Frame-independent methods to access GPDs from lattice QCD

Martha Constantinou

THT Temple University

in collaboration with:
S. Bhattacharya, K. Cichy, J. Dodson, X. Gao, A. Metz, A. Scapellato, F. Steffens, S. Mukherjee, Y. Zhao

LaMET 2022 - ANL
December 2, 2022

Generalized Parton Distributions

* Crucial in understanding hadron tomography

[H. Abramowicz et al., whitepaper for NSAC LRP, 2007]
$1_{\text {mom }}+2_{\text {coord }}$ tomographic images of quark distribution in nucleon at fixed longitudinal momentum

3-D image from FT with respect to longitudinal momentum transfer

* New class of observables involve a pair of high-transverse mom. particles in the final state

DVCS

[X.-D. Ji, PRD 55, 7114 (1997)]

[J. Qiu et al, arXiv:2205.07846]

Generalized Parton Distributions

* GPDs are not well-constrained experimentally:
- x-dependence extraction is not direct. DVCS amplitude: $\mathscr{H}=\int_{-1}^{+1} \frac{H(x, \xi, t)}{x-\xi+i \epsilon} d x$ (SDHEP [J. Qiu et al, arXiv:2205.07846] gives access to x)
- independent measurements to disentangle GPDs
- GPDs phenomenology more complicated than PDFs (multi-dimensionality)
- and more challenges ...

Generalized Parton Distributions

* GPDs are not well-constrained experimentally:
- x-dependence extraction is not direct. DVCS amplitude: $\mathscr{H}=\int_{-1}^{+1} \frac{H(x, \xi, t)}{x-\xi+i \epsilon} d x$ (SDHEP [J. Qiu et al, arXiv:2205.07846] gives access to x)
- independent measurements to disentangle GPDs
- GPDs phenomenology more complicated than PDFs (multi-dimensionality)
- and more challenges ...
* Essential to complement the knowledge on GPD from lattice QCD
* Lattice data may be incorporated in global analysis of experimental data and may influence parametrization of t and ξ dependence

Accessing information on GPDs

Mellin moments (local OPE expansion)

$$
\bar{q}\left(-\frac{1}{2} z\right) \gamma^{\sigma} W\left[-\frac{1}{2}, \frac{1}{2} z\right] q\left(\frac{1}{2} z\right)=\sum_{n=0}^{\infty} \frac{1}{\bar{n}!} z_{\alpha_{1}} \ldots z_{\alpha_{n}}\left[\frac{\bar{q}}{} \gamma^{\sigma} \stackrel{\rightharpoonup}{D}^{\alpha_{1}} \ldots \stackrel{D}{D}^{\alpha_{n}} q\right]
$$

Accessing information on GPDs

Mellin moments (local OPE expansion)

$$
\bar{q}\left(-\frac{1}{2} z\right) \gamma^{\sigma} W\left[-\frac{1}{2} z, \frac{1}{2} z\right] q\left(\frac{1}{2} z\right)=\sum_{n=0}^{\infty} \frac{1}{n!} z_{\alpha_{1}} \ldots z_{\alpha_{n}} \frac{\left[\bar{q} \gamma^{\sigma} \stackrel{\leftrightarrow}{D^{\alpha_{1}}} \ldots \stackrel{\leftrightarrow}{D^{\alpha_{n}}} q\right]}{\downarrow}
$$

$\left.\left.\left\langle N\left(P^{\prime}\right)\right| \mathcal{O}_{V}^{\mu \mu_{1} \cdots \mu_{n-1}}|N(P)\rangle \sim \sum_{\substack{i=0 \\ \text { even }}}^{n-1}\left\{\gamma^{\{\mu} \Delta^{\mu_{1}} \cdots \Delta^{\mu_{i}} \bar{P}^{\mu_{i+1}} \cdots \bar{P}^{\left.\mu_{n-1}\right\}} A_{n, i}(t)-i \frac{\Delta_{\alpha} \sigma^{\alpha \mu \mu}}{2 m_{N}} \Delta^{\mu_{1}} \cdots \Delta^{\mu_{i}} \bar{P}^{\mu_{i+1}} \cdots \bar{P}^{\left.\mu_{n-1}\right\}} B_{n_{n, i}(t)}\right\}+\left.\frac{\Delta^{\mu} \Delta^{\mu_{1}} \cdots \Delta^{\mu_{n-1}}}{m_{N}} C_{n, 0}\left(\Delta^{2}\right)\right|_{n \text { even }}\right)\right\}$

Accessing information on GPDs

Mellin moments (local OPE expansion)

$$
\bar{q}\left(-\frac{1}{2} z\right) \gamma^{\sigma} W\left[-\frac{1}{2} z, \frac{1}{2} z\right] q\left(\frac{1}{2} z\right)=\sum_{n=0}^{\infty} \frac{1}{n!} z_{\alpha_{1}} \ldots z_{\alpha_{n}} \frac{\left[\bar{q} \gamma^{\sigma} \stackrel{\leftrightarrow}{D^{\alpha_{1}}} \ldots \stackrel{\leftrightarrow}{D}^{\alpha_{n}} q\right]}{\downarrow}
$$

$\left.\left.\left\langle N\left(P^{\prime}\right)\right| \mathcal{O}_{V}^{\mu \mu_{1} \cdots \mu_{n-1}}|N(P)\rangle \sim \sum_{\substack{i=0 \\ \text { even }}}^{n-1}\left\{\gamma^{\{\mu} \Delta^{\mu_{1}} \cdots \Delta^{\mu_{i}} \bar{P}^{\mu_{i+1}} \cdots \bar{P}^{\left.\mu_{n-1}\right\}} A_{n, i}(t)-i \frac{\Delta_{\alpha} \sigma^{\alpha \alpha \mu}}{2 m_{N}} \Delta^{\mu_{1}} \cdots \Delta^{\mu_{i}} \bar{P}^{\mu_{i+1}} \cdots \bar{P}^{\left.\mu_{n-1}\right\}} B_{n_{n, i}(t)}\right\}+\left.\frac{\Delta^{\mu} \Delta^{\mu_{1}} \ldots \Delta^{\mu_{n-1}}}{m_{N}} C_{n, 0}\left(\Delta^{2}\right)\right|_{n \text { even }}\right)\right\}$

Matrix elements of non-local operators (LaMET, pseudo-GPDs, ...)

$$
\left\langle N\left(P_{f}\right)\right| \bar{\Psi}(z) \Gamma \mathscr{W}(z, 0) \Psi(0)\left|N\left(P_{i}\right)\right\rangle_{\mu}
$$

$$
\begin{aligned}
& \left\langle N\left(P^{\prime}\right)\right| O_{V}^{\mu}(x)|N(P)\rangle=\bar{U}\left(P^{\prime}\right)\left\{\gamma^{\mu} H(x, \xi, t)+\frac{i \sigma^{\mu \nu} \Delta_{\nu}}{2 m_{N}} E(x, \xi, t)\right\} U(P)+\mathrm{ht}, \\
& \left\langle N\left(P^{\prime}\right)\right| O_{A}^{\mu}(x)|N(P)\rangle=\bar{U}\left(P^{\prime}\right)\left\{\gamma^{\mu} \gamma_{5} \widetilde{H}(x, \xi, t)+\frac{\gamma_{5} \Delta^{\mu}}{2 m_{N}} \widetilde{E}(x, \xi, t)\right\} U(P)+\mathrm{ht}, \\
& \left\langle N\left(P^{\prime}\right)\right| O_{T}^{\mu \nu}(x)|N(P)\rangle=\bar{U}\left(P^{\prime}\right)\left\{i \sigma^{\mu \nu} H_{T}(x, \xi, t)+\frac{\gamma^{\mu \mu} \Delta^{\nu]}}{2 m_{N}} E_{T}(x, \xi, t)+\frac{\bar{P}^{[\mu} \Delta^{\nu]}}{m_{N}^{2}} \widetilde{H}_{T}(x, \xi, t)+\frac{\gamma^{[\mu} \bar{P}^{\nu]}}{m_{N}} \widetilde{E}_{T}(x, \xi, t)\right\} U(P)+\mathrm{ht}
\end{aligned}
$$

Accessing information on GPDs

Mellin moments (local OPE expansion)

$$
\bar{q}\left(-\frac{1}{2} z\right) \gamma^{\sigma} W\left[-\frac{1}{2} z, \frac{1}{2} z\right] q\left(\frac{1}{2} z\right)=\sum_{n=0}^{\infty} \frac{1}{n!} z_{\alpha_{1}} \ldots z_{\alpha_{n}} \frac{\left[\bar{q} \gamma^{\sigma} \stackrel{\leftrightarrow}{D^{\alpha_{1}}} \ldots \stackrel{\leftrightarrow}{D}^{\alpha_{n}} q\right]}{\downarrow}
$$

$\left.\left.\left\langle N\left(P^{\prime}\right)\right| \mathcal{O}_{V}^{\mu \mu_{1} \cdots \mu_{n-1}}|N(P)\rangle \sim \sum_{\substack{i=0 \\ \text { even }}}^{n-1}\left\{\gamma^{\{\mu} \Delta^{\mu_{1}} \cdots \Delta^{\mu_{i}} \bar{P}^{\mu_{i+1}} \cdots \bar{P}^{\left.\mu_{n-1}\right\}} A_{n, i}(t)-i \frac{\Delta_{\alpha} \sigma^{\alpha \alpha \mu}}{2 m_{N}} \Delta^{\mu_{1}} \cdots \Delta^{\mu_{i}} \bar{P}^{\mu_{i+1}} \cdots \bar{P}^{\left.\mu_{n-1}\right\}} B_{n_{n, i}(t)}\right\}+\left.\frac{\Delta^{\mu} \Delta^{\mu_{1}} \ldots \Delta^{\mu_{n-1}}}{m_{N}} C_{n, 0}\left(\Delta^{2}\right)\right|_{n \text { even }}\right)\right\}$

Matrix elements of non-local operators (LaMET, pseudo-GPDs, ...)

$$
\left\langle N\left(P_{f}\right)\right| \bar{\Psi}(z) \frac{\Gamma \mathscr{W}(z, 0) \Psi(0)\left|N\left(P_{i}\right)\right\rangle_{\mu}}{\downarrow}
$$

