Extraction of pion GPD from lattice QCD using an asymmetric frame
 Joshua Miller
 Temple University

In collaboration with:
K. Cichy, M. Constantinou

LaMET 2022
Chicago, USA
12/2/2022

Generalized Parton Distributions (GPDs)

One of the main goals in hadron physics:

Understand 3D nucleon structure
Especially with the EIC launching in the near future

Generalized Parton Distributions (GPDs)

One of the main goals in hadron physics:

Understand 3D nucleon structure
Especially with the EIC launching in the near future

\longrightarrow Pion and kaon structure is important for answering open questions on hadron structure:
e.g., SU(3) symmetry breaking due to heavy strange quark

Generalized Parton Distributions (GPDs)

One of the main goals in hadron physics:

Understand 3D nucleon structure
Especially with the EIC launching in the near future

\longrightarrow Pion and kaon structure is important for answering open questions on hadron structure:
e.g., $\operatorname{SU}(3)$ symmetry breaking due to heavy strange quark

Parton distribution functions (PDFs) give information on longitudinal motion of partons.
A wealth of information is included in generalized parton distributions (GPDs)

Generalized Parton Distributions (GPDs)

One of the main goals in hadron physics:

Understand 3D nucleon structure
Especially with the EIC launching in the near future

\longrightarrow Pion and kaon structure is important for answering open questions on hadron structure:
e.g., $\operatorname{SU}(3)$ symmetry breaking due to heavy strange quark

Parton distribution functions (PDFs) give information on longitudinal motion of partons.
A wealth of information is included in generalized parton distributions (GPDs)

* Reflect spatial distribution of partons in the transverse plane
* Contain information on mechanical properties of hadrons
* Wealth of information on the hadrons spin

Generalized Parton Distributions (GPDs)

One of the main goals in hadron physics:

Understand 3D nucleon structure
Especially with the EIC launching in the near future

\longrightarrow Pion and kaon structure is important for answering open questions on hadron structure: e.g., $\operatorname{SU}(3)$ symmetry breaking due to heavy strange quark

Parton distribution functions (PDFs) give information on longitudinal motion of partons.
A wealth of information is included in generalized parton distributions (GPDs)

* Reflect spatial distribution of partons in the transverse plane
* Contain information on mechanical properties of hadrons
* Wealth of information on the hadrons spin
* Experimentally, we rely on exclusive processes like deeply virtual

Compton Scattering (DVCS) - ep $\rightarrow e X$
[X.-D. Ji, PRD 55, 7114 (1997)]

GPDs from Lattice OCD

* Direct access to partonic distributions impossible in LQCD:
* PDFs/GPDs/TMDs are defined on the light cone, that is: $t^{2}-\vec{r}^{2}=0$
\&QCD is a Euclidean formulation (Wick rotation, $t \rightarrow i \tau$) and light cone: $\tau^{2}+\vec{r}^{2}=0$

GPDs from Lattice OCD

* Direct access to partonic distributions impossible in LQCD:
* PDFs/GPDs/TMDs are defined on the light cone, that is: $t^{2}-\vec{r}^{2}=0$
\&QCD is a Euclidean formulation (Wick rotation, $t \rightarrow i \tau$) and light cone: $\tau^{2}+\vec{r}^{2}=0$
* GPD access in Lattice QCD:
- Mellin moments (generalized form factors)
- Novel methods (LaMET, pseudo-ITD, and many more)

$$
\left\langle x^{n-1}\right\rangle=\int_{-1}^{+1} x^{n-1} f(x) d x
$$

[Cichy \& Constantinou, Adv.High Energy Phys. 2019 (2019) 3036904]

GPDs from Lattice OCD

* Direct access to partonic distributions impossible in LQCD:
* PDFs/GPDs/TMDs are defined on the light cone, that is: $t^{2}-\vec{r}^{2}=0$
* LQCD is a Euclidean formulation (Wick rotation, $t \rightarrow i \tau$) and light cone: $\tau^{2}+\vec{r}^{2}=0$
* GPD access in Lattice QCD:
- Mellin moments (generalized form factors)
- Novel methods (LaMET, pseudo-ITD, and many more)

$$
\left\langle x^{n-1}\right\rangle=\int_{-1}^{+1} x^{n-1} f(x) d x
$$

[Cichy \& Constantinou, Adv.High Energy Phys. 2019 (2019) 3036904]

