Extraction of pion GPD from lattice QCD using an asymmetric frame

Temple University

In collaboration with: K. Cichy, M. Constantinou

> LaMET 2022 Chicago, USA 12/2/2022

Joshua Miller

One of the main goals in hadron physics:

Understand 3D nucleon structure

Especially with the EIC launching in the near future

One of the main goals in hadron physics:

Understand 3D nucleon structure Especially with the EIC launching in the near future

Pion and kaon structure is important for answering open questions on hadron structure: e.g., SU(3) symmetry breaking due to heavy strange quark

One of the main goals in hadron physics:

- Understand 3D nucleon structure Especially with the EIC launching in the near future
- Pion and kaon structure is important for answering open questions on hadron structure: e.g., SU(3) symmetry breaking due to heavy strange quark

Parton distribution functions (PDFs) give information on longitudinal motion of partons.

A wealth of information is included in **generalized parton distributions (GPDs)**

One of the main goals in hadron physics:

- Understand 3D nucleon structure Especially with the EIC launching in the near future
- Pion and kaon structure is important for answering open questions on hadron structure: e.g., SU(3) symmetry breaking due to heavy strange quark

Parton distribution functions (PDFs) give information on longitudinal motion of partons.

- A wealth of information is included in **generalized parton distributions (GPDs)**
 - Reflect spatial distribution of partons in the transverse plane
 - Contain information on mechanical properties of hadrons
 - Wealth of information on the hadrons spin

One of the main goals in hadron physics:

Understand 3D nucleon structure Especially with the EIC launching in the near future

Pion and kaon structure is important for answering open questions on hadron structure: e.g., SU(3) symmetry breaking due to heavy strange quark

Parton distribution functions (PDFs) give information on longitudinal motion of partons.

- A wealth of information is included in **generalized parton distributions (GPDs)**
 - Reflect spatial distribution of partons in the transverse plane
 - Contain information on mechanical properties of hadrons
 - Wealth of information on the hadrons spin
 - Experimentally, we rely on exclusive processes like deeply virtual
 - Compton Scattering (DVCS) $ep \rightarrow eX$ [X.-D. Ji, PRD 55, 7114 (1997)]
 - * Exclusive pion-nucleon diffractive production of a γ pair of high p_{\perp} [J. Qui et al., arXiv:2205.07846]

X+ξ **GPDs**

GPDs from Lattice QCD

- Direct access to partonic distributions impossible in LQCD:
 - PDFs/GPDs/TMDs are defined on the light cone, that is: $t^2 \vec{r}^2 = 0$
 - * LQCD is a Euclidean formulation (Wick rotation, $t \rightarrow i\tau$) and light cone: $\tau^2 + \vec{r}^2 = 0$

GPDs from Lattice QCD

- Direct access to partonic distributions impossible in LQCD:
 - PDFs/GPDs/TMDs are defined on the light cone, that
 - * LQCD is a Euclidean formulation (Wick rotation, $t \rightarrow i\tau$) and light cone: $\tau^2 + \vec{r}^2 = 0$
- ✤ GPD access in Lattice QCD:
- Mellin moments (generalized form factors)
- Novel methods (LaMET, pseudo-ITD, and many more)

[Cichy & Constantinou, Adv.High Energy Phys. 2019 (2019) 3036904]

is:
$$t^2 - \vec{r}^2 = 0$$

GPDs from Lattice QCD

- Direct access to partonic distributions impossible in LQCD:
 - PDFs/GPDs/TMDs are defined on the light cone, that
 - * LQCD is a Euclidean formulation (Wick rotation, $t \rightarrow i\tau$) and light cone: $\tau^2 + \vec{r}^2 = 0$
- GPD access in Lattice QCD:
 - Mellin moments (generalized form factors)
 - Novel methods (LaMET, pseudo-ITD, and many more)

[Cichy & Constantinou, Adv.High Energy Phys. 2019 (2019) 3036904]

- Calculation of quasi-GPD in Lattice QCD is very challenging
- Matrix elements of non-local operators (quarks/gluons spatially separated)
- Hadron states with momentum boost
- renormalization more complex and may bring systematic uncertainties
- introduction of momentum transfer increases noise
- \rightarrow A lot of computing time

is:
$$t^2 - \vec{r}^2 = 0$$

$$|\rangle = \int_{-1}^{+1} x^{n-1} f(x) \, dx$$

 $\langle x^{n-1} \rangle$

Setup

Lattice Setup:

