Bayesian inference,
calibration, optimization,
sampling
(The MAD group presents)

Emil, Julie, Nesar, Ahmed, Todd + Yaohang, Kishan

Emil: Leave Fri around 6pm/not available on Sat
Julie: around all the time
Nesar: around Thr, Fri/may be remote Sat. Oct 21, 2022

Ahmed: will be remote
Todd: will be remote Thr/potentially Fri
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Topics Related to MAD

understand problem - abstraction/foundations - computations ¢> HPC (production)
problem methods

Define the problem at a high-level of abstract

Explore strategies to qualify (probabilistic model) and quantify uncertainties (evaluate)
and a process to introduce them in the framework (computations)

Check for consistency: the framework is statistically consistent and establish validation
procedures. Corollary: statistical testing

Dimensionality analysis - provide support for model reduction
Aspects regarding sampling: efficient MCMC like parallelization
Statistics for GANN-ML. What are the statistical assumptions and asymptotics

Result interpretation: Bayesian, frequentist



Outline

* Problem abstraction
* MCMC parallelization
* Model Reduction

* GAN

Addendum
* Scoring strategy



Problem Abstraction (0/6
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Problem Abstraction (1/6)

Suppose f(prhr) < fi(€, pd) is defined on functional space (f;(§) = p; o&P#1 (1—E)Pi2 (1+p; 3E+---).

1 dO.NC (ZC,QQ) 2 ] .
We assume that we can evaluate quantity do < —— 4oz — bointwise:

do™“(z,Q?)

do(prhe) = G(f(PTh)) or dzdQ? — G(fz‘(fa,ug)) :

We assume that we have events distributed as data = d ~ doiue

Also assume there is a detector model (unfolding) with parameters ppet: doobs ~ D(d0true; PDet)

/Summary:

e Theory: do(prthr) = G(f(PThr))
e Data: d ~ doirue

e Detector: dogps ~ D(d0true; PDet)
\o Parameters p = [PThr, Ppet]: () theory pry,y and (i4) detector ppet




Problem Abstraction (2/6)

Mock of a model:

Data model: 7(do|GThr, PDet )
Theory model: 7(Gru:|PThr)
Parameter model: 7(p)

Joint distribution:

7r(d0, GThr, p) = 7T(d0, GThr|pDet)7T(GThr’pThr)7T(p>

Inference:

7T(pThr ’GThM dO’, pDet) — 7T(d0', GThr |pDet)7r(GTh1" ’pThr)ﬂ-(p)



Bayesian Approach to Inverse Problems: an Application to
NNPDF Closure Testing

P ro b I e m A b St ra Ct i O n ( 3 / 6 ) Luigi Del Debbio?®, Tommaso Giani®°, and Michael Wilson®

2.1 Statement of the problem

The space of inputs is denoted by X, while R denotes the space of responses. The model is
specified by a forward map

G: X—>R
ur—r=G(u), (1)

Experiments will not have access to the full function r but only to a subset of Ngata
observations. In order to have a formal mathematical expression that takes into account the
fact that we have a finite number of measurements, we introduce an observation operator

O: R—=Y
Ty, (3)

where y € Y is a vector in a finite-dimensional space Y of experimental results, e.g. the value
of the structure function for some values of the kinematic variables  and Q2. In general we
will assume that y € RNdaata 4. e. we have a finite number Nya, of real experimental values.
The quantity of interest is the composed operator



Bayesian Approach to Inverse Problems: an Application to
NNPDF Closure Testing

P ro b I e m A b St ra Ct i O n (4/ 6 ) Luigi Del Debbio?®, Tommaso Giani®°, and Michael Wilson®

The quantity of interest is the composed operator

G: X — RNaata
G=00G, (4)

which maps the input u to the set of data. Taking into account the fact that experimental
data are subject to noise, we can write

y=6G(u) +n, (5)

where 7 is a random variable defined over R™Véata with probability density p(n). We will refer
to n as the observational noise. In this setting, the inverse problem becomes finding u given
y. It is often the case that inverse problems are ill-defined in the sense that the solution may
not exist, may not be unique, or may be unstable under small variations of the problem.