Wilson line

$$
\begin{aligned}
\left\langle N\left(P^{\prime}\right)\right| O_{V}^{\mu}(x)|N(P)\rangle & =\bar{U}\left(P^{\prime}\right)\left\{\gamma^{\mu} H(x, \xi, t)+\frac{i \sigma^{\mu \nu} \Delta_{\nu}}{2 m_{N}} E(x, \xi, t)\right\} U(P)+\mathrm{ht} \\
\left\langle N\left(P^{\prime}\right)\right| O_{A}^{\mu}(x)|N(P)\rangle & =\bar{U}\left(P^{\prime}\right)\left\{\gamma^{\mu} \gamma_{5} \widetilde{H}(x, \xi, t)+\frac{\gamma_{5} \Delta^{\mu}}{2 m_{N}} \widetilde{E}(x, \xi, t)\right\} U(P)+\mathrm{ht} \\
\left\langle N\left(P^{\prime}\right)\right| O_{T}^{\mu \nu}(x)|N(P)\rangle & =\bar{U}\left(P^{\prime}\right)\left\{i \sigma^{\mu \nu} H_{T}(x, \xi, t)+\frac{\gamma^{[\mu} \Delta^{\nu]}}{2 m_{N}} E_{T}(x, \xi, t)+\frac{\bar{P}^{[\mu} \Delta^{\nu]}}{m_{N}^{2}} \widetilde{H}_{T}(x, \xi, t)+\frac{\gamma^{[\mu} \bar{P}^{\nu]}}{m_{N}} \widetilde{E}_{T}(x, \xi, t)\right\} U(P)+\mathrm{ht}
\end{aligned}
$$

GPDs

Through non-local matrix elements of fast-moving hadrons

Light-cone GPDs

* Off-forward matrix elements of non-local light-cone operators

$$
F^{\left[\gamma^{+}\right]}\left(x, \Delta ; \lambda, \lambda^{\prime}\right)=\left.\frac{1}{2} \int \frac{d z^{-}}{2 \pi} e^{i k \cdot z}\left\langle p^{\prime} ; \lambda^{\prime}\right| \bar{\psi}\left(-\frac{z}{2}\right) \gamma^{+} \mathscr{W}\left(-\frac{z}{2}, \frac{z}{2}\right) \psi\left(\frac{z}{2}\right)|p ; \lambda\rangle\right|_{z^{+}=0, \vec{z}_{\perp}=\overrightarrow{0}_{\perp}}
$$

Parametrization in two leading twist GPDs

$$
F^{\left[\gamma^{+}\right]}\left(x, \Delta ; \lambda, \lambda^{\prime}\right)=\frac{1}{2 P^{+}} \bar{u}\left(p^{\prime}, \lambda^{\prime}\right)\left[\gamma^{+} H(x, \xi, t)+\frac{i \sigma^{+\mu} \Delta_{\mu}}{2 M} E(x, \xi, t)\right] u(p, \lambda)
$$

How can one define GPDs on a Euclidean lattice?

GPDs on the lattice

Off forward correlators with nonlocal (equal-time) operators [X. Ji, PRL 110 (2013) 262002]

$$
\tilde{q}_{\mu}^{\mathrm{GPD}}\left(x, t, \xi, P_{3}, \mu\right)=\int \frac{d z}{4 \pi} e^{-i x P_{3} z}\left\langle N\left(P_{f}\right)\right| \bar{\Psi}(z) \gamma^{\mu} \mathscr{W}(z, 0) \Psi(0)\left|N\left(P_{i}\right)\right\rangle_{\mu}
$$

Variables of the calculation:

$$
\begin{aligned}
\Delta & =P_{f}-P_{i} \\
t & =\Delta^{2}=-Q^{2} \\
\xi & =\frac{Q_{3}}{2 P_{3}}
\end{aligned}
$$

- length of the Wilson line (z)
- nucleon momentum boost (P_{3})
- momentum transfer (t)
- skewness (ξ)

GPDs on the lattice

Off forward correlators with nonlocal (equal-time) operators [x. Ji, PRL 110 (2013) 262002]

$$
\tilde{q}_{\mu}^{\mathrm{GPD}}\left(x, t, \xi, P_{3}, \mu\right)=\int \frac{d z}{4 \pi} e^{-i x P_{3} z}\left\langle N\left(P_{f}\right)\right| \bar{\Psi}(z) \gamma^{\mu} \mathscr{W}(z, 0) \Psi(0)\left|N\left(P_{i}\right)\right\rangle_{\mu}
$$

Variables of the calculation:

- length of the Wilson line (z)
- nucleon momentum boost (P_{3})

$$
\Delta=P_{f}-P_{i}
$$

- momentum transfer (t)
- skewness (ξ)

Potential parametrization (γ^{+}inspired)

$$
\begin{aligned}
& F^{\left[\gamma^{0}\right]}\left(x, \Delta ; \lambda, \lambda^{\prime} ; P^{3}\right)=\frac{1}{2 P^{0}} \bar{u}\left(p^{\prime}, \lambda^{\prime}\right)\left[\gamma^{0} H_{\mathrm{Q}(0)}\left(x, \xi, t ; P^{3}\right)+\frac{i \sigma^{0 \mu} \Delta_{\mu}}{2 M} E_{\mathrm{Q}(0)}\left(x, \xi, t ; P^{3}\right)\right] u(p, \lambda) \\
& F^{\left[\gamma^{3}\right]}\left(x, \Delta ; \lambda, \lambda^{\prime} ; P^{3}\right)=\frac{1}{2 P^{0}} \bar{u}\left(p^{\prime}, \lambda^{\prime}\right)\left[\gamma^{3} H_{\mathrm{Q}(0)}\left(x, \xi, t ; P^{3}\right)+\frac{i \sigma^{3 \mu} \Delta_{\mu}}{2 M} E_{\mathrm{Q}(0)}\left(x, \xi, t ; P^{3}\right)\right] u(p, \lambda)
\end{aligned}
$$

GPDs on the lattice

Off forward correlators with nonlocal (equal-time) operators [x. Ji, PRL 110 (2013) 262002]

$$
\tilde{q}_{\mu}^{\mathrm{GPD}}\left(x, t, \xi, P_{3}, \mu\right)=\int \frac{d z}{4 \pi} e^{-i x P_{3} z}\left\langle N\left(P_{f}\right)\right| \bar{\Psi}(z) \gamma^{\mu} \mathscr{W}(z, 0) \Psi(0)\left|N\left(P_{i}\right)\right\rangle_{\mu}
$$

Variables of the calculation:

- length of the Wilson line (z)
- nucleon momentum boost (P_{3})

$$
\begin{aligned}
\Delta & =P_{f}-P_{i} \\
t & =\Delta^{2}=-Q^{2} \\
\xi & =\frac{Q_{3}}{2 P_{3}}
\end{aligned}
$$

- momentum transfer (t)
- skewness (ξ)

Potential parametrization (γ^{+}inspired)

$$
F^{\left[\gamma^{0}\right]}\left(x, \Delta ; \lambda, \lambda^{\prime} ; P^{3}\right)=\frac{1}{2 P^{0}} \bar{u}\left(p^{\prime}, \lambda^{\prime}\right)\left[\gamma^{0} H_{\mathrm{Q}(0)}\left(x, \xi, t ; P^{3}\right)+\frac{i \sigma^{0 \mu} \Delta_{\mu}}{2 M} E_{\mathrm{Q}(0)}\left(x, \xi, t ; P^{3}\right)\right] u(p, \lambda)
$$

reduction of power corrections in fwd limit [Radyushkin, PLB 767, 314, 2017]
$F^{\left[\gamma^{3}\right]}\left(x, \Delta ; \lambda, \lambda^{\prime} ; P^{3}\right)=\frac{1}{2 P^{0}} \bar{u}\left(p^{\prime}, \lambda^{\prime}\right)\left[\gamma^{3} H_{\mathrm{Q}(0)}\left(x, \xi, t ; P^{3}\right)+\frac{i \sigma^{3 \mu} \Delta_{\mu}}{2 M} E_{\mathrm{Q}(0)}\left(x, \xi, t ; P^{3}\right)\right] u(p, \lambda)$

GPDs on the lattice

Off forward correlators with nonlocal (equal-time) operators [x. Ji, PRL 110 (2013) 262002]

$$
\tilde{q}_{\mu}^{\mathrm{GPD}}\left(x, t, \xi, P_{3}, \mu\right)=\int \frac{d z}{4 \pi} e^{-i x P_{3} z}\left\langle N\left(P_{f}\right)\right| \bar{\Psi}(z) \gamma^{\mu} \mathscr{W}(z, 0) \Psi(0)\left|N\left(P_{i}\right)\right\rangle_{\mu}
$$

Variables of the calculation:

- length of the Wilson line (z)
- nucleon momentum boost (P_{3})

$$
\begin{aligned}
\Delta & =P_{f}-P_{i} \\
t & =\Delta^{2}=-Q^{2} \\
\xi & =\frac{Q_{3}}{2 P_{3}}
\end{aligned}
$$

- momentum transfer (t)
- skewness (ξ)

Potential parametrization (γ^{+}inspired)

$$
\begin{aligned}
& F^{\left[\gamma^{0}\right]}\left(x, \Delta ; \lambda, \lambda^{\prime} ; P^{3}\right)=\frac{1}{2 P^{0}} \bar{u}\left(p^{\prime}, \lambda^{\prime}\right)\left[\gamma^{0} H_{\mathrm{Q}(0)}\left(x, \xi, t ; P^{3}\right)+\frac{i \sigma^{0 \mu} \Delta_{\mu}}{2 M} E_{\mathrm{Q}(0)}\left(x, \xi, t ; P^{3}\right)\right] u(p, \lambda) \\
& F^{\left[\gamma^{3}\right]}\left(x, \Delta ; \lambda, \lambda^{\prime} ; P^{3}\right)=\frac{1}{2 P^{0}} \bar{u}\left(p^{\prime}, \lambda^{\prime}\right)\left[\gamma^{3} H_{\mathrm{Q}(0)}\left(x, \xi, t ; P^{3}\right)+\frac{i \sigma^{3 \mu} \Delta_{\mu}}{2 M} E_{\mathrm{Q}(0)}\left(x, \xi, t ; P^{3}\right)\right] u(p, \lambda)
\end{aligned}
$$

reduction of power corrections in fwd limit [Radyushkin, PLB 767, 314, 2017]
finite mixing with scalar
[Constantinou \& Panagopoulos (2017)]

GPDs on the lattice

Off forward correlators with nonlocal (equal-time) operators [x. Ji, PRL 110 (2013) 262002]

$$
\tilde{q}_{\mu}^{\mathrm{GPD}}\left(x, t, \xi, P_{3}, \mu\right)=\int \frac{d z}{4 \pi} e^{-i x P_{3} z}\left\langle N\left(P_{f}\right)\right| \bar{\Psi}(z) \gamma^{\mu} \mathscr{W}(z, 0) \Psi(0)\left|N\left(P_{i}\right)\right\rangle_{\mu}
$$

Variables of the calculation:

- length of the Wilson line (z)
- nucleon momentum boost (P_{3})

$$
\begin{aligned}
\Delta & =P_{f}-P_{i} \\
t & =\Delta^{2}=-Q^{2} \\
\xi & =\frac{Q_{3}}{2 P_{3}}
\end{aligned}
$$

- momentum transfer (t)
- skewness (ξ)