 $N_f = 2 + 1 + 1$ twisted mass fermions & clover term (ETMC)

- ***** Iwasaki gluons $\beta = 1.778$
- ***** Lattice spacing $a \approx 0.0934$ fm
- $32^3 \times 64 \text{ fm}$
- $m_{\pi} \approx 260 \text{ MeV}$

Lattice Setup:

$N_f = 2 + 1 + 1$ twisted mass fermions & clover term (ETMC)									Co//abora
♦ Iwasaki gluons $β = 1.778$	Preliminary data								
* Lattice spacing $a \approx 0.0934$ fm	frame	$P_3 \; [{ m GeV}]$	$\mathbf{\Delta} \left[rac{2\pi}{L} ight]$	$-t \; [{\rm GeV^2}]$	ξ	$N_{\rm ME}$	$N_{ m confs}$	$N_{ m src}$	$N_{ m tot}$
* $32^3 \times 64$ fm	asymm	± 0.83	(0,0,0)	0	0	4	597	8	19104
	asymm	± 0.83	$(\pm 1,0,0), (0,\pm 1,0)$	0.163	0	8	597	8	38208
$m_{\pi} pprox 260 \ { m MeV}$	asymm	± 0.83	$(\pm 1, \pm 1, 0)$	0.311	0	16	597	8	76416
	asymm	$\pm 1.25,$	(0,0,0)	0	0	4	648	24	62208
	asymm	± 1.25	$(\pm 1,0,0), (0,\pm 1,0)$	0.167	0	8	648	24	124416
	asymm	± 1.25	$(\pm 1, \pm 1, 0)$	0.327	0	16	648	24	248832
	asymm	± 1.25	$(\pm 2,0,0), (0,\pm 2,0)$	0.625	0	8	598	24	114816

• GPDs for <u>all</u> nine combinations of $\overrightarrow{\Delta}^2 = 0, 1, 2$ at the cost of the PDF Pion GPDs at same statistics as proton GPDs: four times less expensive (spin-0)

Setup

Almost all of the work in the literature uses the symmetric (Breit) frame.

Here set all of the momentum transfer $(\overrightarrow{\Delta} = (\Delta_1, \Delta_2, \Delta_3))$ to the source: $\overrightarrow{P_i} = P_3 \hat{z} - \overrightarrow{\Delta}, \qquad \overrightarrow{P_f} = P_3 \hat{z},$

Almost all of the work in the literature uses the symmetric (Breit) frame.

Here set all of the momentum transfer ($\overrightarrow{\Delta} = (\Delta_1, \Delta_2, \Delta_3)$) to

Necessary Steps

1. Calculation of appropriate ratio of the 3-point and 2-point correlation functions:

$$R = \frac{C^{3pt}(t_s, t, p_i, p_f)}{C^{2pt}(t_s, p_f)} \sqrt{\frac{C^{2pt}(t_s - t, p_i)C^{2pt}(t, p_f)C^2}{C^{2pt}(t_s - t, p_f)C^{2pt}(t, p_i)C^2}}$$

the source:
$$\overrightarrow{P_i} = P_3 \hat{z} - \overrightarrow{\Delta}$$
, $\overrightarrow{P_f} = P_3 \hat{z}$,

 $2pt(t_s, p_i)$

 $\langle N(P_f) | \bar{\Psi}(z) \Gamma \mathcal{W}(z,0) \Psi(0) | N(P_i) \rangle$

Almost all of the work in the literature uses the symmetric (Breit) frame. Here set all of the momentum transfer ($\overline{\Delta} = (\Delta_1, \Delta_2, \Delta_3)$) to

Necessary Steps

1. Calculation of appropriate ratio of the 3-point and 2-point correlation functions:

$$R = \frac{C^{3pt}(t_s, t, p_i, p_f)}{C^{2pt}(t_s, p_f)} \sqrt{\frac{C^{2pt}(t_s - t, p_i)C^{2pt}(t, p_f)C^{2pt}(t_s, p_f)}{C^{2pt}(t_s - t, p_f)C^{2pt}(t, p_i)C^{2pt}(t_s, p_i)}}$$