In solving the inverse problem, we are going to adopt a Bayesian point of view, as sum-
marised e.g. in Ref. [2]: our prior knowledge about w is encoded in a prior probability measure
ugf, where the suffix X indicates that the measure is defined in the space of models, and the
suffix 0 refers to the fact that this is a prior distribution. We use Bayes’ theorem to compute
the posterior probability measure of u given the data y, which we denote as ,ug](. When the
probability measure can be described by a probability density, we denote the probability
densities associated to u9< and ui, by 7r9( and w)g( respectively. Then, using Eq. (ﬂ), we can
write the data likelihood, i.e. the probability density of y given wu,

Ty (ylu) = p(y — G(u)), (6)

and Bayes’ theorem yields

% (u) = mx (uly) oc 7% (w)p(y — G(u)). (7)



Problem Abstraction (5/6)

altogether. The net effect of the theory errors is a redefinition of the covariance of the data,
which has no major impact in our discussion, and therefore will be ignored. Taking the
correlation 6(y,u|G) into account, the joint distribution of y and w is

79 (y, ulyo, Cy, uo, Cx) ox % (u|uo, Cx ) 7% (ylyo, Cy)0(y, ulG) . (14)

We can now marginalize with respect to y, neglecting theory errors,

W)g((u|y0, CY7 UQ, CX) X /dy 7"-9( (u|u0’ Cx)ﬂ'g/(y|y0, Cy)H(y, ulg) (15)
o< e uluo Cx) [ dymd(olon, CY)3 (- G(w)  (16)
o e (ulu, Cx) 7 (G, C ). (17

We see that we have recovered Eq. 7. The log-likelihood in the Gaussian case is simply the
x? of the data, yo, to the theory prediction, G(u):

Nyata
~log (G0, Cr) = 3 3, (60— w0} (G); (G —w); . (19)
In the notation of Eq. 7
¥ (G(w)|yo, Cy) = p(G(w) — o) (19)

where in this case

p(n) o< exp (—% |n|%y> : (20)

Bayesian Approach to Inverse Problems: an Application to
NNPDF Closure Testing

Luigi Del Debbio®, Tommaso Giani®®, and Michael Wilson?



Bayesian Approach to Inverse Problems: an Application to
NNPDF Closure Testing
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that becomes increasingly difficult in high-dimensional spaces. As discussed later in this
study, the NNPDF approach is focused on the determination of the Maximum A Posteriori
(MAP) estimator, i.e. the element u, € X that maximises 75 (u):

(1 1
. = axgaiy (5 oo — OB, + 5 lu— ol ) (23)

For every instance of the data yg, the MAP estimator is computed by minimising a regulated
x?, where the regularization is determined by the prior that is assumed on the model u. We
will refer to this procedure as the classical fit of experimental data to a model. Note that
in the Bayesian approach, the regulator appears naturally after having specified carefully all
the assumptions that enter in the prior. In this specific example the regulator arises from
the Gaussian prior for the model input u, which is normally distributed around a solution
ug. The MAP estimator provides the explicit connection between the Bayesian approach and
the classical fit.



Problem Abstraction (-1/6

This cites the above.

The Path to Proton Structure at One-Percent Accuracy

The NNPDF Collaboration:
Richard D. Ball,! Stefano Carrazza,? Juan Cruz-Martinez,? Luigi Del Debbio,! Stefano Forte,?
Tommaso Giani,’8 Shayan Iranipour,® Zahari Kassabov,? Jose I. Latorre,*>:6 Emanuele R. Nocera,!8
Rosalyn L. Pearson,! Juan Rojo,”® Roy Stegeman,? Christopher Schwan,? Maria Ubiali,?

Cameron Voisey,® and Michael Wilson!
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Figure 6.1. The replica (solid green line) chosen as the true underlying PDF f for the closure test: the gluon (left)

and quark singlet (right) are displayed. The NNPDF4.0 central value and 68% confidence interval (same as in Fig. 5.2)
are also shown for reference.



Aspects regarding sampling: efficient MCMC
ike parallelization (1/4)

Facts:
. . . . . Collect samples from HMC, Clever
* MCMC is inherently serial/sequential due to the Markov property of the chain BT e Normalising | Proposal/transition
in, mixing used) flow, etc. X = Xpgan

e Parallelizing MCMC such as to guarantee convergence to the exact posterior is

not easy

* Practical approaches for parallelizing MCMC with asymptotic guarantees do

Accept/Reject new

If t
accepted state Xp41

Xk < Xk+1

Involves likelihood

exist, but there is no absolute winner

Target distribution (posterior):

* MCMC seeks to converge and collect samples from a distribution (usually posterior):

\n(x) x p(y|x) p(x)

Target w J k Y J\ w Prior
' /' inexpensive

(once defined!)

posterior Data-likelihood (expensive)

(simulation, experiment, etc.)