Potential parametrization (γ^{+}inspired)

$$
F^{\left[\gamma^{0}\right]}\left(x, \Delta ; \lambda, \lambda^{\prime} ; P^{3}\right)=\frac{1}{2 P^{0}} \bar{u}\left(p^{\prime}, \lambda^{\prime}\right)\left[\gamma^{0} H_{\mathrm{Q}(0)}\left(x, \xi, t ; P^{3}\right)+\frac{i \sigma^{0 \mu} \Delta_{\mu}}{2 M} E_{\mathrm{Q}(0)}\left(x, \xi, t ; P^{3}\right)\right] u(p, \lambda)
$$

reduction of power corrections in fwd limit [Radyushkin, PLB 767, 314, 2017]
$F^{\left[\gamma^{3}\right]}\left(x, \Delta ; \lambda, \lambda^{\prime} ; P^{3}\right)=\frac{1}{2 P^{0}} \bar{u}\left(p^{\prime}, \lambda^{\prime}\right)\left[\gamma^{3} H_{\mathrm{Q}(0)}\left(x, \xi, t ; P^{3}\right)+\frac{i \sigma^{3 \mu} \Delta_{\mu}}{2 M} E_{\mathrm{Q}(0)}\left(x, \xi, t ; P^{3}\right)\right] u(p, \lambda)$

finite mixing with scalar
[Constantinou \& Panagopoulos (2017)]

GPDs on the lattice

Off forward correlators with nonlocal (equal-time) operators [x. Ji, PRL 110 (2013) 262002]

$$
\tilde{q}_{\mu}^{\operatorname{GPD}}\left(x, t, \xi, P_{3}, \mu\right)=\int \frac{d z}{4 \pi} e^{-i x P_{3} z}\left\langle N\left(P_{f}\right)\right| \bar{\Psi}(z) \gamma^{\mu} \mathscr{W}(z, 0) \Psi(0)\left|N\left(P_{i}\right)\right\rangle_{\mu}
$$

Variables of the calculation:

- length of the Wilson line (z)
- nucleon momentum boost (P_{3})
- momentum transfer (t)
- skewness (ξ)

Potential parametrization (γ^{+}inspired)

$$
F^{\left[\gamma^{0}{ }^{\prime}\left(x, \Delta ; \lambda, \lambda^{\prime} ; P^{3}\right)=\frac{1}{2 P^{0}} \bar{u}\left(p^{\prime}, \lambda^{\prime}\right)\left[\gamma^{0} H_{Q(0)}\left(x, \xi, t ; P^{3}\right)+\frac{i \sigma^{0 \mu} \Delta_{\mu}}{2 M} E_{Q(0)}\left(x, \xi, t ; P^{3}\right)\right] u(p, \lambda)\right.}
$$

$$
F^{\left[\gamma^{3}\right]}\left(x, \Delta ; \lambda, \lambda^{\prime} ; P^{3}\right)=\frac{1}{2 P^{0}} \bar{u}\left(p^{\prime}, \lambda^{\prime}\right)\left[\gamma^{3} H_{\mathrm{Q}(0)}\left(x, \xi, t ; P^{3}\right)+\frac{i \sigma^{3 \mu} \Delta_{\mu}}{2 M} E_{\mathrm{Q}(0)}\left(x, \xi, t ; P^{3}\right)\right] u(p, \lambda)
$$

\square finite mixing with scalar
[Constantinou \& Panagopoulos (2017)]
reduction of power corrections in fwd limit [Radyushkin, PLB 767, 314, 2017]
\longrightarrow

- Lorentz non-invariant parametrization
- Typically used in symmetric frame
- A non-symmetric setup may result to different functional form for GPDs compared to the symmetric one

Definition of GPDs in Euclidean lattice

Calculation expected to be performed in symmetric frame to extract the "standard" GPDs

Symmetric frame requires separate calculations at each t

Definition of GPDs in Euclidean lattice

* Calculation expected to be performed in symmetric frame to extract the "standard" GPDs

Symmetric frame requires separate calculations at each t

Let's rethink calculation of GPDs !

Definition of GPDs in Euclidean lattice

* Calculation expected to be performed in symmetric frame to extract the "standard" GPDs
\star Symmetric frame requires separate calculations at each t

Let's rethink calculation of GPDs !
$1^{\text {st }}$ goal:
Extraction of GPDs in the symmetric frame using lattice correlators calculated in non-symmetric frames

Definition of GPDs in Euclidean lattice

* Calculation expected to be performed in symmetric frame to extract the "standard" GPDs
* Symmetric frame requires separate calculations at each t

Let's rethink calculation of GPDs !
$1^{\text {st }}$ goal:
Extraction of GPDs in the symmetric frame using lattice correlators calculated in non-symmetric frames
$2^{\text {nd }}$ goal:
New definition of Lorentz covariant quasi-GPDs that may have faster convergence to light-cone GPDs

Theoretical setup

[S. Bhattacharya et al., arXiv:2209.05373]

* Parametrization of matrix elements in Lorentz invariant amplitudes
$F_{\lambda, \lambda^{\prime}}^{\mu}=\bar{u}\left(p^{\prime}, \lambda^{\prime}\right)\left[\frac{P^{\mu}}{M} A_{1}+z^{\mu} M A_{2}+\frac{\Delta^{\mu}}{M} A_{3}+i \sigma^{\mu z} M A_{4}+\frac{i \sigma^{\mu \Delta}}{M} A_{5}+\frac{P^{\mu} i \sigma^{z \Delta}}{M} A_{6}+\frac{z^{\mu} i \sigma^{z \Delta}}{M} A_{7}+\frac{\Delta^{\mu} i \sigma^{z \Delta}}{M} A_{8}\right] u(p, \lambda)$

Advantages

- Applicable to any kinematic frame and A_{i} have definite symmetries
- Lorentz invariant amplitudes A_{i} can be related to the standard H, E GPDs
- Quasi H, E may be redefined (Lorentz covariant) to eliminate $1 / P_{3}$ contributions:

Theoretical setup

[S. Bhattacharya et al., arXiv:2209.05373]
Parametrization of matrix elements in Lorentz invariant amplitudes
$F_{\lambda, \lambda^{\prime}}^{\mu}=\bar{u}\left(p^{\prime}, \lambda^{\prime}\right)\left[\frac{P^{\mu}}{M} A_{1}+z^{\mu} M A_{2}+\frac{\Delta^{\mu}}{M} A_{3}+i \sigma^{\mu z} M A_{4}+\frac{i \sigma^{\mu \Delta}}{M} A_{5}+\frac{P^{\mu} i \sigma^{z \Delta}}{M} A_{6}+\frac{z^{\mu} i \sigma^{z \Delta}}{M} A_{7}+\frac{\Delta^{\mu} i \sigma^{z \Delta}}{M} A_{8}\right] u(p, \lambda)$

Advantages

- Applicable to any kinematic frame and A_{i} have definite symmetries
- Lorentz invariant amplitudes A_{i} can be related to the standard H, E GPDs
- Quasi H, E may be redefined (Lorentz covariant) to eliminate $1 / P_{3}$ contributions:

$$
\begin{aligned}
& H\left(z \cdot P, z \cdot \Delta, t=\Delta^{2}, z^{2}\right)=A_{1}+\frac{\Delta_{s / a} \cdot z}{P_{\text {avg }, s / a} \cdot z} A_{3} \\
& E\left(z \cdot P, z \cdot \Delta, t=\Delta^{2}, z^{2}\right)=-A_{1}-\frac{\Delta_{\text {s/a }} \cdot z}{P_{\text {avg,s/a }} \cdot z} A_{3}+2 A_{5}+2 P_{\text {avg }, s / a} \cdot z A_{6}+2 \Delta_{s / a} \cdot z A_{8}
\end{aligned}
$$

Theoretical setup

[S. Bhattacharya et al., arXiv:2209.05373]
Parametrization of matrix elements in Lorentz invariant amplitudes
$F_{\lambda, \lambda^{\prime}}^{\mu}=\bar{u}\left(p^{\prime}, \lambda^{\prime}\right)\left[\frac{P^{\mu}}{M} A_{1}+z^{\mu} M A_{2}+\frac{\Delta^{\mu}}{M} A_{3}+i \sigma^{\mu z} M A_{4}+\frac{i \sigma^{\mu \Delta}}{M} A_{5}+\frac{P^{\mu} i \sigma^{z \Delta}}{M} A_{6}+\frac{z^{\mu} i \sigma^{z \Delta}}{M} A_{7}+\frac{\Delta^{\mu} i \sigma^{z \Delta}}{M} A_{8}\right] u(p, \lambda)$

Advantages

- Applicable to any kinematic frame and A_{i} have definite symmetries
- Lorentz invariant amplitudes A_{i} can be related to the standard H, E GPDs
- Quasi H, E may be redefined (Lorentz covariant) to eliminate $1 / P_{3}$ contributions:

$$
\begin{aligned}
& H\left(z \cdot P, z \cdot \Delta, t=\Delta^{2}, z^{2}\right)=A_{1}+\frac{\Delta_{s / a} \cdot z}{P_{\text {avg,s/a }} \cdot z} A_{3} \\
& E\left(z \cdot P, z \cdot \Delta, t=\Delta^{2}, z^{2}\right)=-A_{1}-\frac{\Delta_{s / a} \cdot z}{P_{\text {avg } s / a} \cdot z} A_{3}+2 A_{5}+2 P_{\text {avg }, s / a} \cdot z A_{6}+2 \Delta_{s / a} \cdot z A_{8}
\end{aligned}
$$

Proof-of-concept calculation (zero quasi-skewness):

- symmetric frame:

$$
\begin{aligned}
& \vec{p}_{f}^{s}=\vec{P}+\frac{\vec{Q}}{2} \\
& \vec{p}_{f}^{a}=\vec{P}
\end{aligned}
$$

$$
\vec{p}_{i}^{s}=\vec{P}-\frac{\vec{Q}}{2}
$$

$$
t^{s}=-\vec{Q}^{2}
$$

- asymmetric frame:

$$
\vec{p}_{i}^{a}=\vec{P}-\vec{Q}
$$

$$
t^{a}=-\vec{Q}^{2}+\left(E_{f}-E_{i}\right)^{2}
$$

Matrix element decomposition

Symmetric

$$
\begin{aligned}
& C_{s}=\frac{2 m^{2}}{E(E+m)} \\
& \Gamma_{0}=\frac{1}{2}\left(1+\gamma^{0}\right) \\
& \Gamma_{j}=\frac{i}{4}\left(1+\gamma^{0}\right) \gamma^{5} \gamma^{j} \\
&(j=1,2,3)
\end{aligned}
$$

$$
\begin{aligned}
& \Pi_{s}^{0}\left(\Gamma_{0}\right)=C_{s}\left(\frac{E\left(E(E+m)-P_{3}^{2}\right)}{2 m^{3}} A_{1}+\frac{(E+m)\left(-E^{2}+m^{2}+P_{3}^{2}\right)}{m^{3}} A_{5}+\frac{E P_{3}\left(-E^{2}+m^{2}+P_{3}^{2}\right) z}{m^{3}} A_{6}\right) \\
& \Pi_{s}^{0}\left(\Gamma_{1}\right)=i C_{s}\left(\frac{E P_{3} Q_{2}}{4 m^{3}} A_{1}-\frac{(E+m) P_{3} Q_{2}}{2 m^{3}} A_{5}-\frac{E\left(P_{3}^{2}+m(E+m)\right) z Q_{2}}{2 m^{3}} A_{6}\right) \\
& \Pi_{s}^{0}\left(\Gamma_{2}\right)=i C_{s}\left(-\frac{E P_{3} Q_{1}}{4 m^{3}} A_{1}+\frac{(E+m) P_{3} Q_{1}}{2 m^{3}} A_{5}+\frac{E\left(P_{3}^{2}+m(E+m)\right) z Q_{1}}{2 m^{3}} A_{6}\right)
\end{aligned}
$$