* Calculation of quasi-GPD in Lattice QCD is very challenging
- Matrix elements of non-local operators (quarks/gluons spatially separated)
- Hadron states with momentum boost
- renormalization more complex and may bring systematic uncertainties
- introduction of momentum transfer increases noise
\rightarrow A lot of computing time

Setup

Lattice Setup:
$* N_{f}=2+1+1$ twisted mass fermions \& clover term (ETMC)

* Iwasaki gluons $\beta=1.778$
* Lattice spacing $a \approx 0.0934 \mathrm{fm}$
* $32^{3} \times 64 \mathrm{fm}$
$m_{\pi} \approx 260 \mathrm{MeV}$

Setup

Lattice Setup:

* I Iwasaki gluons $\beta=1.778$
* Lattice spacing $a \approx 0.0934 \mathrm{fm}$
$* 32^{3} \times 64 \mathrm{fm}$
$\not * m_{\pi} \approx 260 \mathrm{MeV}$

Preliminary data

frame	$P_{3}[\mathrm{GeV}]$	$\boldsymbol{\Delta}\left[\frac{2 \pi}{L}\right]$	$-t\left[\mathrm{GeV}^{2}\right]$	ξ	N_{ME}	$N_{\text {confs }}$	$N_{\text {src }}$	$N_{\text {tot }}$
asymm	± 0.83	$(0,0,0)$	0	0	4	597	8	19104
asymm	± 0.83	$(\pm 1,0,0),(0, \pm 1,0)$	0.163	0	8	597	8	38208
asymm	± 0.83	$(\pm 1, \pm 1,0)$	0.311	0	16	597	8	76416
asymm	± 1.25,	$(0,0,0)$	0	0	4	648	24	62208
asymm	± 1.25	$(\pm 1,0,0),(0, \pm 1,0)$	0.167	0	8	648	24	124416
asymm	± 1.25	$(\pm 1, \pm 1,0)$	0.327	0	16	648	24	248832
asymm	± 1.25	$(\pm 2,0,0),(0, \pm 2,0)$	0.625	0	8	598	24	114816

* GPDs for all nine combinations of $\vec{\Delta}^{2}=0,1,2$ at the cost of the PDF
* Pion GPDs at same statistics as proton GPDs: four times less expensive (spin-0)

Frame Dependence and Calculations

Almost all of the work in the literature uses the symmetric (Breit) frame.
Here set all of the momentum transfer $\left(\vec{\Delta}=\left(\Delta_{1}, \Delta_{2}, \Delta_{3}\right)\right)$ to the source: $\quad \overrightarrow{P_{i}}=P_{3} \hat{z}-\vec{\Delta}, \quad \overrightarrow{P_{f}}=P_{3} \hat{z}$,

Frame Dependence and Calculations

Almost all of the work in the literature uses the symmetric (Breit) frame.
Here set all of the momentum transfer $\left(\vec{\Delta}=\left(\Delta_{1}, \Delta_{2}, \Delta_{3}\right)\right)$ to the source: $\vec{P}_{i}=P_{3} \hat{z}-\vec{\Delta}, \quad \overrightarrow{P_{f}}=P_{3} \hat{z}$,

Necessary Steps

1. Calculation of appropriate ratio of the 3-point and 2-point correlation functions:

$$
R=\frac{C^{3 p t}\left(t_{s}, t, p_{i}, p_{f}\right)}{C^{2 p t}\left(t_{s}, p_{f}\right)} \sqrt{\frac{C^{2 p t}\left(t_{s}-t, p_{i}\right) C^{2 p t}\left(t, p_{f}\right) C^{2 p t}\left(t_{s}, p_{f}\right)}{C^{2 p t}\left(t_{s}-t, p_{f}\right) C^{2 p t}\left(t, p_{i}\right) C^{2 p t}\left(t_{s}, p_{i}\right)}}
$$