Aspects regarding sampling: efficient MCMC
ike parallelization (2/4)

Parallelizing MCMC:

Clever
accepted states (burn- Proposal/transition

1. Single chain: parallelize the likelihood (e.g., simulation, proposal) and/or — e = Xpas
multi proposal
* Pros: asymptotic convergence is guaranteed
e Cons: parallelization gain is not significant

If accepted Accept/Reject new
! . . . . - i state X4 1
2. Multiple (multi) chains: run multiple chains (with same proposal) in parallel: X © Xpr et

* Pros: considerable speedup; multilevel (chains & likelihood) parallelization

Collect samples from

* challenges: cost of burn-in on each chain; asymptotic convergence is possible
but requires clever convergence diagnostics and careful aggregation of the parallel samples collected;

* General Approaches: (each chain sample on its own, then samples are aggregated!

* Parallel chains (same data & kernel/proposal, but different random seeds/sequences) explore
the whole domain; parallel tampering, equi-energy, etc. can be useful but still costly

» Data and/or parameter space splitting: one chain runs per sub-set/domain

* Approximations using normalizing flows

» Kernel approximation: e.g., GMM with parallel chains per kernel, region, sub-set/domain




Aspects regarding sampling: efficient MCMC
ike parallelization (3/4)

So, which MCMC parallelization approach?

 As mentioned earlier, there is no absolute winner!
* We should build a battery of parallel MCMC implementations and test their performance (both accuracy
and computational cost), optimally tune each implementation, and explore possibility of hybridization

 We can implement and test these samplers fairly quickly with a proxy or realistic toy model; the

winner(s) can then be implemented in the full setup



Aspects regarding sampling: efficient MCMC
ike parallelization (4/4)
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Dimensionality Analysis and Model Reduction

Proxy model

Decoded events

Parton distribution functions
u(x) = cu*x**au™(1-x)**bu
d(x) = cd*x**ad*(1-x)**bd
cu, au, bu, cd, ad, bd: parameters of interest

Cross-sections (experimentally inferred):
Sigmal(x) = 4u(x)+ d(x)
Sigma2(x) = 4d(x)+ u(x)

Latent space: encoded test events

Encoded events Encoded events Encoded events Encoded events

Exploration underlying latent space (event space): j \ oo amrmans gl os [ amimany @lasf ¢ - enesens
Auto-encoder: 4-layer encoder and 4-layer decoder 2f - amivsan: VO :
events ~ AE(events) : o, e

—3?50 —3?25 —3700 —2?75 —2750 -2.25 '2 3'1 '4

Future works: find adequate latent dimension and propose reduced parameterization



How GAN works?

s N

Generator
(G)

\

Discriminator Loss

[ Real Events
(x)

4

—

Fake Events
G(z2)

L) = max[log(D(x)) + log(1 — D(G(2)))]

Generator Loss

L' = min[log(D(x)) + log(1 — D(G(%)))]

L= 111(ip 111['()1X[Iog(D(;l‘)) +log(1 — D(G(2)))]

G D G

Discriminator
(D)

—» [0,1]

N

minmax V' (D, G) = min max (Erm Py (0)|logD(2)] + E...p_(-)[log(1 — D(G(2)))])



Generative Adversarial Nets

How GAN works?

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair] Aaron Courville, Yoshua Bengioi

In other words, D and G play the following two-player minimax game with value function V(G, D):

m(%n max V(D,G) = Egrpy(a)log D(x)] + E,p, (2)[log(1 — D(G(2)))]. (1)

We will show in section 4.1 that this minimax game has a global optimum for p, = pgaa. We will
then show in section 4.2 that Algorithm 1 optimizes Eq 1, thus obtaining the desired result.

Theorem 1. The global minimum of the virtual training criterion C(G) is achieved if and only if C(G) =maxV(G, D)
Pg = Pdata- At that point, C(QG) achieves the value — log 4. D

Proposition 2. If G and D have enough capacity, and at each step of Algorithm 1, the discriminator
is allowed to reach its optimum given G, and p, is updated so as to improve the criterion

Egnpal0g D ()] + Exnp, log(1 — D¢ ()]

then p, converges t0 Pya



Other Items & Things that MAD Likes

1. Postdoc position ANL-ASCR

2. MAD would like to keep the proxy model and keep updating it; although it will not have all theory components
it should encapsulate abstractions (e.g., the current model)

3. Laptop-sized framework in the works:
/dev in our github — Kishan will push soon
Use ClassRegistry to manage components (plug stuff in/out)
Promotes code consistency, helps unit testing