Asymmetric

$$
C_{a}=\frac{2 m^{2}}{\sqrt{E_{i} E_{f}\left(E_{i}+m\right)\left(E_{f}+m\right)}}
$$

$$
\begin{aligned}
\Pi_{0}^{a}\left(\Gamma_{0}\right)=C_{a}(& -\frac{\left(E_{f}+E_{i}\right)\left(E_{f}-E_{i}-2 m\right)\left(E_{f}+m\right)}{8 m^{3}} A_{1}-\frac{\left(E_{f}-E_{i}-2 m\right)\left(E_{f}+m\right)\left(E_{f}-E_{i}\right)}{4 m^{3}} A_{3} \\
& +\frac{\left(E_{i}-E_{f}\right) P_{3} z}{4 m} A_{4}+\frac{\left(E_{f}+E_{i}\right)\left(E_{f}+m\right)\left(E_{f}-E_{i}\right)}{4 m^{3}} A_{5}+\frac{E_{f}\left(E_{f}+E_{i}\right) P_{3}\left(E_{f}-E_{i}\right) z}{4 m^{3}} A_{6} \\
& \left.+\frac{E_{f} P_{3}\left(E_{f}-E_{i}\right)^{2} z}{2 m^{3}} A_{8}\right) \\
\Pi_{0}^{a}\left(\Gamma_{1}\right)= & i C_{a}\left(\frac{\left(E_{f}+E_{i}\right) P_{3} Q_{2}}{8 m^{3}} A_{1}+\frac{\left(E_{f}-E_{i}\right) P_{3} Q_{2}}{4 m^{3}} A_{3}+\frac{\left(E_{f}+m\right) Q_{2} z}{4 m} A_{4}-\frac{\left(E_{f}+E_{i}+2 m\right) P_{3} Q_{2}}{4 m^{3}} A_{5}\right. \\
& \left.-\frac{E_{f}\left(E_{f}+E_{i}\right)\left(E_{f}+m\right) Q_{2} z}{4 m^{3}} A_{6}-\frac{E_{f}\left(E_{f}-E_{i}\right)\left(E_{f}+m\right) Q_{2} z}{2 m^{3}} A_{8}\right) \\
\Pi_{0}^{a}\left(\Gamma_{2}\right)= & i C_{a}\left(-\frac{\left(E_{f}+E_{i}\right) P_{3} Q_{1}}{8 m^{3}} A_{1}-\frac{\left(E_{f}-E_{i}\right) P_{3} Q_{1}}{4 m^{3}} A_{3}-\frac{\left(E_{f}+m\right) Q_{1} z}{4 m} A_{4}+\frac{\left(E_{f}+E_{i}+2 m\right) P_{3} Q_{1}}{4 m^{3}} A_{5}\right. \\
& \left.+\frac{E_{f}\left(E_{f}+E_{i}\right)\left(E_{f}+m\right) Q_{1} z}{4 m^{3}} A_{6}+\frac{E_{f}\left(E_{f}-E_{i}\right)\left(E_{f}+m\right) Q_{1} z}{2 m^{3}} A_{8}\right)
\end{aligned}
$$

Matrix element decomposition

Symmetric

$$
\begin{aligned}
& C_{s}=\frac{2 m^{2}}{E(E+m)} \\
& \Gamma_{0}=\frac{1}{2}\left(1+\gamma^{0}\right) \\
& \Gamma_{j}=\frac{i}{4}\left(1+\gamma^{0}\right) \gamma^{5} \gamma^{j} \\
&(j=1,2,3)
\end{aligned}
$$

$$
\begin{aligned}
& \Pi_{s}^{0}\left(\Gamma_{0}\right)=C_{s}\left(\frac{E\left(E(E+m)-P_{3}^{2}\right)}{2 m^{3}} A_{1}+\frac{(E+m)\left(-E^{2}+m^{2}+P_{3}^{2}\right)}{m^{3}} A_{5}+\frac{E P_{3}\left(-E^{2}+m^{2}+P_{3}^{2}\right) z}{m^{3}} A_{6}\right) \\
& \Pi_{s}^{0}\left(\Gamma_{1}\right)=i C_{s}\left(\frac{E P_{3} Q_{2}}{4 m^{3}} A_{1}-\frac{(E+m) P_{3} Q_{2}}{2 m^{3}} A_{5}-\frac{E\left(P_{3}^{2}+m(E+m)\right) z Q_{2}}{2 m^{3}} A_{6}\right)
\end{aligned}
$$

$$
\Pi_{s}^{0}\left(\Gamma_{2}\right)=i C_{s}\left(-\frac{E P_{3} Q_{1}}{4 m^{3}} A_{1}+\frac{(E+m) P_{3} Q_{1}}{2 m^{3}} A_{5}+\frac{E\left(P_{3}^{2}+m(E+m)\right) z Q_{1}}{2 m^{3}} A_{6}\right)
$$

Novel feature: z-dependence

Asymmetric

$$
C_{a}=\frac{2 m^{2}}{\sqrt{E_{i} E_{f}\left(E_{i}+m\right)\left(E_{f}+m\right)}}
$$

$$
\begin{aligned}
\Pi_{0}^{a}\left(\Gamma_{0}\right)=C_{a}(& -\frac{\left(E_{f}+E_{i}\right)\left(E_{f}-E_{i}-2 m\right)\left(E_{f}+m\right)}{8 m^{3}} A_{1}-\frac{\left(E_{f}-E_{i}-2 m\right)\left(E_{f}+m\right)\left(E_{f}-E_{i}\right)}{4 m^{3}} A_{3} \\
& +\frac{\left(E_{i}-E_{f}\right) P_{3} z}{4 m} A_{4}+\frac{\left(E_{f}+E_{i}\right)\left(E_{f}+m\right)\left(E_{f}-E_{i}\right)}{4 m^{3}} A_{5}+\frac{E_{f}\left(E_{f}+E_{i}\right) P_{3}\left(E_{f}-E_{i}\right) z}{4 m^{3}} A_{6} \\
& \left.+\frac{E_{f} P_{3}\left(E_{f}-E_{i}\right)^{2} z}{2 m^{3}} A_{8}\right) \\
\Pi_{0}^{a}\left(\Gamma_{1}\right)= & i C_{a}\left(\frac{\left(E_{f}+E_{i}\right) P_{3} Q_{2}}{8 m^{3}} A_{1}+\frac{\left(E_{f}-E_{i}\right) P_{3} Q_{2}}{4 m^{3}} A_{3}+\frac{\left(E_{f}+m\right) Q_{2} z}{4 m} A_{4}-\frac{\left(E_{f}+E_{i}+2 m\right) P_{3} Q_{2}}{4 m^{3}} A_{5}\right. \\
& \left.-\frac{E_{f}\left(E_{f}+E_{i}\right)\left(E_{f}+m\right) Q_{2} z}{4 m^{3}} A_{6}-\frac{E_{f}\left(E_{f}-E_{i}\right)\left(E_{f}+m\right) Q_{2} z}{2 m^{3}} A_{8}\right) \\
\Pi_{0}^{a}\left(\Gamma_{2}\right)= & i C_{a}\left(-\frac{\left(E_{f}+E_{i}\right) P_{3} Q_{1}}{8 m^{3}} A_{1}-\frac{\left(E_{f}-E_{i}\right) P_{3} Q_{1}}{4 m^{3}} A_{3}-\frac{\left(E_{f}+m\right) Q_{1} z}{4 m} A_{4}+\frac{\left(E_{f}+E_{i}+2 m\right) P_{3} Q_{1}}{4 m^{3}} A_{5}\right. \\
& \left.+\frac{E_{f}\left(E_{f}+E_{i}\right)\left(E_{f}+m\right) Q_{1} z}{4 m^{3}} A_{6}+\frac{E_{f}\left(E_{f}-E_{i}\right)\left(E_{f}+m\right) Q_{1} z}{2 m^{3}} A_{8}\right)
\end{aligned}
$$

Matrix element decomposition

Symmetric

$$
C_{s}=\frac{2 m^{2}}{E(E+m)}
$$

$$
\Gamma_{0}=\frac{1}{2}\left(1+\gamma^{0}\right)
$$

$$
\begin{aligned}
& \Pi_{s}^{0}\left(\Gamma_{0}\right)=C_{s}\left(\frac{E\left(E(E+m)-P_{3}^{2}\right)}{2 m^{3}} A_{1}+\frac{(E+m)\left(-E^{2}+m^{2}+P_{3}^{2}\right)}{m^{3}} A_{5}+\frac{E P_{3}\left(-E^{2}+m^{2}+P_{3}^{2}\right) z}{m^{3}} A_{6}\right) \\
& \Pi_{s}^{0}\left(\Gamma_{1}\right)=i C_{s}\left(\frac{E P_{3} Q_{2}}{4 m^{3}} A_{1}-\frac{(E+m) P_{3} Q_{2}}{2 m^{3}} A_{5}-\frac{E\left(P_{3}^{2}+m(E+m)\right) z Q_{2}}{2 m^{3}} A_{6}\right)
\end{aligned}
$$

$$
\Gamma_{j}=\frac{i}{4}\left(1+\gamma^{0}\right) \gamma^{5} \gamma^{j}
$$

$$
\Pi_{s}^{0}\left(\Gamma_{2}\right)=i C_{s}\left(-\frac{E P_{3} Q_{1}}{4 m^{3}} A_{1}+\frac{(E+m) P_{3} Q_{1}}{2 m^{3}} A_{5}+\frac{E\left(P_{3}^{2}+m(E+m)\right) z Q_{1}}{2 m^{3}} A_{6}\right)
$$