$\left\langle N\left(P_{f}\right)\right| \Psi(z) \Gamma \mathscr{W}(z, 0) \Psi(0)\left|N\left(P_{i}\right)\right\rangle$

Frame Dependence and Calculations

Almost all of the work in the literature uses the symmetric (Breit) frame.
Here set all of the momentum transfer $\left(\vec{\Delta}=\left(\Delta_{1}, \Delta_{2}, \Delta_{3}\right)\right)$ to the source: $\quad \vec{P}_{i}=P_{3} \hat{z}-\vec{\Delta}, \quad \overrightarrow{P_{f}}=P_{3} \hat{z}$,

Necessary Steps

1. Calculation of appropriate ratio of the 3-point and 2-point correlation functions:

$$
R=\frac{C^{3 p t}\left(t_{s}, t, p_{i}, p_{f}\right)}{C^{2 p t}\left(t_{s}, p_{f}\right)} \sqrt{\frac{C^{2 p t}\left(t_{s}-t, p_{i}\right) C^{2 p t}\left(t, p_{f}\right) C^{2 p t}\left(t_{s}, p_{f}\right)}{C^{2 p t}\left(t_{s}-t, p_{f}\right) C^{2 p t}\left(t, p_{i}\right) C^{2 p t}\left(t_{s}, p_{i}\right)}}
$$

2. Apply a single-state fit (plateau) to get the ground state of the matrix elements, Π_{i}^{a}

$$
\longrightarrow F^{\mu}(z, P, \Delta)=\frac{P^{\mu}}{m} A_{1}\left(z \cdot P, z \cdot \Delta, \Delta^{2}, z^{2}\right)+z^{\mu} m A_{2}\left(z \cdot P, z \cdot \Delta, \Delta^{2}, z^{2}\right)+\frac{\Delta^{\mu}}{m} A_{3}\left(z \cdot P, z \cdot \Delta, \Delta^{2}, z^{2}\right),
$$

Reference Martha's Talk

$\xrightarrow{\longrightarrow}$
Dependent upon 3 linearly-independent Lorentz invariant amplitudes!

$$
A_{i}\left(z \cdot P, z \cdot \Delta, \Delta^{2}, z^{2}\right)
$$

Frame Dependence and Calculations

Strategy

3. Decompose the amplitudes for each kinematic setup $\left(\pm P_{3}, \pm \vec{\Delta}\right)$

Frame Dependence and Calculations

Strategy

3. Decompose the amplitudes for each kinematic setup $\left(\pm P_{3}, \pm \vec{\Delta}\right)$
4. Exploit symmetry properties of A_{i} to combine $\left(\pm P_{3}, \pm \vec{\Delta}\right)$

Frame Dependence and Calculations

Strategy

3. Decompose the amplitudes for each kinematic setup $\left(\pm P_{3}, \pm \vec{\Delta}\right)$
4. Exploit symmetry properties of A_{i} to combine $\left(\pm P_{3}, \pm \vec{\Delta}\right)$
5. Relate A_{i} with H-GPD (definition not unique)

$$
\begin{array}{rrr}
H(z, P, \Delta)=A_{1}\left(z \cdot P, z \cdot \Delta, \Delta^{2}, 0\right)+\frac{\Delta^{+}}{P^{+}} A_{3}\left(z \cdot P, z \cdot \Delta, \Delta^{2}, 0\right), & \text { Standard } \gamma^{0} \text { definition } \\
\mathcal{H}\left(z \cdot P, z \cdot \Delta, \Delta^{2}, z^{2}\right) \equiv A_{1}\left(z \cdot P, z \cdot \Delta, \Delta^{2}, z^{2}\right)+\frac{z \cdot \Delta}{z \cdot P} A_{3}\left(z \cdot P, z \cdot \Delta, \Delta^{2}, z^{2}\right) . & \text { Lorentz invariant definition } \\
\text { [Bhattacharya et al., arxiv:2209.05373] } &
\end{array}
$$

