\rm impr} = -A_{1} + 2A_{5} + 2zP_{3}A_{6} \end{array}$$

 $(\xi$

★ Mapping of { \mathscr{H} , \mathscr{E} } to A_i using $F^{[\gamma^0]} \sim \left[\gamma^0 H_{Q(0)}(x,\xi,t;P^3) + \frac{i\sigma^{0\mu}\Delta_{\mu}}{2M}E_{Q(0)}(x,\xi,t;P^3)\right]$ in each frame leading to frame dependent relations:

$$\begin{aligned} (\xi = 0) & \Pi_{H}^{s} = A_{1} + \frac{zQ_{1}^{2}}{2P_{3}}A_{6} \\ \Pi_{E}^{s} = -A_{1} - \frac{m^{2}z}{P_{3}}A_{4} + 2A_{5} - \frac{z\left(4E^{2} + Qx^{2} + Qy^{2}\right)}{2P_{3}}A_{6} \\ \Pi_{H}^{a} = A_{1} + \frac{Q_{0}}{P_{0}}A_{3} + \frac{m^{2}zQ_{0}}{2P_{0}P_{3}}A_{4} + \frac{z(Q_{0}^{2} + Q_{1}^{2})}{2P_{3}}A_{6} + \frac{z(Q_{0}^{3} + Q_{0}Q_{1}^{2})}{2P_{0}P_{3}}A_{8} \\ \Pi_{E}^{a} = -A_{1} - \frac{Q_{0}}{P_{0}}A_{3} - \frac{m^{2}z(Q_{0} + 2P_{0})}{2P_{0}P_{3}}A_{4} + 2A_{5} \\ - \frac{z\left(Q_{0}^{2} + 2P_{0}Q_{0} + 4P_{0}^{2} + Q_{1}^{2}\right)}{2P_{3}}A_{6} - \frac{zQ_{0}\left(Q_{0}^{2} + 2Q_{0}P_{0} + 4P_{0}^{2} + Q_{1}^{2}\right)}{2P_{0}P_{3}}A_{8} \end{aligned}$$

1st approach: extraction of $\{\mathcal{H}_0^s, \mathcal{E}_0^s\}$ using A_i from any frame (universal)

★ Definition of Lorentz invariant \mathscr{H}, \mathscr{E}

= 0)
$$\Pi_{H}^{\text{impr}} = A_{1}$$

 $\Pi_{E}^{\text{impr}} = -A_{1} + 2A_{5} + 2zP_{3}A_{6}$

 $(\xi$

★ Mapping of $\{\mathscr{H}, \mathscr{C}\}$ to A_i using $F^{[\gamma^0]} \sim \left[\gamma^0 H_{Q(0)}(x,\xi,t;P^3) + \frac{i\sigma^{0\mu}\Delta_{\mu}}{2M}E_{Q(0)}(x,\xi,t;P^3)\right]$ in each frame leading to frame dependent relations:

$$\begin{aligned} (\xi = 0) & \Pi_{H}^{s} = A_{1} + \frac{zQ_{1}^{2}}{2P_{3}}A_{6} \\ \Pi_{E}^{s} = -A_{1} - \frac{m^{2}z}{P_{3}}A_{4} + 2A_{5} - \frac{z\left(4E^{2} + Qx^{2} + Qy^{2}\right)}{2P_{3}}A_{6} \\ \Pi_{H}^{a} = A_{1} + \frac{Q_{0}}{P_{0}}A_{3} + \frac{m^{2}zQ_{0}}{2P_{0}P_{3}}A_{4} + \frac{z(Q_{0}^{2} + Q_{1}^{2})}{2P_{3}}A_{6} + \frac{z(Q_{0}^{3} + Q_{0}Q_{1}^{2})}{2P_{0}P_{3}}A_{8} \\ \Pi_{E}^{a} = -A_{1} - \frac{Q_{0}}{P_{0}}A_{3} - \frac{m^{2}z(Q_{0} + 2P_{0})}{2P_{0}P_{3}}A_{4} + 2A_{5} \\ - \frac{z\left(Q_{0}^{2} + 2P_{0}Q_{0} + 4P_{0}^{2} + Q_{1}^{2}\right)}{2P_{3}}A_{6} - \frac{zQ_{0}\left(Q_{0}^{2} + 2Q_{0}P_{0} + 4P_{0}^{2} + Q_{1}^{2}\right)}{2P_{0}P_{3}}A_{8} \end{aligned}$$

