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❖ Experimentally, we rely on exclusive processes like deeply virtual    

Compton Scattering (DVCS) - 


❖ Exclusive pion-nucleon diffractive production of a  pair of high 

ep → eX

γ p⊥

[X.-D. Ji, PRD 55, 7114 (1997)]

[J. Qui et al., arXiv:2205.07846]
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GPDs from Lattice QCD
❖ Direct access to partonic distributions impossible in LQCD:


❖ PDFs/GPDs/TMDs are defined on the light cone, that is:   


❖ LQCD is a Euclidean formulation (Wick rotation, ) and light cone:  

t2 − ⃗r2 = 0

t → iτ τ2 + ⃗r2 = 0
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❖ GPD access in Lattice QCD: 

- Mellin moments (generalized form factors) 

- Novel methods (LaMET, pseudo-ITD, and many more) 

⟨xn−1⟩ = ∫
+1

−1
xn−1f(x) dx

[Cichy & Constantinou, Adv.High Energy Phys. 2019 (2019) 3036904]



GPDs from Lattice QCD
❖ Direct access to partonic distributions impossible in LQCD:


❖ PDFs/GPDs/TMDs are defined on the light cone, that is:   


❖ LQCD is a Euclidean formulation (Wick rotation, ) and light cone:  

t2 − ⃗r2 = 0

t → iτ τ2 + ⃗r2 = 0

3

❖ GPD access in Lattice QCD: 

- Mellin moments (generalized form factors) 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+1

−1
xn−1f(x) dx

[Cichy & Constantinou, Adv.High Energy Phys. 2019 (2019) 3036904]

❖ Calculation of quasi-GPD in Lattice QCD is very challenging 

- Matrix elements of non-local operators (quarks/gluons spatially separated) 

- Hadron states with momentum boost 

- renormalization more complex and may bring systematic uncertainties 

- introduction of momentum transfer increases noise 

  A lot of computing time→
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Preliminary data

❖ GPDs for all nine combinations of    at the cost of the PDF


❖ Pion GPDs at same statistics as proton GPDs: four times less expensive (spin-0)

⃗Δ2 = 0,1,2
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1. Calculation of appropriate ratio of the 3-point and 2-point correlation functions: 

R =
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2. Apply a single-state fit (plateau) to get the ground state of the matrix elements, Πa
i

Dependent upon 3 linearly-independent Lorentz invariant amplitudes!
Ai(z ⋅ P, z ⋅ Δ, Δ2, z2) (Based on the idea of: S. Meissner, A. Metz, M. Schlegel, JHEP08(2009)056)

Reference Martha’s Talk

Fμ(z, P, Δ) =
Pμ

m
A1(z ⋅ P, z ⋅ Δ, Δ2, z2) + zμmA2(z ⋅ P, z ⋅ Δ, Δ2, z2) +

Δμ

m
A3(z ⋅ P, z ⋅ Δ, Δ2, z2) ,

[Bhattacharya et al., arXiv:2209.05373 ]
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Strategy

4. Exploit symmetry properties of  to combine Ai (±P3, ± ⃗Δ)

6. Renormalize GPDs (RI-MOM, hybrid, ratio, …)

7. Fourier-like transform to x-space

8. Apply matching formalism

3. Decompose the amplitudes for each kinematic setup (±P3, ± ⃗Δ)

5. Relate  with H-GPD (definition not unique)Ai

Standard  definitionγ0

Lorentz invariant definition

[Bhattacharya et al., arXiv:2209.05373 ]
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Matrix Elements:Πa
0
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❖ Clear signal for the matrix elements from all combinations of momenta 


❖ Signs of  affect the sign of the imaginary part, but the matrix elements do not have definite symmetry properties


❖ Observed asymmetries appear to be small

P, Δ

P, Δ

z /a z /a

Re
(Π

a 0)

Im
(Π

a 0)

P = 0.83 GeV

−t = 0.163 GeV2



Matrix Elements:Πa
1
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❖ Matrix elements of  appear to be more noisy and smaller in magnitude (light-cone: twist-3)