Frame Dependence and Calculations

Strategy

3. Decompose the amplitudes for each kinematic setup $\left(\pm P_{3}, \pm \vec{\Delta}\right)$
4. Exploit symmetry properties of A_{i} to combine $\left(\pm P_{3}, \pm \vec{\Delta}\right)$
5. Relate A_{i} with H-GPD (definition not unique)

$$
\begin{aligned}
& \qquad H(z, P, \Delta)=A_{1}\left(z \cdot P, z \cdot \Delta, \Delta^{2}, 0\right)+\frac{\Delta^{+}}{P^{+}} A_{3}\left(z \cdot P, z \cdot \Delta, \Delta^{2}, 0\right), \\
& \begin{aligned}
& \mathcal{H}\left(z \cdot P, z \cdot \Delta, \Delta^{2}, z^{2}\right) \equiv A_{1}\left(z \cdot P, z \cdot \Delta, \Delta^{2}, z^{2}\right)+\frac{z \cdot \Delta}{z \cdot P} A_{3}\left(z \cdot P, z \cdot \Delta, \Delta^{2}, z^{2}\right) \text { Standard } \gamma^{0} \text { definition } \\
& \text { [Bhattacharya et al., arXiv:2209.05373] }
\end{aligned} \\
& \text { 6. Renormalize GPDs (RI-MOM, hybrid, ratio, ...) }
\end{aligned}
$$

Frame Dependence and Calculations

Strategy

3. Decompose the amplitudes for each kinematic setup $\left(\pm P_{3}, \pm \vec{\Delta}\right)$
4. Exploit symmetry properties of A_{i} to combine $\left(\pm P_{3}, \pm \vec{\Delta}\right)$
5. Relate A_{i} with H-GPD (definition not unique)

$$
\begin{array}{cc}
H(z, P, \Delta)=A_{1}\left(z \cdot P, z \cdot \Delta, \Delta^{2}, 0\right)+\frac{\Delta^{+}}{P^{+}} A_{3}\left(z \cdot P, z \cdot \Delta, \Delta^{2}, 0\right), & \text { Standard } \gamma^{0} \text { definition } \\
\mathcal{H}\left(z \cdot P, z \cdot \Delta, \Delta^{2}, z^{2}\right) \equiv A_{1}\left(z \cdot P, z \cdot \Delta, \Delta^{2}, z^{2}\right)+\frac{z \cdot \Delta}{z \cdot P} A_{3}\left(z \cdot P, z \cdot \Delta, \Delta^{2}, z^{2}\right) . & \text { Lorentz invariant definition }
\end{array}
$$

$$
\text { Standard } \gamma^{0} \text { definition }
$$

6. Renormalize GPDs (RI-MOM, hybrid, ratio, ...)
7. Fourier-like transform to x-space

Frame Dependence and Calculations

Strategy

3. Decompose the amplitudes for each kinematic setup $\left(\pm P_{3}, \pm \vec{\Delta}\right)$
4. Exploit symmetry properties of A_{i} to combine $\left(\pm P_{3}, \pm \vec{\Delta}\right)$
5. Relate A_{i} with H-GPD (definition not unique)

$$
\begin{gathered}
H(z, P, \Delta)=A_{1}\left(z \cdot P, z \cdot \Delta, \Delta^{2}, 0\right)+\frac{\Delta^{+}}{P^{+}} A_{3}\left(z \cdot P, z \cdot \Delta, \Delta^{2}, 0\right) \\
\mathcal{H}\left(z \cdot P, z \cdot \Delta, \Delta^{2}, z^{2}\right) \equiv A_{1}\left(z \cdot P, z \cdot \Delta, \Delta^{2}, z^{2}\right)+\frac{z \cdot \Delta}{z \cdot P} A_{3}\left(z \cdot P, z \cdot \Delta, \Delta^{2}, z^{2}\right)
\end{gathered}
$$

$$
\text { Standard } \gamma^{0} \text { definition }
$$

6. Renormalize GPDs (RI-MOM, hybrid, ratio, ...)
7. Fourier-like transform to x-space
8. Apply matching formalism

Decomposition
 $\left[\sigma_{v, \text { eack }}\right]=\frac{1}{\sqrt{4 E_{f} E_{i}}}\left[-i \frac{p^{\mu}}{m} A_{1}+i m z A_{2}-i \frac{\Delta^{\mu}}{m} A_{3}\right]$