Novel feature: z-dependence

$$
(j=1,2,3)
$$

Asymmetric

$$
C_{a}=\frac{2 m^{2}}{\sqrt{E_{i} E_{f}\left(E_{i}+m\right)\left(E_{f}+m\right)}}
$$

$$
\begin{aligned}
\Pi_{0}^{a}\left(\Gamma_{0}\right)=C_{a} & \left(-\frac{\left(E_{f}+E_{i}\right)\left(E_{f}-E_{i}-2 m\right)\left(E_{f}+m\right)}{8 m^{3}} A_{1}-\frac{\left(E_{f}-E_{i}-2 m\right)\left(E_{f}+m\right)\left(E_{f}-E_{i}\right)}{4 m^{3}} A_{3}\right. \\
& +\frac{\left(E_{i}-E_{f}\right) P_{3} z}{4 m} A_{4}+\frac{\left(E_{f}+E_{i}\right)\left(E_{f}+m\right)\left(E_{f}-E_{i}\right)}{4 m^{3}} A_{5}+\frac{E_{f}\left(E_{f}+E_{i}\right) P_{3}\left(E_{f}-E_{i}\right) z}{4 m^{3}} A_{6} \\
& \left.+\frac{E_{f} P_{3}\left(E_{f}-E_{i}\right)^{2} z}{2 m^{3}} A_{8}\right)
\end{aligned}
$$

$$
\Pi_{0}^{a}\left(\Gamma_{1}\right)=i C_{a}\left(\frac{\left(E_{f}+E_{i}\right) P_{3} Q_{2}}{8 m^{3}} A_{1}+\frac{\left(E_{f}-E_{i}\right) P_{3} Q_{2}}{4 m^{3}} A_{3}+\frac{\left(E_{f}+m\right) Q_{2} z}{4 m} A_{4}-\frac{\left(E_{f}+E_{i}+2 m\right) P_{3} Q_{2}}{4 m^{3}} A_{5}\right.
$$

$$
\left.-\frac{E_{f}\left(E_{f}+E_{i}\right)\left(E_{f}+m\right) Q_{2} z}{4 m^{3}} A_{6}-\frac{E_{f}\left(E_{f}-E_{i}\right)\left(E_{f}+m\right) Q_{2} z}{2 m^{3}} A_{8}\right)
$$

$$
\begin{aligned}
\Pi_{0}^{a}\left(\Gamma_{2}\right)=i C_{a} & \left(-\frac{\left(E_{f}+E_{i}\right) P_{3} Q_{1}}{8 m^{3}} A_{1}-\frac{\left(E_{f}-E_{i}\right) P_{3} Q_{1}}{4 m^{3}} A_{3}-\frac{\left(E_{f}+m\right) Q_{1} z}{4 m} A_{4}+\frac{\left(E_{f}+E_{i}+2 m\right) P_{3} Q_{1}}{4 m^{3}} A_{5}\right. \\
& \left.+\frac{E_{f}\left(E_{f}+E_{i}\right)\left(E_{f}+m\right) Q_{1} z}{4 m^{3}} A_{6}+\frac{E_{f}\left(E_{f}-E_{i}\right)\left(E_{f}+m\right) Q_{1} z}{2 m^{3}} A_{8}\right)
\end{aligned}
$$

Lorentz-Invariant amplitudes

Symmetric

$$
\begin{aligned}
& A_{1}=\frac{\left(m(E+m)+P_{3}^{2}\right)}{E(E+m)} \Pi_{0}^{s}\left(\Gamma_{0}\right)-i \frac{P_{3} Q_{1}}{2 E(E+m)} \Pi_{0}^{s}\left(\Gamma_{2}\right)-\frac{Q_{1}}{2 E} \Pi_{2}^{s}\left(\Gamma_{3}\right) \\
& A_{5}=-\frac{E}{Q_{1}} \Pi_{2}^{s}\left(\Gamma_{3}\right) \\
& A_{6}=\frac{P_{3}}{2 E z(E+m)} \Pi_{0}^{s}\left(\Gamma_{0}\right)+i \frac{\left(P_{3}^{2}-E(E+m)\right)}{E Q_{1} z(E+m)} \Pi_{0}^{s}\left(\Gamma_{2}\right)+\frac{P_{3}}{E Q_{1} z} \Pi_{2}^{s}\left(\Gamma_{3}\right)
\end{aligned}
$$

Asymmetric $\quad A_{1}=\frac{2 m^{2}}{E_{f}\left(E_{i}+m\right)} \frac{\Pi_{0}^{a}\left(\Gamma_{0}\right)}{C_{a}}+i \frac{2\left(E_{f}-E_{i}\right) P_{3} m^{2}}{E_{f}\left(E_{f}+m\right)\left(E_{i}+m\right) Q_{1}} \frac{\Pi_{0}^{a}\left(\Gamma_{2}\right)}{C_{a}}+\frac{2\left(E_{i}-E_{f}\right) P_{3} m^{2}}{E_{f}\left(E_{f}+E_{i}\right)\left(E_{f}+m\right)\left(E_{i}+m\right)} \frac{\Pi_{1}^{a}\left(\Gamma_{2}\right)}{C_{a}}$

$$
+i \frac{2\left(E_{i}-E_{f}\right) m^{2}}{E_{f}\left(E_{i}+m\right) Q_{1}} \frac{\Pi_{1}^{a}\left(\Gamma_{0}\right)}{C_{a}}+\frac{2\left(E_{i}-E_{f}\right) P_{3} m^{2}}{E_{f}\left(E_{f}+E_{i}\right)\left(E_{f}+m\right)\left(E_{i}+m\right)} \frac{\Pi_{2}^{a}\left(\Gamma_{1}\right)}{C_{a}}+\frac{2\left(E_{f}-E_{i}\right) m^{2}}{E_{f}\left(E_{i}+m\right) Q_{1}} \frac{\Pi_{2}^{a}\left(\Gamma_{3}\right)}{C_{a}}
$$

$$
A_{5}=\frac{m^{2} P_{3}}{E_{f}\left(E_{f}+m\right)\left(E_{i}+m\right)} \frac{\Pi_{2}^{a}\left(\Gamma_{1}\right)}{C_{a}}-\frac{\left(E_{f}+E_{i}\right) m^{2}}{E_{f}\left(E_{i}+m\right) Q_{1}} \frac{\Pi_{2}^{a}\left(\Gamma_{3}\right)}{C_{a}}
$$

$$
A_{6}=\frac{P_{3} m^{2}}{E_{f}^{2}\left(E_{f}+m\right)\left(E_{i}+m\right) z} \frac{\Pi_{0}^{a}\left(\Gamma_{0}\right)}{C_{a}}+i \frac{\left(E_{f}-E_{i}-2 m\right) m^{2}}{E_{f}^{2}\left(E_{i}+m\right) Q_{1} z} \frac{\Pi_{0}^{a}\left(\Gamma_{2}\right)}{C_{a}}+i \frac{\left(E_{i}-E_{f}\right) P_{3} m^{2}}{E_{f}^{2}\left(E_{f}+m\right)\left(E_{i}+m\right) Q_{1} z} \frac{\Pi_{1}^{a}\left(\Gamma_{0}\right)}{C_{a}}
$$

$$
+\frac{\left(-E_{f}+E_{i}+2 m\right) m^{2}}{E_{f}^{2}\left(E_{f}+E_{i}\right)\left(E_{i}+m\right) z} \frac{\Pi_{1}^{a}\left(\Gamma_{2}\right)}{C_{a}}+\frac{2\left(m-E_{f}\right) m^{2}}{E_{f}^{2}\left(E_{f}+E_{i}\right)\left(E_{i}+m\right) z} \frac{\Pi_{2}^{a}\left(\Gamma_{1}\right)}{C_{a}}+\frac{2 P_{3} m^{2}}{E_{f}^{2}\left(E_{i}+m\right) Q_{1} z} \frac{\Pi_{2}^{a}\left(\Gamma_{3}\right)}{C_{a}}
$$

* Asymmetric frame equations more complex

$\star A_{i}$ have definite symmetries

System of 8 independent matrix elements to disentangle the A_{i}

Lorentz-Invariant amplitudes

Symmetric

$$
\begin{aligned}
A_{1}= & \frac{\left(m(E+m)+P_{3}^{2}\right)}{E(E+m)} \Pi_{0}^{s}\left(\Gamma_{0}\right)-i \frac{P_{3} Q_{1}}{2 E(E+m)} \Pi_{0}^{s}\left(\Gamma_{2}\right)-\frac{Q_{1}}{2 E} \Pi_{2}^{s}\left(\Gamma_{3}\right) \\
A_{5}= & -\frac{E}{Q_{1}} \Pi_{2}^{s}\left(\Gamma_{3}\right) \\
A_{6}= & \frac{P_{3}}{2 E z(E+m)} \Pi_{0}^{s}\left(\Gamma_{0}\right)+i \frac{\left(P_{3}^{2}-E(E+m)\right)}{E Q_{1} z(E+m)} \Pi_{0}^{s}\left(\Gamma_{2}\right)+\frac{P_{3}}{E Q_{1} z} \Pi_{2}^{s}\left(\Gamma_{3}\right) \\
A_{1}= & \frac{2 m^{2}}{E_{f}\left(E_{i}+m\right)} \frac{\Pi_{0}^{a}\left(\Gamma_{0}\right)}{C_{a}}+i \frac{2\left(E_{f}-E_{i}\right) P_{3} m^{2}}{E_{f}\left(E_{f}+m\right)\left(E_{i}+m\right) Q_{1}} \frac{\Pi_{0}^{a}\left(\Gamma_{2}\right)}{C_{a}}+\frac{2\left(E_{i}-E_{f}\right) P_{3} m^{2}}{E_{f}\left(E_{f}+E_{i}\right)\left(E_{f}+m\right)\left(E_{i}+m\right)} \frac{\Pi_{1}^{a}\left(\Gamma_{2}\right)}{C_{a}} \\
& +i \frac{2\left(E_{i}-E_{f}\right) m^{2}}{E_{f}\left(E_{i}+m\right) Q_{1}} \frac{\Pi_{1}^{a}\left(\Gamma_{0}\right)}{C_{a}}+\frac{2\left(E_{i}-E_{f}\right) P_{3} m^{2}}{E_{f}\left(E_{f}+E_{i}\right)\left(E_{f}+m\right)\left(E_{i}+m\right)} \frac{\Pi_{2}^{a}\left(\Gamma_{1}\right)}{C_{a}}+\frac{2\left(E_{f}-E_{i}\right) m^{2}}{E_{f}\left(E_{i}+m\right) Q_{1}} \frac{\Pi_{2}^{a}\left(\Gamma_{3}\right)}{C_{a}} \\
A_{5}= & \frac{m^{2} P_{3}}{E_{f}\left(E_{f}+m\right)\left(E_{i}+m\right)} \frac{\Pi_{2}^{a}\left(\Gamma_{1}\right)}{C_{a}}-\frac{\left(E_{f}+E_{i}\right) m^{2}}{E_{f}\left(E_{i}+m\right) Q_{1}} \frac{\Pi_{2}^{a}\left(\Gamma_{3}\right)}{C_{a}} \\
A_{6}= & \frac{P_{3} m^{2}}{E_{f}^{2}\left(E_{f}+m\right)\left(E_{i}+m\right) z} \frac{\Pi_{0}^{a}\left(\Gamma_{0}\right)}{C_{a}}+i \frac{\left(E_{f}-E_{i}-2 m\right) m^{2}}{E_{f}^{2}\left(E_{i}+m\right) Q_{1} z} \frac{\Pi_{0}^{a}\left(\Gamma_{2}\right)}{C_{a}}+i \frac{\left(E_{i}-E_{f}\right) P_{3} m^{2}}{E_{f}^{2}\left(E_{f}+m\right)\left(E_{i}+m\right) Q_{1} z} \frac{\Pi_{1}^{a}\left(\Gamma_{0}\right)}{C_{a}} \\
& +\frac{\left(-E_{f}+E_{i}+2 m\right) m^{2}}{E_{f}^{2}\left(E_{f}+E_{i}\right)\left(E_{i}+m\right) z} \frac{\Pi_{1}^{a}\left(\Gamma_{2}\right)}{C_{a}}+\frac{2\left(m-E_{f}\right) m^{2}}{E_{f}^{2}\left(E_{f}+E_{i}\right)\left(E_{i}+m\right) z} \frac{\Pi_{2}^{a}\left(\Gamma_{1}\right)}{C_{a}}+\frac{2 P_{3} m^{2}}{E_{f}^{2}\left(E_{i}+m\right) Q_{1} z} \frac{\Pi_{2}^{a}\left(\Gamma_{3}\right)}{C_{a}}
\end{aligned}
$$