❖ Asymmetries appear to be larger than 


❖ Role of real and imaginary part in symmetries reversed:

γ1

Πa
0

Πa
1 =

−i

4Ef Ei
( Δ1

2m
A1 +

Δ1

m
A3)i

z /a

Re
(Π

a 1)

z /a

Im
(Π

a 1)

P = 0.83 GeV

−t = 0.163 GeV2



Matrix Elements:Πa
2
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❖ Similar behavior as  caseΠa
1

Re
(Π

a 2)

Im
(Π

a 2)

z /a z /a

P = 0.83 GeV

−t = 0.163 GeV2



Matrix Elements:Πa
3
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❖ Good quality of signal (twist-2 in light cone)


❖ Smaller magnitude than  due to kinematic factors:Πa
0

Πa
0 =

1

4Ef Ei
(

Ef + Ei

2m
A1 +

Ef − Ei

m
A3)Πa

3 =
−i

4Ef Ei
( P3

m
A1 − mzA2)

z /a z /a

Re
(Π

a 3)

Im
(Π

a 3)

P = 0.83 GeV

−t = 0.163 GeV2

❖  operator suffers from finite mixing with scalar operator in lattice regularization 


❖ Twisted-mass fermions: mixing between  and pseudo-scalar (no forward limit)

γ3

γ3

[Constantinou & Panagopoulos, PRD 96 (2017) 5, 054506 ]



Amplitude Decomposition
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Non-symmetric Frame

❖ and  decomposed from  and  

❖  appears in  and requires 

A1 A3 Πa
0 Πa

1,2

A2 Πa
3 A1



Amplitudes
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❖  best noise-to-signal ratio followed by 


❖  noisy but not negligible


❖ Amplitudes have definite symmetry properties

A1 A3

A2

z /a z /a z /a

z /az /a

Re
(A

1)

Re
(A

2)

Re
(A

3)

z /a

Im
(A

1)

Im
(A

2)

Im
(A

3)

P = 0.83 GeV

−t = 0.163 GeV2
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Symmetry properties of the Lorentz invariant amplitudes are as follows:

❖  


❖  


❖  
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z /a

Im
(A

1)

z /a z /a

Im
(A

1)

[Bhattacharya et al., arXiv:2209.05373 ]



Averaged Ai
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z /a z /a z /a

z /az /az /a

Re
(A

1)

Re
(A

2)

Re
(A

3)

Im
(A

1)

Im
(A

2)

Im
(A

3)

P = 0.83 GeV

−t = 0.163 GeV2

❖ Clear signal for all amplitudes (  the least accurate statistically)


❖  has opposite sign than  and  (sign not imposed by decomposition)


A2

A3 A1 A2



Momentum-boost dependence in Ai
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❖ Fixed 


❖Mild dependence on the momentum boost (  and   most notable)


❖ Change in  affects the value of :  

⃗Δ

Im[A1] Im[A3]

P −t −t = ⃗Δ2 − (Ef − Ei)2

Im
(A

2)

Im
(A

3)

z /a z /a z /a

Re
(A

1)

Re
(A

2)

Re
(A

3)

Im
(A

1)



Momentum-transfer dependence in Ai
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z /a z /a z /a

Re
(A

1)

Re
(A

2)

Re
(A

3)

Im
(A

1)

Im
(A

2)

Im
(A

3)

❖ The magnitude of the amplitudes suppresses with increase of 


❖  suffers from increased noise


❖  is inaccessible at 

−t

A2

A3 −t = 0 GeV2

Πa
0 =

1

4Ef Ei
(

Ef + Ei

2m
A1 +

Ef − Ei

m
A3)

Πa
1 =

−i

4Ef Ei
( Δ1

2m
A1 +

Δ1

m
A3)



Momentum-transfer dependence in Ai
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z /a z /a z /a

Re
(A

1)

Re
(A

2)

Re
(A

3)

Im
(A

1)

Im
(A

2)

Im
(A

3)

❖ Increased statistical uncertainties compared to 


❖ Change of affects the magnitude of the matrix elements

|P | = 0.83GeV

|P |
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