The decomposition of lattice matrix elements is different in the symmetric and non-symmetric frame

Decomposition
 $\left[\sigma_{v, \text { ence }}^{\mu}\right]=\frac{1}{\sqrt{4 E_{f} E_{i}}}\left[-\frac{p^{4}}{m} A_{1}+i m z A_{2}-i \frac{\Delta^{\mu}}{m} A_{3}\right]$

The decomposition of lattice matrix elements is different in the symmetric and non-symmetric frame

Symmetric Frame

$$
\begin{gathered}
\Pi_{0}^{s}=\frac{1}{\sqrt{4 E_{f} E_{i}}}\left(\frac{E}{m} A_{1}\right) \\
\Pi_{1}^{s}=\frac{-1}{\sqrt{4 E_{f} E_{i}}}\left(i \frac{\Delta_{1}}{m} A_{3}\right) \\
\Pi_{2}^{s}=\frac{-1}{\sqrt{4 E_{f} E_{i}}}\left(i \frac{\Delta_{2}}{m} A_{3}\right) \\
\Pi_{3}^{s}=\frac{1}{\sqrt{4 E_{f} E_{i}}}\left(-i \frac{P_{3}}{m} A_{1}+i m z A_{2}\right)
\end{gathered}
$$

Decomposition

$$
\left[\sigma_{v, \text { eucl } l}^{\mu}\right]=\frac{1}{\sqrt{4 E_{f} E_{i}}}\left[-i \frac{p^{\mu}}{m} A_{1}+i m z A_{2}-i \frac{\Delta^{\mu}}{m} A_{3}\right]
$$

The decomposition of lattice matrix elements is different in the symmetric and non-symmetric frame

$$
\begin{gathered}
\text { Symmetric Frame } \\
\Pi_{0}^{s}=\frac{1}{\sqrt{4 E_{f} E_{i}}}\left(\frac{E}{m} A_{1}\right) \\
\Pi_{1}^{s}=\frac{-1}{\sqrt{4 E_{f} E_{i}}}\left(i \frac{\Delta_{1}}{m} A_{3}\right) \\
\Pi_{2}^{s}=\frac{-1}{\sqrt{4 E_{f} E_{i}}}\left(i \frac{\Delta_{2}}{m} A_{3}\right) \\
\Pi_{3}^{s}=\frac{1}{\sqrt{4 E_{f} E_{i}}}\left(-i \frac{P_{3}}{m} A_{1}+i m z A_{2}\right)
\end{gathered}
$$

Non-symmetric Frame

$$
\begin{gathered}
\Pi_{0}^{a}=\frac{1}{\sqrt{4 E_{f} E_{i}}}\left(\frac{E_{f}+E_{i}}{2 m} A_{1}+\frac{E_{f}-E_{i}}{m} A_{3}\right) \\
\Pi_{1}^{a}=\frac{-i}{\sqrt{4 E_{f} E_{i}}}\left(\frac{\Delta_{1}}{2 m} A_{1}+\frac{\Delta_{1}}{m} A_{3}\right) \\
\Pi_{2}^{a}=\frac{-i}{\sqrt{4 E_{f} E_{i}}}\left(\frac{\Delta_{2}}{2 m} A_{1}+\frac{\Delta_{2}}{m} A_{3}\right) \\
\Pi_{3}^{a}=\frac{-i}{\sqrt{4 E_{f} E_{i}}}\left(\frac{P_{3}}{m} A_{1}-m z A_{2}\right)
\end{gathered}
$$

Decomposition

$$
\left[\sigma_{v, \text { eucl } l}^{\mu}\right]=\frac{1}{\sqrt{4 E_{f} E_{i}}}\left[-i \frac{p^{\mu}}{m} A_{1}+i m z A_{2}-i \frac{\Delta^{\mu}}{m} A_{3}\right]
$$

The decomposition of lattice matrix elements is different in the symmetric and non-symmetric frame