1st approach: extraction of $\{\mathcal{H}_0^s, \mathcal{E}_0^s\}$ using A_i from any frame (universal)

2nd approach: extraction of $\{\mathscr{H}_0^a, \mathscr{C}_0^a\}$ from a purely asymmetric frame; GPDs differ in functional form from $\{\mathscr{H}_0^s, \mathscr{C}_0^s\}$

★ Definition of Lorentz invariant \mathscr{H}, \mathscr{E}

$$(\xi = 0) \qquad \Pi_H^{\text{impr}} = A_1$$
$$\Pi_E^{\text{impr}} = -A_1 + 2A_5 + 2zP_3A_6$$

★ Mapping of $\{\mathscr{H}, \mathscr{C}\}$ to A_i using $F^{[\gamma^0]} \sim \left[\gamma^0 H_{Q(0)}(x, \xi, t; P^3) + \frac{i\sigma^{0\mu}\Delta_{\mu}}{2M}E_{Q(0)}(x, \xi, t; P^3)\right]$ in each frame leading to frame dependent relations:

$$\begin{aligned} (\xi = 0) & \Pi_{H}^{s} = A_{1} + \frac{zQ_{1}^{2}}{2P_{3}}A_{6} \\ \Pi_{E}^{s} = -A_{1} - \frac{m^{2}z}{P_{3}}A_{4} + 2A_{5} - \frac{z\left(4E^{2} + Qx^{2} + Qy^{2}\right)}{2P_{3}}A_{6} \\ \Pi_{H}^{a} = A_{1} + \frac{Q_{0}}{P_{0}}A_{3} + \frac{m^{2}zQ_{0}}{2P_{0}P_{3}}A_{4} + \frac{z(Q_{0}^{2} + Q_{1}^{2})}{2P_{3}}A_{6} + \frac{z(Q_{0}^{3} + Q_{0}Q_{1}^{2})}{2P_{0}P_{3}}A_{8} \\ \Pi_{E}^{a} = -A_{1} - \frac{Q_{0}}{P_{0}}A_{3} - \frac{m^{2}z(Q_{0} + 2P_{0})}{2P_{0}P_{3}}A_{4} + 2A_{5} \\ - \frac{z\left(Q_{0}^{2} + 2P_{0}Q_{0} + 4P_{0}^{2} + Q_{1}^{2}\right)}{2P_{3}}A_{6} - \frac{zQ_{0}\left(Q_{0}^{2} + 2Q_{0}P_{0} + 4P_{0}^{2} + Q_{1}^{2}\right)}{2P_{0}P_{3}}A_{8} \end{aligned}$$

1st approach: extraction of $\{\mathcal{H}_0^s, \mathcal{E}_0^s\}$ using A_i from any frame (universal)

2nd approach: extraction of $\{\mathscr{H}_0^a, \mathscr{C}_0^a\}$ from a purely asymmetric frame; GPDs differ in functional form from $\{\mathscr{H}_0^s, \mathscr{C}_0^s\}$

★ Definition of Lorentz invariant \mathscr{H}, \mathscr{E}

$$\begin{array}{ll} (\xi = 0) & \Pi_{H}^{\rm impr} = A_{1} \\ & \Pi_{E}^{\rm impr} = -A_{1} + 2A_{5} + 2zP_{3}A_{6} \end{array}$$

3rd approach: use redefined Lorentz covariant $\{\mathcal{H}, \mathcal{C}\}$ in desired frame

Results: H - GPD

Definition comparison

Similar results for Hand \mathcal{H} for both frames (agreement not by construction)

Agreement between frames for \mathcal{H} (agreement by construction)

Results: *E* – GPD

Definition comparison

Example: asymmetric frame

T

Lorentz covariant case: more precise data

★ Same effect of improvement also for symmetric frame

Example: asymmetric frame

]['