2. Apply a single-state fit (plateau) to get the ground state of the matrix elements, Π_i^a

$$F^{\mu}(z,P,\Delta) = \frac{P^{\mu}}{m} A_1(z \cdot P, z \cdot \Delta, \Delta^2, z^2) + z^{\mu} m A_2(z \cdot P, z \cdot \Delta, \Delta^2, z^2) + \frac{\Delta^{\mu}}{m} A_3(z \cdot P, z \cdot \Delta, \Delta^2, z^2)$$

[Bhattacharya et al., arXiv:2209.05373]

Reference Martha's Talk

Dependent upon 3 linearly-independent Lorentz invariant amplitudes!

$$A_i(z \cdot P, z \cdot \Delta, \Delta^2, z^2)$$

the source:
$$\overrightarrow{P_i} = P_3 \hat{z} - \overrightarrow{\Delta}$$
, $\overrightarrow{P_f} = P_3 \hat{z}$

(Based on the idea of: S. Meissner, A. Metz, M. Schlegel, JHEP08(2009)056)

Strategy

3. Decompose the amplitudes for each kinematic setup $(\pm P_3, \pm \vec{\Delta})$

Strategy

- **3.** Decompose the amplitudes for each kinematic setup $(\pm P_3, \pm \vec{\Delta})$
- **4.** Exploit symmetry properties of A_i to combine $(\pm P_3, \pm \vec{\Delta})$

Strategy

- **3.** Decompose the amplitudes for each kinematic setup $(\pm P_3, \pm \vec{\Delta})$
- **4.** Exploit symmetry properties of A_i to combine $(\pm P_3, \pm \vec{\Delta})$
- **5.** Relate A_i with H-GPD (definition not unique)

$$H(z, P, \Delta) = A_1(z \cdot P, z \cdot \Delta, \Delta^2, 0) + \frac{\Delta^+}{P^+}$$

 $\mathcal{H}(z \cdot P, z \cdot \Delta, \Delta^2, z^2) \equiv A_1(z \cdot P, z \cdot \Delta, \Delta^2, z^2) +$

 $A_3(z \cdot P, z \cdot \Delta, \Delta^2, 0)$,

Standard γ^0 definition

$$-rac{z\cdot\Delta}{z\cdot P}A_3(z\cdot P,z\cdot\Delta,\Delta^2,z^2)\,.$$

[Bhattacharya et al., arXiv:2209.05373]

Strategy

- **3.** Decompose the amplitudes for each kinematic setup $(\pm P_3, \pm \vec{\Delta})$
- **4.** Exploit symmetry properties of A_i to combine $(\pm P_3, \pm \vec{\Delta})$
- **5.** Relate A_i with H-GPD (definition not unique)

$$H(z, P, \Delta) = A_1(z \cdot P, z \cdot \Delta, \Delta^2, 0) + \frac{\Delta^+}{P^+}$$

$$\mathcal{H}(z \cdot P, z \cdot \Delta, \Delta^2, z^2) \equiv A_1(z \cdot P, z \cdot \Delta, \Delta^2, z^2) + rac{z \cdot \Delta}{z \cdot P} A_3(z \cdot P, z \cdot \Delta, \Delta^2, z^2) \,.$$

6. Renormalize GPDs (RI-MOM, hybrid, ratio, ...)

 $A_3(z \cdot P, z \cdot \Delta, \Delta^2, 0),$

Standard γ^0 definition

[Bhattacharya et al., arXiv:2209.05373]

Strategy

- **3.** Decompose the amplitudes for each kinematic setup $(\pm P_3, \pm \vec{\Delta})$
- **4.** Exploit symmetry properties of A_i to combine $(\pm P_3, \pm \vec{\Delta})$
- **5.** Relate A_i with H-GPD (definition not unique)

$$H(z, P, \Delta) = A_1(z \cdot P, z \cdot \Delta, \Delta^2, 0) + \frac{\Delta^+}{P^+}$$

$$\mathcal{H}(z \cdot P, z \cdot \Delta, \Delta^2, z^2) \equiv A_1(z \cdot P, z \cdot \Delta, \Delta^2, z^2) + rac{z \cdot \Delta}{z \cdot P} A_3(z \cdot P, z \cdot \Delta, \Delta^2, z^2) \,.$$

- 6. Renormalize GPDs (RI-MOM, hybrid, ratio, ...)
- 7. Fourier-like transform to x-space

 $A_3(z \cdot P, z \cdot \Delta, \Delta^2, 0),$

Standard γ^0 definition

[Bhattacharya et al., arXiv:2209.05373]