Symmetric Frame

$$
\begin{gathered}
\Pi_{0}^{s}=\frac{1}{\sqrt{4 E_{f} E_{i}}}\left(\frac{E}{m} A_{1}\right) \\
\Pi_{1}^{s}=\frac{-1}{\sqrt{4 E_{f} E_{i}}}\left(i \frac{\Delta_{1}}{m} A_{3}\right) \\
\Pi_{2}^{s}=\frac{-1}{\sqrt{4 E_{f} E_{i}}}\left(i \frac{\Delta_{2}}{m} A_{3}\right) \\
\Pi_{3}^{s}=\frac{1}{\sqrt{4 E_{f} E_{i}}}\left(-i \frac{P_{3}}{m} A_{1}+i m z A_{2}\right)
\end{gathered}
$$

Non-symmetric Frame

$$
\begin{gathered}
\Pi_{0}^{a}=\frac{1}{\sqrt{4 E_{f} E_{i}}}\left(\frac{E_{f}+E_{i}}{2 m} A_{1}+\frac{E_{f}-E_{i}}{m} A_{3}\right) \\
\Pi_{1}^{a}=\frac{-i}{\sqrt{4 E_{f} E_{i}}}\left(\frac{\Delta_{1}}{2 m} A_{1}+\frac{\Delta_{1}}{m} A_{3}\right) \\
\Pi_{2}^{a}=\frac{-i}{\sqrt{4 E_{f} E_{i}}}\left(\frac{\Delta_{2}}{2 m} A_{1}+\frac{\Delta_{2}}{m} A_{3}\right) \\
\Pi_{3}^{a}=\frac{-i}{\sqrt{4 E_{f} E_{i}}}\left(\frac{P_{3}}{m} A_{1}-m z A_{2}\right)
\end{gathered}
$$

Clearly, Π_{μ} is dependent on the frame, but A_{i} are frame invariant

Matrix Elements: Π_{0}^{a}

$$
\begin{aligned}
P & =0.83 \mathrm{GeV} \\
-t & =0.163 \mathrm{GeV}^{2}
\end{aligned}
$$

* Clear signal for the matrix elements from all combinations of momenta P, Δ
* Signs of P, Δ affect the sign of the imaginary part, but the matrix elements do not have definite symmetry properties
* Observed asymmetries appear to be small

Matrix Elements：\prod_{1}^{a}

$$
\begin{aligned}
P & =0.83 \mathrm{GeV} \\
-t & =0.163 \mathrm{GeV}^{2}
\end{aligned}
$$

重	$\mathrm{P}=+2, \Delta=(100)$
亜	$P=+2, \Delta=(-100)$ $P=+2, \Delta=(010)$
T	$\mathrm{P}=+2, \Delta=(010)$
巫	$\mathrm{P}=+2, \Delta=(0-10)$
\＄	$\mathrm{P}=-2, \Delta=(100)$
Φ	$\mathrm{P}=-2, \Delta=(-100)$
I	$\mathrm{P}=-2, \Delta=(010)$
亚	$P=-2, \Delta=(0-10)$

＊Matrix elements of γ^{1} appear to be more noisy and smaller in magnitude（light－cone：twist－3）
＊Asymmetries appear to be larger than Π_{0}^{a}
＊Role of real and imaginary part in symmetries reversed：

$$
\Pi_{1}^{a}=\frac{-i}{\sqrt{4 E_{f} E_{i}}}\left(\frac{\Delta_{1}}{2 m} A_{1}+\frac{\Delta_{1}}{m} A_{3}\right)
$$

Matrix Elements: Π_{2}^{a}

$$
\begin{gathered}
P=0.83 \mathrm{GeV} \\
-t=0.163 \mathrm{GeV}^{2}
\end{gathered}
$$

* Similar behavior as Π_{1}^{a} case

Matrix Elements：Π_{3}^{a}

$$
\begin{aligned}
P & =0.83 \mathrm{GeV} \\
-t & =0.163 \mathrm{GeV}^{2}
\end{aligned}
$$

＊γ^{3} operator suffers from finite mixing with scalar operator in lattice regularization
［Constantinou \＆Panagopoulos，PRD 96 （2017）5，054506］
＊Twisted－mass fermions：mixing between γ^{3} and pseudo－scalar（no forward limit）