$$\begin{split} \mathcal{E}_{0}^{a}(A_{i}^{a};z) &= -\frac{4m^{3}}{K(E_{f}+E_{i})(E_{f}+m)(E_{i}+m)}\Pi_{0}^{a}(\Gamma_{0}) - i\frac{4m^{3}}{KP_{3}\Delta(E_{i}+m)}\Pi_{0}^{a}(\Gamma_{2}) \,. \\ \mathcal{E}(A_{i}^{a};z) &= -\frac{2m^{3}}{E_{f}^{2}(E_{i}+m)}\frac{\Pi_{0}^{a}(\Gamma_{0})}{K} - i\frac{2m^{3}P_{3}(E_{f}+E_{i}+2m)}{E_{f}^{2}\Delta(E_{f}+m)(E_{i}+m)}\frac{\Pi_{0}^{a}(\Gamma_{2})}{K} + \frac{2m^{3}P_{3}(E_{f}+E_{i}+2m)}{E_{f}^{2}(E_{f}+E_{i})(E_{f}+m)(E_{i}+m)}\frac{\Pi_{1}^{a}(\Gamma_{2})}{K} \\ &+ i\frac{2m^{3}(E_{f}-E_{i})}{E_{f}^{2}\Delta(E_{i}+m)}\frac{\Pi_{1}^{a}(\Gamma_{0})}{K} + \frac{4m^{4}P_{3}}{E_{f}^{2}(E_{f}+E_{i})(E_{f}+m)(E_{i}+m)}\frac{\Pi_{2}^{a}(\Gamma_{1})}{K} - \frac{4m^{4}}{E_{f}^{2}\Delta(E_{i}+m)}\frac{\Pi_{2}^{a}(\Gamma_{3})}{K} \,. \end{split}$$

★ Lorentz covariant case: more precise data

★ Same effect of improvement also for symmetric frame

Example: asymmetric frame

T

Lorentz covariant case: more precise data

★ Same effect of improvement also for symmetric frame

Example: asymmetric frame

T

Signal quality in H same across all cases

C Lorentz covariant case: more precise data

Same effect of improvement also for symmetric frame

Possible extensions

Twist-3 GPDs

★ Lattice QCD data on GPDs will play an important role in the pre-EIC era and can complement experimental efforts of JLab@12GeV

★ New proposal for Lorentz invariant decomposition has great advantages:

- significant reduction of computational cost
- access to a broad range of t and ξ

★ Future calculations have the potential to transform the field of GPDs

- ★ On-going extensions to spin-0 particles
- ★ Synergy with phenomenology is an exciting prospect!

★ Lattice QCD data on GPDs will play an important role in the pre-EIC era and can complement experimental efforts of JLab@12GeV

★ New proposal for Lorentz invariant decomposition has great advantages:

- significant reduction of computational cost
- access to a broad range of t and ξ

★ Future calculations have the potential to transform the field of GPDs

- ★ On-going extensions to spin-0 particles ^{Josh Miller, next talk}
- ★ Synergy with phenomenology is an exciting prospect!

★ Lattice QCD data on GPDs will play an important role in the pre-EIC era and can complement experimental efforts of JLab@12GeV

★ New proposal for Lorentz invariant decomposition has great advantages:

- significant reduction of computational cost
- access to a broad range of t and ξ
- ★ Future calculations have the potential to transform the field of GPDs
- ★ On-going extensions to spin-0 particles ^{Josh I}

Josh Miller, next talk

Synergy with phenomenology is an exciting prospect!

★ Lattice QCD data on GPDs will play an important role in the pre-EIC era and can complement experimental efforts of JLab@12GeV

★ New proposal for Lorentz invariant decomposition has great advantages:

- significant reduction of computational cost
- access to a broad range of t and ξ
- ★ Future calculations have the potential to transform the field of GPDs
- ★ On-going extensions to spin-0 particles ^{Josh}

Josh Miller, next talk

M. Constantinou, LaMET 2022

[JAM & ETMC, PRD 103 (2021) 016003]

DOE Early Career Award (NP) Grant No. DE-SC0020405

★ Statistical noise increases with P₃, t use of momentum smearing method

\star Statistical noise increases with P_3 , t

use of momentum smearing method

\star Statistical noise increases with P_3 , t

use of momentum smearing method

- Implementation in GPDs nontrivial due to momentum transfer
- Standard definition of GPDs in Breit (symmetric) frame separate calculations at each t
- Matrix elements decompose into more than one GPDs at least 2 parity projectors are needed to disentangle GPDs
- Nonzero skewness nontrivial matching

'זנ'

• P₃ must be chosen carefully due to UV cutoff ($a^{-1} \sim 2 \,\text{GeV}$)

\star Statistical noise increases with P_3 , t

use of momentum smearing method

Implementation in GPDs nontrivial due to momentum transfer

- Standard definition of GPDs in Breit (symmetric) frame separate calculations at each t
- Matrix elements decompose into more than one GPDs at least 2 parity projectors are needed to disentangle GPDs
- Nonzero skewness nontrivial matching

'זנ'

• P₃ must be chosen carefully due to UV cutoff ($a^{-1} \sim 2 \,\text{GeV}$)