Asymmetric frame equations more complex

A_{i} have definite symmetries

System of 8 independent matrix elements to disentangle the A_{i}

Parameters of calculation

$\mathrm{Nf}=2+1+1$ twisted mass (TM) fermions \& clover improvement

Calculation:

- isovector combination
- zero skewness
- $\mathrm{T}_{\text {sink }}=1 \mathrm{fm}$

Pion mass: $\quad 260 \mathrm{MeV}$

Lattice spacing: 0.093 fm
Volume: $32^{3} \times 64$
Spatial extent:
3 fm

frame	$P_{3}[\mathrm{GeV}]$	$\mathbf{Q}\left[\frac{2 \pi}{L}\right]$	$-t\left[\mathrm{GeV}^{2}\right]$	ξ	N_{ME}	$N_{\text {confs }}$	$N_{\text {src }}$	$N_{\text {tot }}$
symm	1.25	$(\pm 2,0,0),(0, \pm 2,0)$	0.69	0	8	249	8	15936
non-symm	1.25	$(\pm 2,0,0),(0, \pm 2,0)$	0.64	0	8	269	8	17216

\star Computational cost:

- symmetric frame 4 times more expensive than asymmetric frame for same set of \vec{Q} (requires separate calculations at each t)

Parameters of calculation

$\mathrm{Nf}=2+1+1$ twisted mass (TM) fermions \& clover improvement

Calculation:

- isovector combination
- zero skewness
- $\mathrm{T}_{\text {sink }}=1 \mathrm{fm}$

frame	$P_{3}[\mathrm{GeV}]$	$\mathbf{Q}\left[\frac{2 \pi}{L}\right]$	$-t\left[\mathrm{GeV}^{2}\right]$	ξ	N_{ME}	$N_{\text {confs }}$	$N_{\text {src }}$	$N_{\text {tot }}$
symm	1.25	$(\pm 2,0,0),(0, \pm 2,0)$	0.69	0	8	249	8	15936
non-symm	1.25	$(\pm 2,0,0),(0, \pm 2,0)$	0.64	0	8	269	8	17216

Small difference: $\quad t^{s}=-\vec{Q}^{2} \quad t^{a}=-\vec{Q}^{2}+\left(E_{f}-E_{i}\right)^{2}$

$$
A\left(-0.64 \mathrm{GeV}^{2}\right) \sim A\left(-0.69 \mathrm{GeV}^{2}\right)
$$

\star Computational cost:

- symmetric frame 4 times more expensive than asymmetric frame for same set of \vec{Q} (requires separate calculations at each t)

Results: matrix elements

Real

Imag

中 $\{+3,(-2,0,0)\}$

- $\quad\{+3,(+2,0,0)\}$
$\{+3,(0,-2,0)\}$
$4 \quad\{+3,(0,+2,0)\}$
$\phi \quad\{-3,(-2,0,0)\}$
- $\quad\{-3,(+2,0,0)\}$
$\downarrow \quad\{-3,(0,-2,0)\}$
- $\{-3,(0,+2,0)\}$
\star Lattice data confirm symmetries where applicable (e.g., $\Pi_{0}^{s}\left(\Gamma_{0}\right)$ in $\left.\pm P_{3}, \pm Q, \pm z\right)$
\star ME in asymmetric frame do not have definite symmetries in $\pm P_{3}, \pm Q, \pm z$
\star ME decompose to different A_{i}
Multiple ME contribute to the same quantity

Results: matrix elements

Real
symmetric

asymmetric

$\star \quad \Pi_{1}\left(\Gamma_{2}\right)$ theoretically nonzero
\star Noisy contributions lead to challenges in extracting A_{i} of sub-leading magnitude

Results: A_{i}

A_{1}, A_{5} dominant contributions
Full agreement in two frames for both Re and Im parts of A_{1}, A_{5}
Remaining A_{i} suppressed (at least for this kinematic setup and $\xi=0$)

\mathscr{H}, \mathscr{E} in terms of A_{i}

 in each frame leading to frame dependent relations:

\mathscr{H}, \mathscr{E} in terms of A_{i}

Mapping of $\{\mathscr{H}, \mathscr{E}\}$ to A_{i} using $F^{\left[r^{0}\right]} \sim\left[\gamma^{0} H_{(\mathbb{Q O})}\left(x, \xi, t ; P^{3}\right)+\frac{i \sigma^{0 \mu} \Delta_{\mu}}{2 M} E_{Q(0)}\left(x, \xi, t ; P^{3}\right)\right]$
in each frame leading to frame dependent relations:
$(\xi=0)$

$$
\begin{aligned}
\Pi_{H}^{s}= & A_{1}+\frac{z Q_{1}^{2}}{2 P_{3}} A_{6} \\
\Pi_{E}^{s}= & -A_{1}-\frac{m^{2} z}{P_{3}} A_{4}+2 A_{5}-\frac{z\left(4 E^{2}+Q x^{2}+Q y^{2}\right)}{2 P_{3}} A_{6} \\
\Pi_{H}^{a}= & A_{1}+\frac{Q_{0}}{P_{0}} A_{3}+\frac{m^{2} z Q_{0}}{2 P_{0} P_{3}} A_{4}+\frac{z\left(Q_{0}^{2}+Q_{\perp}^{2}\right.}{2 P_{3}} A_{6}+\frac{z\left(Q_{0}^{3}+Q_{0} Q_{\perp}^{2}\right)}{2 P_{0} P_{3}} A_{8} \\
\Pi_{E}^{a}= & -A_{1}-\frac{Q_{0}}{P_{0}} A_{3}-\frac{m^{2} z\left(Q_{0}+2 P_{0}\right)}{2 P_{0} P_{3}} A_{4}+2 A_{5} \\
& -\frac{z\left(Q_{0}^{2}+2 P_{0} Q_{0}+4 P_{0}^{2}+Q_{\perp}^{2}\right)}{2 P_{3}} A_{6}-\frac{z Q_{0}\left(Q_{0}^{2}+2 Q_{0} P_{0}+4 P_{0}^{2}+Q_{\perp}^{2}\right)}{2 P_{0} P_{3}} A_{8}
\end{aligned}
$$

\mathscr{H}, \mathscr{E} in terms of A_{i}

Mapping of $\{\mathscr{H}, \mathscr{E}\}$ to A_{i} using $F^{\left[\gamma^{0}\right]} \sim\left[\gamma^{0} H_{Q(0)}\left(x, \xi, t ; P^{3}\right)+\frac{i \sigma^{0 \mu} \Delta_{\mu}}{2 M} E_{Q(0)}\left(x, \xi, t ; P^{3}\right)\right]$
in each frame leading to frame dependent relations:
$(\xi=0)$

$$
\begin{aligned}
\Pi_{H}^{s}= & A_{1}+\frac{z Q_{1}^{2}}{2 P_{3}} A_{6} \\
\Pi_{E}^{s}= & -A_{1}-\frac{m^{2} z}{P_{3}} A_{4}+2 A_{5}-\frac{z\left(4 E^{2}+Q x^{2}+Q y^{2}\right)}{2 P_{3}} A_{6} \\
\Pi_{H}^{a}= & A_{1}+\frac{Q_{0}}{P_{0}} A_{3}+\frac{m^{2} z Q_{0}}{2 P_{0} P_{3}} A_{4}+\frac{z\left(Q_{0}^{2}+Q_{\perp}^{2}\right.}{2 P_{3}} A_{6}+\frac{z\left(Q_{0}^{3}+Q_{0} Q_{\perp}^{2}\right)}{2 P_{0} P_{3}} A_{8} \\
\Pi_{E}^{a}= & -A_{1}-\frac{Q_{0}}{P_{0}} A_{3}-\frac{m^{2} z\left(Q_{0}+2 P_{0}\right)}{2 P_{0} P_{3}} A_{4}+2 A_{5} \\
& -\frac{z\left(Q_{0}^{2}+2 P_{0} Q_{0}+4 P_{0}^{2}+Q_{\perp}^{2}\right)}{2 P_{3}} A_{6}-\frac{z Q_{0}\left(Q_{0}^{2}+2 Q_{0} P_{0}+4 P_{0}^{2}+Q_{\perp}^{2}\right)}{2 P_{0} P_{3}} A_{8}
\end{aligned}
$$

Definition of Lorentz invariant \mathscr{H}, \mathscr{E}

$$
\begin{array}{ll}
(\xi=0) & \Pi_{H}^{\mathrm{impr}}=A_{1} \\
& \Pi_{E}^{\mathrm{impr}}=-A_{1}+2 A_{5}+2 z P_{3} A_{6}
\end{array}
$$