Strategy

- **3.** Decompose the amplitudes for each kinematic setup $(\pm P_3, \pm \vec{\Delta})$
- **4.** Exploit symmetry properties of A_i to combine $(\pm P_3, \pm \vec{\Delta})$
- **5.** Relate A_i with H-GPD (definition not unique)

$$H(z,P,\Delta) = A_1(z \cdot P, z \cdot \Delta, \Delta^2, 0) + rac{\Delta^+}{P^+} A_2$$

$$\mathcal{H}(z \cdot P, z \cdot \Delta, \Delta^2, z^2) \equiv A_1(z \cdot P, z \cdot \Delta, \Delta^2, z^2) + rac{z \cdot \Delta}{z \cdot P} A_3(z \cdot P, z \cdot \Delta, \Delta^2, z^2) \,.$$

- 6. Renormalize GPDs (RI-MOM, hybrid, ratio, ...)
- **7.** Fourier-like transform to x-space
- 8. Apply matching formalism

 $A_3(z \cdot P, z \cdot \Delta, \Delta^2, 0),$

Standard γ^0 definition

[Bhattacharya et al., arXiv:2209.05373]

Decom

The decomposition of lattice matrix elements is different in the symmetric and non-symmetric frame

Description
$$\begin{bmatrix} -i\frac{p^{\mu}}{m}A_{1} + imzA_{2} - i\frac{\Delta^{\mu}}{m}A_{3} \end{bmatrix}$$

Decom

 $\left[\mathcal{O}^{\mu}_{v,eucl}\right] = \frac{1}{\sqrt{4E_f E_i}} \left[$

The decomposition of lattice matrix elements is different in the symmetric and non-symmetric frame

Symmetric Frame

$$\Pi_0^s = \frac{1}{\sqrt{4E_f E_i}} \left(\frac{E}{m} A_1\right)$$

$$\Pi_1^s = \frac{-1}{\sqrt{4E_f E_i}} \left(i \frac{\Delta_1}{m} A_3 \right)$$

$$\Pi_2^s = \frac{-1}{\sqrt{4E_f E_i}} \left(i\frac{\Delta_2}{m}A_3\right)$$

$$\Pi_3^s = \frac{1}{\sqrt{4E_f E_i}} \left(-i\frac{P_3}{m}A_1 + imzA_2 \right)$$

Description
$$\begin{bmatrix} -i\frac{p^{\mu}}{m}A_{1} + imzA_{2} - i\frac{\Delta^{\mu}}{m}A_{3} \end{bmatrix}$$

Decom

 $\left[\mathcal{O}^{\mu}_{v,eucl}\right] = \frac{1}{\sqrt{4E_f E_i}} \left[$

The decomposition of lattice matrix elements is different in the symmetric and non-symmetric frame

Symmetric Frame

$$\Pi_0^s = \frac{1}{\sqrt{4E_f E_i}} \left(\frac{E}{m} A_1\right)$$

$$\Pi_1^s = \frac{-1}{\sqrt{4E_f E_i}} \left(i \frac{\Delta_1}{m} A_3 \right)$$

$$\Pi_2^s = \frac{-1}{\sqrt{4E_f E_i}} \left(i\frac{\Delta_2}{m}A_3\right)$$

$$\Pi_3^s = \frac{1}{\sqrt{4E_f E_i}} \left(-i\frac{P_3}{m}A_1 + imzA_2 \right)$$

Description
$$\begin{bmatrix} -i\frac{p^{\mu}}{m}A_{1} + imzA_{2} - i\frac{\Delta^{\mu}}{m}A_{3} \end{bmatrix}$$

Non-symmetric Frame

$$\Pi_0^a = \frac{1}{\sqrt{4E_f E_i}} \left(\frac{E_f + E_i}{2m} A_1 + \frac{E_f - E_i}{m} A_3 \right)$$

$$\Pi_1^a = \frac{-i}{\sqrt{4E_f E_i}} \left(\frac{\Delta_1}{2m}A_1 + \frac{\Delta_1}{m}A_3\right)$$

$$\Pi_2^a = \frac{-i}{\sqrt{4E_f E_i}} \left(\frac{\Delta_2}{2m}A_1 + \frac{\Delta_2}{m}A_3\right)$$

$$\Pi_3^a = \frac{-i}{\sqrt{4E_f E_i}} \left(\frac{P_3}{m}A_1 - mzA_2\right)$$

Decomposition $\left[\mathcal{O}^{\mu}_{v,eucl}\right] = \frac{1}{\sqrt{4E_f E_i}} \left[-i\frac{p^{\mu}}{m}A_1 + imzA_2 - i\frac{\Delta^{\mu}}{m}A_3\right]$