\star Statistical noise increases with P_3 , t

use of momentum smearing method

Implementation in GPDs nontrivial due to momentum transfer

- Standard definition of GPDs in Breit (symmetric) frame separate calculations at each t
- Matrix elements decompose into more than one GPDs at least 2 parity projectors are needed to disentangle GPDs
- Nonzero skewness nontrivial matching
- P₃ must be chosen carefully due to UV cutoff ($a^{-1} \sim 2 \,\text{GeV}$)

Ref.	$m_{\pi}({ m MeV})$	$P_3(\text{GeV})$	$\left. \frac{n}{s} \right _{z=0}$
quasi/pseudo $[59, 95]$	130	1.38	6%
pseudo [92]	172	2.10	8%
current-current [98]	278	1.65	19% *
quasi [72]	300	1.72	6% †
quasi/pseudo [77]	300	2.45	8% †
quasi/pseudo $[70]$	310	1.84	3% †
twist-3 [148]	260	1.67	15%
\overline{s} -quark quasi [113]	260	1.24	31%
s-quark quasi [112]	310	1.30	43% **
gluon pseudo $[134]$	310	1.73	39%
quasi-GPDs [170] $-t=0.69 \text{GeV}^2$	260	1.67	23%
quasi-GPDs [169] $-t=0.92 \text{GeV}^2$	310	1.74	59%

† At $T_{\rm sink} < 1$ fm.

 \star At smallest z value used, z=2.

****** At maximum value of imaginary part, z = 4.

[M. Constantinou, EPJA 57 (2021) 77]

\star Statistical noise increases with P_3 , t

use of momentum smearing method

Implementation in GPDs nontrivial due to momentum transfer

- Standard definition of GPDs in Breit (symmetric) frame separate calculations at each t
- Matrix elements decompose into more than one GPDs at least 2 parity projectors are needed to disentangle GPDs
- Nonzero skewness nontrivial matching
- P₃ must be chosen carefully due to UV cutoff ($a^{-1} \sim 2 \,\text{GeV}$)

Ref.	$m_{\pi}({ m MeV})$	$P_3(\text{GeV})$	$\left. \frac{n}{s} \right _{z=0}$
quasi/pseudo $[59,95]$	130	1.38	6%
pseudo [92]	172	2.10	8%
current-current [98]	278	1.65	19% *
quasi [72]	300	1.72	6% †
quasi/pseudo [77]	300	2.45	8% †
quasi/pseudo [70]	310	1.84	3% †
twist-3 [148]	260	1.67	15%
\overline{s} -quark quasi [113]	260	1.24	31%
s-quark quasi [112]	310	1.30	43% **
gluon pseudo [134]	310	1.73	39%
quasi-GPDs [170] $-t=0.69 \text{GeV}^2$	260	1.67	23%
quasi-GPDs [169] $-t=0.92 \text{GeV}^2$	310	1.74	59%

† At $T_{\rm sink} < 1$ fm.

 \star At smallest z value used, z=2.

****** At maximum value of imaginary part, z = 4.

[M. Constantinou, EPJA 57 (2021) 77]

Further increase of momentum at the cost of credibility

Twist-classification of GPDs

$$f_i = f_i^{(0)} + \frac{f_i^{(1)}}{Q} + \frac{f_i^{(2)}}{Q^2} \cdots$$

Twist-classification of GPDs

$$f_i = f_i^{(0)} + \frac{f_i^{(1)}}{Q} + \frac{f_i^{(2)}}{Q^2} \cdots$$

	Twist-2 $(f_i^{(0)})$								
	Quark Nucleon	U (γ ⁺)	L (γ ⁺ γ ⁵)	T (σ^{+j})					
	U	$\begin{array}{c} H(x,\xi,t)\\ E(x,\xi,t)\\ \text{unpolarized} \end{array}$							
	L		$\widetilde{H}(x,\xi,t)$ $\widetilde{E}(x,\xi,t)$ helicity						
	т			$\begin{array}{c} H_T, E_T\\ \widetilde{H}_T, \widetilde{E}_T\\ \text{transversity} \end{array}$					
	Prob	abilistic	interpret	ation					
	U	0		Nucleon spin					
	L –								
' '''	T ה								
				M. Co					

Twist-classification of GPDs

- Lack density interpretation, but not-negligible
- ★ Contain info on quark-gluon-quark correlators
 - Physical interpretation, e.g., transverse force
- Kinematically suppressed
 Difficult to isolate experimentally
- **★** Theoretically: contain $\delta(x)$ singularities