面	$P=+2, \Delta=(100)$
亜	$P=+2, \Delta=(-100)$
포	$\mathrm{P}=+2, \Delta=(010)$
巫	$\mathrm{P}=+2, \Delta=(0-10)$
¢	$\mathrm{P}=-2, \Delta=(100)$
Φ	$\mathrm{P}=-2, \Delta=(-100)$
I	$\mathrm{P}=-2, \Delta=(010)$
亚	$P=-2, \Delta=(0-10)$

＊Good quality of signal（twist－2 in light cone）
＊Smaller magnitude than Π_{0}^{a} due to kinematic factors：

$$
\Pi_{3}^{a}=\frac{-i}{\sqrt{4 E_{f} E_{i}}}\left(\frac{P_{3}}{m} A_{1}-m z A_{2}\right) \quad \Pi_{0}^{a}=\frac{1}{\sqrt{4 E_{f} E_{i}}}\left(\frac{E_{f}+E_{i}}{2 m} A_{1}+\frac{E_{f}-E_{i}}{m} A_{3}\right)
$$

Amplitude Decomposition

Non-symmetric Frame

$$
\begin{gathered}
\Pi_{0}^{a}=\frac{1}{\sqrt{4 E_{f} E_{i}}}\left(\frac{E_{f}+E_{i}}{2 m} A_{1}+\frac{E_{f}-E_{i}}{m} A_{3}\right) \\
\Pi_{1}^{a}=\frac{-i}{\sqrt{4 E_{f} E_{i}}}\left(\frac{\Delta_{1}}{2 m} A_{1}+\frac{\Delta_{1}}{m} A_{3}\right) \\
\Pi_{2}^{a}=\frac{-i}{\sqrt{4 E_{f} E_{i}}}\left(\frac{\Delta_{2}}{2 m} A_{1}+\frac{\Delta_{2}}{m} A_{3}\right) \\
\Pi_{3}^{a}=\frac{-i}{\sqrt{4 E_{f} E_{i}}}\left(\frac{P_{3}}{m} A_{1}-m z A_{2}\right)
\end{gathered}
$$

* A_{1} and A_{3} decomposed from Π_{0}^{a} and $\Pi_{1,2}^{a}$
* A_{2} appears in Π_{3}^{a} and requires A_{1}

Amplitudes

$$
\begin{aligned}
P & =0.83 \mathrm{GeV} \\
-t & =0.163 \mathrm{GeV}^{2}
\end{aligned}
$$

＊A_{1} best noise－to－signal ratio followed by A_{3}
＊A_{2} noisy but not negligible
＊Amplitudes have definite symmetry properties

Symmetry Properties of A_{i}

Symmetry properties of the Lorentz invariant amplitudes are as follows:
[Bhattacharya et al., arXiv:2209.05373]

$$
\begin{aligned}
& *+A_{1}^{*}\left(-z \cdot P, z \cdot \Delta, \Delta^{2}, z^{2}\right)=A_{1}\left(z \cdot P, z \cdot \Delta, \Delta^{2}, z^{2}\right) \\
& *-A_{2}^{*}\left(-z \cdot P, z \cdot \Delta, \Delta^{2}, z^{2}\right)=A_{2}\left(z \cdot P, z \cdot \Delta, \Delta^{2}, z^{2}\right) \\
& *+A_{3}^{*}\left(-z \cdot P, z \cdot \Delta, \Delta^{2}, z^{2}\right)=A_{3}\left(z \cdot P, z \cdot \Delta, \Delta^{2}, z^{2}\right)
\end{aligned}
$$

Symmetry Properties of A_{i}

Symmetry properties of the Lorentz invariant amplitudes are as follows:
[Bhattacharya et al., arXiv:2209.05373]

$$
\begin{aligned}
& *+A_{1}^{*}\left(-z \cdot P, z \cdot \Delta, \Delta^{2}, z^{2}\right)=A_{1}\left(z \cdot P, z \cdot \Delta, \Delta^{2}, z^{2}\right) \\
& *-A_{2}^{*}\left(-z \cdot P, z \cdot \Delta, \Delta^{2}, z^{2}\right)=A_{2}\left(z \cdot P, z \cdot \Delta, \Delta^{2}, z^{2}\right) \\
& *+A_{3}^{*}\left(-z \cdot P, z \cdot \Delta, \Delta^{2}, z^{2}\right)=A_{3}\left(z \cdot P, z \cdot \Delta, \Delta^{2}, z^{2}\right)
\end{aligned}
$$