The decomposition of lattice matrix elements is different in the symmetric and non-symmetric frame

Symmetric Frame

$$\Pi_0^s = \frac{1}{\sqrt{4E_f E_i}} \left(\frac{E}{m} A_1\right)$$

$$\Pi_1^s = \frac{-1}{\sqrt{4E_f E_i}} \left(i \frac{\Delta_1}{m} A_3 \right)$$

$$\Pi_2^s = \frac{-1}{\sqrt{4E_f E_i}} \left(i\frac{\Delta_2}{m}A_3\right)$$

$$\Pi_3^s = \frac{1}{\sqrt{4E_f E_i}} \left(-i\frac{P_3}{m}A_1 + imzA_2 \right)$$

Non-symmetric Frame $\Pi_{0}^{a} = \frac{1}{\sqrt{4E_{f}E_{i}}} \left(\frac{E_{f} + E_{i}}{2m} A_{1} + \frac{E_{f} - E_{i}}{m} A_{3} \right)$ $\Pi_1^a = \frac{-i}{\sqrt{4E_f E_i}} \left(\frac{\Delta_1}{2m}A_1 + \frac{\Delta_1}{m}A_3\right)$ $\Pi_2^a = \frac{-i}{\sqrt{4E_f E_i}} \left(\frac{\Delta_2}{2m}A_1 + \frac{\Delta_2}{m}A_3\right)$ $\Pi_3^a = \frac{-i}{\sqrt{4E_f E_i}} \left(\frac{P_3}{m}A_1 - mzA_2\right)$

Clearly, Π_{μ} is dependent on the frame, but A_i are frame invariant \checkmark

Matrix Elements: Π_0^a

* Clear signal for the matrix elements from all combinations of momenta P,Δ

 \bullet Signs of P, Δ affect the sign of the imaginary part, but the matrix elements do not have definite symmetry properties

Observed asymmetries appear to be small

$P = 0.83 \,\text{GeV}$ $-t = 0.163 \,\text{GeV}^2$

Matrix Elements: Π_1^a

• Matrix elements of γ^1 appear to be more noisy and smaller in magnitude (light-cone: twist-3)

- Asymmetries appear to be larger than Π_0^a
- Role of real and imaginary part in symmetries reverse

 $P = 0.83 \,\mathrm{GeV}$ $-t = 0.163 \,\mathrm{GeV^2}$

ed:
$$\Pi_1^a = \frac{-i}{\sqrt{4E_f E_i}} \left(\frac{\Delta_1}{2m}A_1 + \frac{\Delta_1}{m}A_3\right)$$

Matrix Elements: Π_{2}^{a}

Similar behavior as Π_1^a case

 $P = 0.83 \,\mathrm{GeV}$ $-t = 0.163 \,\mathrm{GeV^2}$

Matrix Elements: Π_3^a

* γ^3 operator suffers from finite mixing with scalar operator in lattice regularization [Constantinou & Panagopoulos, PRD 96 (2017) 5, 054506]

* Twisted-mass fermions: mixing between γ^3 and pseudo-scalar (no forward limit)

Good quality of signal (twist-2 in light cone)

Smaller magnitude than Π_0^a due to kinematic factors:

 $P = 0.83 \,\text{GeV}$ $-t = 0.163 \,\text{GeV}^2$

$$\Pi_{3}^{a} = \frac{-i}{\sqrt{4E_{f}E_{i}}} \left(\frac{P_{3}}{m}A_{1} - mzA_{2}\right) \qquad \Pi_{0}^{a} = \frac{1}{\sqrt{4E_{f}E_{i}}} \left(\frac{E_{f} + E_{i}}{2m}A_{1} + \frac{E_{f} - R_{i}}{m}A_{1}\right)$$