\mathscr{H}, \mathscr{E} in terms of A_{i}

Mapping of $\{\mathscr{H}, \mathscr{E}\}$ to A_{i} using $F^{\left[r^{0}\right]} \sim\left[\gamma^{0} H_{(\mathbb{Q O})}\left(x, \xi, t ; P^{3}\right)+\frac{i \sigma^{0 \mu} \Delta_{\mu}}{2 M} E_{Q(0)}\left(x, \xi, t ; P^{3}\right)\right]$
in each frame leading to frame dependent relations:
$(\xi=0)$

$$
\begin{aligned}
\Pi_{H}^{s}= & A_{1}+\frac{z Q_{1}^{2}}{2 P_{3}} A_{6} \\
\Pi_{E}^{s}= & -A_{1}-\frac{m^{2} z}{P_{3}} A_{4}+2 A_{5}-\frac{z\left(4 E^{2}+Q x^{2}+Q y^{2}\right)}{2 P_{3}} A_{6} \\
\Pi_{H}^{a}= & A_{1}+\frac{Q_{0}}{P_{0}} A_{3}+\frac{m^{2} z Q_{0}}{2 P_{0} P_{3}} A_{4}+\frac{z\left(Q_{0}^{2}+Q_{\perp}^{2}\right.}{2 P_{3}} A_{6}+\frac{z\left(Q_{0}^{3}+Q_{0} Q_{\perp}^{2}\right)}{2 P_{0} P_{3}} A_{8} \\
\Pi_{E}^{a}= & -A_{1}-\frac{Q_{0}}{P_{0}} A_{3}-\frac{m^{2} z\left(Q_{0}+2 P_{0}\right)}{2 P_{0} P_{3}} A_{4}+2 A_{5} \\
& -\frac{z\left(Q_{0}^{2}+2 P_{0} Q_{0}+4 P_{0}^{2}+Q_{\perp}^{2}\right)}{2 P_{3}} A_{6}-\frac{z Q_{0}\left(Q_{0}^{2}+2 Q_{0} P_{0}+4 P_{0}^{2}+Q_{\perp}^{2}\right)}{2 P_{0} P_{3}} A_{8}
\end{aligned}
$$

$1^{\text {st }}$ approach: extraction of $\left\{\mathscr{H}_{0}^{s}, \mathscr{E}_{0}^{s}\right\}$ using A_{i} from any frame (universal)

Definition of Lorentz invariant \mathscr{H}, \mathscr{E}

$$
\begin{array}{ll}
(\xi=0) & \Pi_{H}^{\mathrm{impr}}=A_{1} \\
& \Pi_{E}^{\mathrm{impr}}=-A_{1}+2 A_{5}+2 z P_{3} A_{6}
\end{array}
$$

\mathscr{H}, \mathscr{E} in terms of A_{i}

Mapping of $\{\mathscr{H}, \mathscr{E}\}$ to A_{i} using $F^{\left[y^{0}\right]} \sim\left[\gamma^{0} H_{(\mathbb{Q} 0}\left(x, \xi, t ; P^{3}\right)+\frac{i \sigma^{0 \mu} \Delta_{\mu}}{2 M} E_{Q(0)}\left(x, \xi, t ; P^{3}\right)\right]$
in each frame leading to frame dependent relations:

$$
\begin{aligned}
& \Pi_{H}^{s}=A_{1}+\frac{z Q_{1}^{2}}{2 P_{3}} A_{6} \\
& \Pi_{E}^{s}=-A_{1}-\frac{m^{2} z}{P_{3}} A_{4}+2 A_{5}-\frac{z\left(4 E^{2}+Q x^{2}+Q y^{2}\right)}{2 P_{3}} A_{6}
\end{aligned}
$$

$1^{\text {st }}$ approach: extraction of $\left\{\mathscr{H}_{0}^{s}, \mathscr{E}_{0}^{s}\right\}$ using A_{i} from any frame (universal)

$$
\Pi_{H}^{a}=A_{1}+\frac{Q_{0}}{P_{0}} A_{3}+\frac{m^{2} z Q_{0}}{2 P_{0} P_{3}} A_{4}+\frac{z\left(Q_{0}^{2}+Q_{\perp}^{2}\right.}{2 P_{3}} A_{6}+\frac{z\left(Q_{0}^{3}+Q_{0} Q_{\perp}^{2}\right)}{2 P_{0} P_{3}} A_{8}
$$

$2^{\text {nd }}$ approach: extraction of

$$
\Pi_{E}^{a}=-A_{1}-\frac{Q_{0}}{P_{0}} A_{3}-\frac{m^{2} z\left(Q_{0}+2 P_{0}\right)}{2 P_{0} P_{3}} A_{4}+2 A_{5}
$$ $\left\{\mathscr{H}_{0}^{a}, \mathscr{E}_{0}^{a}\right\}$ from a purely asymmetric frame; GPDs differ in

$$
-\frac{z\left(Q_{0}^{2}+2 P_{0} Q_{0}+4 P_{0}^{2}+Q_{\perp}^{2}\right)}{2 P_{3}} A_{6}-\frac{z Q_{0}\left(Q_{0}^{2}+2 Q_{0} P_{0}+4 P_{0}^{2}+Q_{\perp}^{2}\right)}{2 P_{0} P_{3}} A_{8}
$$ functional form from $\left\{\mathscr{H}_{0}^{s}, \mathscr{E}_{0}^{s}\right\}$

Definition of Lorentz invariant \mathscr{H}, \mathscr{E}

$$
\begin{array}{ll}
(\xi=0) & \Pi_{H}^{\mathrm{impr}}=A_{1} \\
& \Pi_{E}^{\mathrm{impr}}=-A_{1}+2 A_{5}+2 z P_{3} A_{6}
\end{array}
$$

\mathscr{H}, \mathscr{E} in terms of A_{i}

Mapping of $\{\mathscr{H}, \mathscr{E}\}$ to A_{i} using $F^{\left[y^{0}\right]} \sim\left[\gamma^{0} H_{(\mathbb{Q} 0}\left(x, \xi, t ; P^{3}\right)+\frac{i \sigma^{0 \mu} \Delta_{\mu}}{2 M} E_{(Q)(x)}\left(x, t, t ; P^{3}\right)\right]$
in each frame leading to frame dependent relations:
$(\xi=0)$
$\Pi_{H}^{s}=A_{1}+\frac{z Q_{1}^{2}}{2 P_{3}} A_{6}$
$\Pi_{E}^{s}=-A_{1}-\frac{m^{2} z}{P_{3}} A_{4}+2 A_{5}-\frac{z\left(4 E^{2}+Q x^{2}+Q y^{2}\right)}{2 P_{3}} A_{6}$
$\Pi_{H}^{a}=A_{1}+\frac{Q_{0}}{P_{0}} A_{3}+\frac{m^{2} z Q_{0}}{2 P_{0} P_{3}} A_{4}+\frac{z\left(Q_{0}^{2}+Q_{\perp}^{2}\right.}{2 P_{3}} A_{6}+\frac{z\left(Q_{0}^{3}+Q_{0} Q_{\perp}^{2}\right)}{2 P_{0} P_{3}} A_{8}$
$\Pi_{E}^{a}=-A_{1}-\frac{Q_{0}}{P_{0}} A_{3}-\frac{m^{2} z\left(Q_{0}+2 P_{0}\right)}{2 P_{0} P_{3}} A_{4}+2 A_{5}$
$-\frac{z\left(Q_{0}^{2}+2 P_{0} Q_{0}+4 P_{0}^{2}+Q_{\perp}^{2}\right)}{2 P_{3}} A_{6}-\frac{z Q_{0}\left(Q_{0}^{2}+2 Q_{0} P_{0}+4 P_{0}^{2}+Q_{\perp}^{2}\right)}{2 P_{0} P_{3}} A_{8}$
1st approach: extraction of $\left\{\mathscr{H}_{0}^{s}, \mathscr{E}_{0}^{s}\right\}$ using A_{i} from any frame (universal)
$2^{\text {nd }}$ approach: extraction of $\left\{\mathscr{H}_{0}^{a}, \mathscr{E}_{0}^{a}\right\}$ from a purely asymmetric frame; GPDs differ in functional form from $\left\{\mathscr{H}_{0}^{s}, \mathscr{E}_{0}^{s}\right\}$

Definition of Lorentz invariant \mathscr{H}, \mathscr{E}

$$
\begin{array}{ll}
(\xi=0) & \Pi_{H}^{\mathrm{impr}}=A_{1} \\
& \Pi_{E}^{\mathrm{impr}}=-A_{1}+2 A_{5}+2 z P_{3} A_{6}
\end{array}
$$

3rd approach: use redefined Lorentz covariant $\{\mathscr{H}, \mathscr{E}\}$ in desired frame

Results: H - GPD

Definition comparison

Similar results for H and \mathscr{H} for both frames (agreement not by construction)

Agreement between frames for \mathscr{H} (agreement by construction)

Results: E - GPD

Definition comparison

Differences between E and \mathscr{E} for both frames (agreement not by construction)

Agreement reached between frames for improved definition (expected theoretically)

A comment on Lorentz covariant definitions

Example: asymmetric frame

申	$\{+3,(-2,0,0)\}$
中	$\{+3,(+2,0,0)\}$
i	$\{+3,(0,-2,0)\}$
ϕ	$\{+3,(0,+2,0)\}$
ϕ	$\{-3,(-2,0,0)\}$
ϕ	$\{-3,(+2,0,0)\}$
ϕ	$\{-3,(0,-2,0)\}$
ϕ	$\{-3,(0,+2,0)\}$
ϕ	$\{-3,(-2,0,0)\}$
ϕ	$\{-3,(-2,0,0)\}$
ϕ	$\{-3,(-2,0,0)\}$

\star Lorentz covariant case: more precise data
Same effect of improvement also for symmetric frame

A comment on Lorentz covariant definitions

Example: asymmetric frame

$$
\begin{aligned}
\mathcal{E}_{0}^{a}\left(A_{i}^{a} ; z\right)= & -\frac{4 m^{3}}{K\left(E_{f}+E_{i}\right)\left(E_{f}+m\right)\left(E_{i}+m\right)} \Pi_{0}^{a}\left(\Gamma_{0}\right)-i \frac{4 m^{3}}{K P_{3} \Delta\left(E_{i}+m\right)} \Pi_{0}^{a}\left(\Gamma_{2}\right) . \\
\mathcal{E}\left(A_{i}^{a} ; z\right)= & -\frac{2 m^{3}}{E_{f}^{2}\left(E_{i}+m\right)} \frac{\Pi_{0}^{a}\left(\Gamma_{0}\right)}{K}-i \frac{2 m^{3} P_{3}\left(E_{f}+E_{i}+2 m\right)}{E_{f}^{2} \Delta\left(E_{f}+m\right)\left(E_{i}+m\right)} \frac{\Pi_{0}^{a}\left(\Gamma_{2}\right)}{K}+\frac{2 m^{3} P_{3}\left(E_{f}+E_{i}+2 m\right)}{E_{f}^{2}\left(E_{f}+E_{i}\right)\left(E_{f}+m\right)\left(E_{i}+m\right)} \frac{\Pi_{1}^{a}\left(\Gamma_{2}\right)}{K} \\
& +i \frac{2 m^{3}\left(E_{f}-E_{i}\right)}{E_{f}^{2} \Delta\left(E_{i}+m\right)} \frac{\Pi_{1}^{a}\left(\Gamma_{0}\right)}{K}+\frac{\Pi^{4} P_{3}}{E_{f}^{2}\left(E_{f}+E_{i}\right)\left(E_{f}+m\right)\left(E_{i}+m\right)} \frac{\Pi_{2}^{a}\left(\Gamma_{1}\right)}{K}-\frac{4 m^{4}}{E_{f}^{2} \Delta\left(E_{i}+m\right)} \frac{\Pi_{2}^{a}\left(\Gamma_{3}\right)}{K} .
\end{aligned}
$$