We exploit these symmetries to average over, leading a reduction of statistical error of $\sim \frac{1}{\sqrt{8}}$

Symmetry Properties of A_{i}

Symmetry properties of the Lorentz invariant amplitudes are as follows:
[Bhattacharya et al., arXiv:2209.05373]

$$
\begin{aligned}
& *+A_{1}^{*}\left(-z \cdot P, z \cdot \Delta, \Delta^{2}, z^{2}\right)=A_{1}\left(z \cdot P, z \cdot \Delta, \Delta^{2}, z^{2}\right) \\
& *-A_{2}^{*}\left(-z \cdot P, z \cdot \Delta, \Delta^{2}, z^{2}\right)=A_{2}\left(z \cdot P, z \cdot \Delta, \Delta^{2}, z^{2}\right) \\
& *+A_{3}^{*}\left(-z \cdot P, z \cdot \Delta, \Delta^{2}, z^{2}\right)=A_{3}\left(z \cdot P, z \cdot \Delta, \Delta^{2}, z^{2}\right)
\end{aligned}
$$

We exploit these symmetries to average over, leading a reduction of statistical error of $\sim \frac{1}{\sqrt{8}}$

Averaged A_{i}

* Clear signal for all amplitudes (A_{2} the least accurate statistically)
A_{3} has opposite sign than A_{1} and A_{2} (sign not imposed by decomposition)

Momentum-boost dependence in A_{i}

* Fixed $\vec{\Delta}$
* Mild dependence on the momentum boost ($\operatorname{Im}\left[A_{1}\right]$ and $\operatorname{Im}\left[A_{3}\right]$ most notable)
* Change in P affects the value of $-t$:

$$
-t=\vec{\Delta}^{2}-\left(E_{f}-E_{i}\right)^{2}
$$

Momentum-transfer dependence in A_{i}

* The magnitude of the amplitudes suppresses with increase of $-t$
* A_{2} suffers from increased noise
$\star A_{3}$ is inaccessible at $-t=0 \mathrm{GeV}^{2}$

$$
\Pi_{0}^{a}=\frac{1}{\sqrt{4 E_{f} E_{i}}}\left(\frac{E_{f}+E_{i}}{2 m} A_{1}+\frac{E_{f}-E_{i}}{m} A_{3}\right)
$$

$$
\Pi_{1}^{a}=\frac{-i}{\sqrt{4 E_{f} E_{i}}}\left(\frac{\Delta_{1}}{2 m} A_{1}+\frac{\Delta_{1}}{m} A_{3}\right)
$$

Momentum-transfer dependence in A_{i}

* Increased statistical uncertainties compared to $|P|=0.83 \mathrm{GeV}$
* Change of $|P|$ affects the magnitude of the matrix elements

Summary and Future Work

* Quasi-GPDs are intrinsically frame dependent
* Computational challenges can be reduced using a Lorentz-invariant decomposition of matrix elements
* Implementation for pion is feasible

Summary and Future Work

* Quasi-GPDs are intrinsically frame dependent
* Computational challenges can be reduced using a Lorentz-invariant decomposition of matrix elements
* Implementation for pion is feasible

Future work

* Extract light-cone GPDs from current data
* Include other values of P and $-t$
* Include non-zero skewness $\left(\Delta_{3} \neq 0\right)$

Summary and Future Work

* Quasi-GPDs are intrinsically frame dependent
* Computational challenges can be reduced using a Lorentz-invariant decomposition of matrix elements
* Implementation for pion is feasible

Thank You!!!

Future work

* Extract light-cone GPDs from current data

Acknowledgements

* Include other values of P and $-t$
$*$ Include non-zero skewness $\left(\Delta_{3} \neq 0\right)$
* and more ...