Amplitude Decomposition

$$\Pi_0^a = \frac{1}{\sqrt{4E_f E_i}} \left(\frac{E_f + E_i}{2m} A_1 + \frac{E_f - E_i}{m} A_3 \right)$$
$$\Pi_1^a = \frac{-i}{\sqrt{4E_f E_i}} \left(\frac{\Delta_1}{2m} A_1 + \frac{\Delta_1}{m} A_3 \right)$$

$$\Pi_2^a = \frac{-i}{\sqrt{4E_f E_i}} \left(\frac{\Delta_2}{2m}A_1 + \frac{\Delta_2}{m}A_3\right)$$

$$\Pi_3^a = \frac{-i}{\sqrt{4E_f E_i}} \left(\frac{P_3}{m}A_1 - mzA_2\right)$$

Non-symmetric Frame

 A_1 and A_3 decomposed from Π_0^a and $\Pi_{1,2}^a$

 A_2 appears in Π_3^a and requires A_1

Amplitudes

 A_1 best noise-to-signal ratio followed by A_3

 A_2 noisy but not negligible

Amplitudes have definite symmetry properties

 $P = 0.83 \,\mathrm{GeV}$ $-t = 0.163 \,\mathrm{GeV^2}$

P=+2, Q=(100)P=+2, Q=(-100) P=+2, Q=(010)P=+2, Q=(0-10)P=-2, Q=(100) P=-2, Q=(-100) P=-2, Q=(010) P=-2, Q=(0-10)

Symmetry Properties of A_i

Symmetry properties of the Lorentz invariant amplitudes are as follows: [Bhattacharya et al., arXiv:2209.05373]

- z^{2})
- z^{2})
- z^{2})

Symmetry Properties of A_i

Symmetry properties of the Lorentz invariant amplitudes are as follows: [Bhattacharya et al., arXiv:2209.05373]

We exploit these symmetries to average over, leading a reduction of statistical error of ~ $\frac{1}{\sqrt{8}}$

- z^{2})
- z^{2})
- z^{2})

Symmetry Properties of A_i

Symmetry properties of the Lorentz invariant amplitudes are as follows: [Bhattacharya et al., arXiv:2209.05373]

We exploit these symmetries to average over, leading a reduction of statistical error of $\sim \frac{1}{\sqrt{8}}$

- z^2)
- z^{2})
- z^{2})

 \clubsuit Clear signal for all amplitudes (A_2 the least accurate statistically)

 A_3 has opposite sign than A_1 and A_2 (sign not imposed by decomposition)

Momentum-boost dependence in A_i

AMild dependence on the momentum boost (Im[A_1] and Im[A_3] most notable) • Change in P affects the value of -t:

$$-t = \overrightarrow{\Delta}^2 - (E_f - E_i)^2$$

Momentum-transfer dependence in A_i

* The magnitude of the amplitudes suppresses with increase of -t A_2 suffers from increased noise A_3 is inaccessible at $-t = 0 \ GeV^2$

$$\Pi_0^a = \frac{1}{\sqrt{4E_f E_i}} \left(\frac{E_f + E_i}{2m} A_1 + \frac{E_f - E_i}{m} A_3 \right)$$

$$\Pi_1^a = \frac{-i}{\sqrt{4E_f E_i}} \left(\frac{\Delta_1}{2m}A_1 + \frac{\Delta_1}{m}A_3\right)$$

Momentum-transfer dependence in A_i

* Increased statistical uncertainties compared to |P| = 0.83 GeV \bullet Change of |P| affects the magnitude of the matrix elements

Summary and Future Work

- Quasi-GPDs are intrinsically frame dependent
- Computational challenges can be reduced using a Lorentz-invariant decomposition of matrix elements
- Implementation for pion is feasible

Summary and Future Work

- Quasi-GPDs are intrinsically frame dependent
- Computational challenges can be reduced using a Lorentz-invariant decomposition of matrix elements
- Implementation for pion is feasible

Future work

- Extract light-cone GPDs from current data
- \clubsuit Include other values of *P* and -t
- ♦ Include non-zero skewness ($\Delta_3 \neq 0$)

✤ and more …

Summary and Future Work

- Quasi-GPDs are intrinsically frame dependent
- Computational challenges can be reduced using a Lorentz-invariant decomposition of matrix elements
- Implementation for pion is feasible

Future work

- Extract light-cone GPDs from current data
- \clubsuit Include other values of P and -t
- ♦ Include non-zero skewness ($\Delta_3 \neq 0$)

✤ and more …

Thank You!!!

Acknowledgements

U.S. Department of Energy, Office of Nuclear Physics, Early Career Award under Grant No. DE-SC0020405

Computations on the BNL facilities supported by USQCD