* Lorentz covarıant case: more precise data

A comment on Lorentz covariant definitions

Example: asymmetric frame

申	$\{+3,(-2,0,0)\}$
中	$\{+3,(+2,0,0)\}$
i	$\{+3,(0,-2,0)\}$
ϕ	$\{+3,(0,+2,0)\}$
ϕ	$\{-3,(-2,0,0)\}$
ϕ	$\{-3,(+2,0,0)\}$
ϕ	$\{-3,(0,-2,0)\}$
ϕ	$\{-3,(0,+2,0)\}$
ϕ	$\{-3,(-2,0,0)\}$
ϕ	$\{-3,(-2,0,0)\}$
ϕ	$\{-3,(-2,0,0)\}$

\star Lorentz covariant case: more precise data
Same effect of improvement also for symmetric frame

A comment on Lorentz covariant definitions

Example: asymmetric frame

Signal quality in H same across all cases
\star Lorentz covariant case: more precise data
Same effect of improvement also for symmetric frame

Possible extensions

* Twist-3 GPDs

PRELIMINARY

[S. Bhattacharya et al., PoS LATTICE2021 (2022) 054 arXiv:2112.05538]

$g_{T}(x)$: dominant distribution
$\star \quad \widetilde{H}+\widetilde{G}_{2}$ similar in magnitude to \widetilde{H}
$\star \widetilde{G}_{2}$ is expected to be small

Summary

* Lattice QCD data on GPDs will play an important role in the pre-EIC era and can complement experimental efforts of JLab@12GeV
\star New proposal for Lorentz invariant decomposition has great advantages:
- significant reduction of computational cost
- access to a broad range of t and ξ
* Future calculations have the potential to transform the field of GPDs

On-going extensions to spin-0 particles

Synergy with phenomenology is an exciting prospect!
M. Constantinou, LaMET 2022

Summary

* Lattice QCD data on GPDs will play an important role in the pre-EIC era and can complement experimental efforts of JLab@12GeV
* New proposal for Lorentz invariant decomposition has great advantages:
- significant reduction of computational cost
- access to a broad range of t and ξ
* Future calculations have the potential to transform the field of GPDs

On-going extensions to spin-0 particles Josh Miller, next talk

Synergy with phenomenology is an exciting prospect!

Summary

* Lattice QCD data on GPDs will play an important role in the pre-EIC era and can complement experimental efforts of JLab@12GeV
* New proposal for Lorentz invariant decomposition has great advantages:
- significant reduction of computational cost
- access to a broad range of t and ξ

Future calculations have the potential to transform the field of GPDs

On-going extensions to spin-0 particles Josh Miller, next talk

Synergy with phenomenology is an exciting prospect!

[JAM \& ETMC, PRD 103 (2021) 016003]

Summary

* Lattice QCD data on GPDs will play an important role in the pre-EIC era and can complement experimental efforts of JLab@12GeV
* New proposal for Lorentz invariant decomposition has great advantages:
- significant reduction of computational cost
- access to a broad range of t and ξ
* Future calculations have the potential to transform the field of GPDs

BACKUP

M. Constantinou, LaMET 2022

Challenges of lattice calculation

\star Statistical noise increases with P_{3}, t
use of momentum smearing method

Challenges of lattice calculation

\star Statistical noise increases with P_{3}, t
use of momentum smearing method

Challenges of lattice calculation

\star Statistical noise increases with P_{3}, t
use of momentum smearing method

- Implementation in GPDs nontrivial due to momentum transfer
- Standard definition of GPDs in Breit (symmetric) frame separate calculations at each t
* Matrix elements decompose into more than one GPDs at least 2 parity projectors are needed to disentangle GPDs
- Nonzero skewness
nontrivial matching
- P_{3} must be chosen carefully due to UV cutoff ($a^{-1} \sim 2 \mathrm{GeV}$)

Challenges of lattice calculation

\star Statistical noise increases with P_{3}, t
use of momentum smearing method

- Implementation in GPDs nontrivial due to momentum transfer

Standard definition of GPDs in Breit (symmetric) frame separate calculations at each t

- Matrix elements decompose into more than one GPDs at least 2 parity projectors are needed to disentangle GPDs
- Nonzero skewness
nontrivial matching
- P_{3} must be chosen carefully due to UV cutoff ($a^{-1} \sim 2 \mathrm{GeV}$)

Challenges of lattice calculation

\star Statistical noise increases with P_{3}, t
use of momentum smearing method

* Implementation in GPDs nontrivial due to momentum transfer

Standard definition of GPDs in Breit (symmetric) frame separate calculations at each t

Matrix elements decompose into more than one GPDs at least 2 parity projectors are needed to disentangle GPDs

Ref.	$m_{\pi}(\mathrm{MeV})$	$P_{3}(\mathrm{GeV})$	$\left.\frac{n}{s}\right\|_{z=0}$
quasi/pseudo [59,95]	130	1.38	6%
pseudo [92]	172	2.10	8\%
current-current [98]	278	1.65	19% *
quasi [72]	300	1.72	$6 \%^{\dagger}$
quasi/pseudo [77]	300	2.45	$8 \%{ }^{\dagger}$
quasi/pseudo [70]	310	1.84	$3 \%^{\dagger}$
twist-3 [148]	260	1.67	15\%
s-quark quasi [113]	260	1.24	31%
s-quark quasi [112]	310	1.30	43\%**
gluon pseudo [134]	310	1.73	39%
$\begin{aligned} & \text { quasi-GPDs [170] } \\ & -t=0.69 \mathrm{GeV}^{2} \end{aligned}$	260	1.67	23\%
$\begin{aligned} & \text { quasi-GPDs [169] } \\ & -t=0.92 \mathrm{GeV}^{2} \end{aligned}$	310	1.74	59\%

\dagger At $T_{\text {sink }}<1 \mathrm{fm}$.
\star At smallest z value used, $z=2$.
$\star \star$ At maximum value of imaginary part, $z=4$.
[M. Constantinou, EPJA 57 (2021) 77]

* Nonzero skewness
nontrivial matching
↔ $\quad \mathrm{P}_{3}$ must be chosen carefully due to UV cutoff $\left(a^{-1} \sim 2 \mathrm{GeV}\right)$

Challenges of lattice calculation

\star Statistical noise increases with P_{3}, t
use of momentum smearing method

* Implementation in GPDs nontrivial due to momentum transfer

Standard definition of GPDs in Breit (symmetric) frame separate calculations at each t

Matrix elements decompose into more than one GPDs at least 2 parity projectors are needed to disentangle GPDs

Ref.	$m_{\pi}(\mathrm{MeV})$	$P_{3}(\mathrm{GeV})$	$\left.\frac{n}{s}\right\|_{z=0}$
quasi/pseudo [59,95]	130	1.38	6%
pseudo [92]	172	2.10	8\%
current-current [98]	278	1.65	19\% *
quasi [72]	300	1.72	$6 \%^{\dagger}$
quasi/pseudo [77]	300	2.45	$8 \%^{\dagger}$
quasi/pseudo [70]	310	1.84	$3 \%^{\dagger}$
twist-3 [148]	260	1.67	15\%
s-quark quasi [113]	260	1.24	31\%
s-quark quasi [112]	310	1.30	43\% **
gluon pseudo [134]	310	1.73	39%
$\begin{aligned} & \text { quasi-GPDs [170] } \\ & -t=0.69 \mathrm{GeV}^{2} \end{aligned}$	260	1.67	23\%
$\begin{aligned} & \text { quasi-GPDs [169] } \\ & -t=0.92 \mathrm{GeV}^{2} \end{aligned}$	310	1.74	59\%

\dagger At $T_{\text {sink }}<1 \mathrm{fm}$.
\star At smallest z value used, $z=2$.
$\star \star$ At maximum value of imaginary part, $z=4$.
[M. Constantinou, EPJA 57 (2021) 77]

Further increase of momentum at the cost of credibility

- P_{3} must be chosen carefully due to UV cutoff ($a^{-1} \sim 2 \mathrm{GeV}$)

Nonzero skewness
nontrivial matching

Twist-classification of GPDs

$$
f_{i}=f_{i}^{(0)}+\frac{f_{i}^{(1)}}{Q}+\frac{f_{i}^{(2)}}{Q^{2}} \cdots
$$

Twist-classification of GPDs

$$
f_{i}=f_{i}^{(0)}+\frac{f_{i}^{(1)}}{Q}+\frac{f_{i}^{(2)}}{Q^{2}} \cdots
$$

Twist-2 ($f_{i}^{(0)}$)

Quark	$\mathrm{U}\left(\gamma^{+}\right)$	$\mathrm{L}\left(\gamma^{+} \gamma^{5}\right)$	$\mathrm{T}\left(\sigma^{+j}\right)$
Nucleon	$H(x, \xi, t)$ $\mathrm{U}(x, \xi, t)$ unpolarized		
\mathbf{L}		$\widetilde{H}(x, \xi, t)$ $\widetilde{E}^{(x, \xi, t)}$ helicity	
\mathbf{T}			\widetilde{H}_{T}, E_{T} transversity

Probabilistic interpretation

L

Twist-classification of GPDs

$$
f_{i}=f_{i}^{(0)}+\frac{f_{i}^{(1)}}{Q}+\frac{f_{i}^{(2)}}{Q^{2}} \cdots
$$

Twist-2 $\left(f_{i}^{(0)}\right)$

	$\mathrm{U}\left(\gamma^{+}\right)$	$L\left(\gamma^{+} \gamma^{5}\right)$	T (σ^{+j})
U	$\begin{aligned} & H(x, \xi, t) \\ & E(x, \xi, t) \\ & \text { unpolarize } \end{aligned}$		
L			
T			$\begin{aligned} & H_{T}, E_{T} \\ & \widetilde{H}_{T}, \widetilde{E}_{T} \\ & \text { transversity } \end{aligned}$

Twist-3 ($f_{i}^{(1)}$)

Nucleon	γ^{j}	$\gamma^{j} \gamma^{5}$	$\sigma^{j k}$	(Selected)
U	$\begin{aligned} & G_{1}, G_{2} \\ & G_{3}, G_{4} \end{aligned}$			
L		$\begin{aligned} & \widetilde{G}_{1}, \widetilde{G}_{2} \\ & \widetilde{G}_{3}, \widetilde{G}_{4} \end{aligned}$		
T			$H_{2}^{\prime}(x, \xi, t)$ $E_{2}^{\prime}(x, \xi, t)$	

Probabilistic interpretation

U

L

4

* Lack density interpretation, but not-negligible Contain info on quark-gluon-quark correlators

Physical interpretation, e.g., transverse force

* Kinematically suppressed

Difficult to isolate experimentally
\star Theoretically: contain $\delta(x)$ singularities