Addendum



Scoring Strategy (for the proxy problem) 1/5

Likelihood: S (0un, o4]) = Epllow, — olid|| - —E lot — ol I Vog, o) ~ P =Prob(p)

] &

k a
=+ 2 llow - ibﬁu—2N2ZZHa{ =l
5 =1 =1 53=1
1 M
S(Oth, Oobs) = i Zsk(Uth,UEfs})

k=1

Loss function: L= a15(0p,(P), 00y,) + 2S(015,(P), 0gps) + asl| Ny, — Ny, (P)I| + [ Njys — N (P)|]

Remember GAN: minmax V(D, G) = Egrpy () (108 D(@)] +Eznp. (=) [log(1 — D(G(2)))]- (D



Scoring Strategy (for the proxy problem) 2/5

Toy-Example

Assume XY ~ Beta(5.5,p). Given M = 200 samples from X ~ Beta(5.5,p = 5.5), find p by
using Ny = 1000 samples from Y ~ Beta(5.5,p).

—— true PDF 0.307 : —— score
51 ® minimum
y true
0.25
4
g
S
w31 ® 0.20-
(V]
o w
£
21 05 0.15-
1_
0.10-
o_ T 1 1 T T
0.0 0.2 0.4 0.6 0.8 2 A 6 3 10



Scoring Strategy (for the proxy problem) 3/5

Convergence properties

Error = pirye — p*, where p* = arg min, £(p)

, 1.001 ,
1.51 <
- 0.75-
1.0-
0.50-
0.5 - o 25 T —_
. T T T ]
N LT L L1
-0.51 o N R
-0.50-
-1.0-
»_0.75
-1.5- T T T T T T T T T T T T T T T T
50 100 200 300 400 500 600 700 800 900 1000 100 500 1500 2500 5000

Obs Samples Forecast Sample



Scoring Strategy (for the proxy problem) 4/5

= 6-parameter model

u(z) =pra??(1 — x)P do(z) = 4u(z) + d(z)
d(x) =psaPs (1 — x)Ps dog(z) = u(x) + 4d(z)
= Data A: 1,000 events o, ; 500 events d, Nonparametric bootstrap distribution (obtained by

sampling with replacement) gives direct Cl estimates

= Data B: 10,000 events g, ; 5,000 events o . . .
! 2 and approximates the posterior of a Bayesian problem

= Data C: 100,000 events o, ; 50,000 events o, with a Speciﬁc un-informative prior_
_ 15
37 === true _ [ - == true ": —==true
mm caseA N Al [ CASE A Al | = cAsEA
22 = CASEB iy | 2" == cases i 1 2> | ==
14 ) —| D i : _l 24
L [l
m L \
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Scoring Strategy (for the proxy problem) 5/5

doy () = 4u(x) + d(x)
dog(z) = u(x) + 4d(z)

= 6-parameter model
u(z) =p1z”* (1 — z)"
d(z) =pyx?Ps (1 — x)Pe

= Data A: 1,000 events o, ; 500 events o,

= Data B: 10,000 events o ; 5,000 events o,

= Data C: 100,000 events o, ; 50,000 events o,
o1 small sample oy small sample
3.5 - oy large sample i 3.5 — 0y large sample |
3.0 1 3.0
w 2.0 w 2.0
O O
o o
v v
2 2.0+ 2 2.0+
- -
- -
O O
Q1.5 Q1.5 J
R e = e =T L el 1.() s e T TSI T T T e e e s e e e p e e e e e men e
T T T 0.5 T T T T
0.6 0.8 (.2 0.4 0.6 0.8




Auto-encoder for cross-section events: January 2022

Parton distribution functions:

- u(x) = cu*x**au*(1-x)**bu

- d(x) = cd*x**ad*(1-x)**bd

- s(x) = cs*x**as*(1-x)**bs

cu, au, bu, cd, ad, bd, cs, as, bs are 9 free parameters, drawn a priori from uniform distributions on [0, 1]

Cross-sections:

- Sigmal(x) = 4u(x)+ d(x)+ s(x)
- Sigma2(x) = 4d(x)+ u(x)+ s(x)
- Sigma3(x) = u(x)+ d(x)+ s(x)

- 4-layer encoder (neurons per layer (activation): 250 (Relu), 64 (Relu), 32 (Relu), latent-space dim (Linear))
- 4-layer decoder (neurons per layer: latent-space dim (Relu), 32 (Relu), 64 (Relu), 250 (Sigmoid))
- events ~ AE(events)

- loss-function: binary-cross entropy

- 25 -> 45 epochs

- For each set of 9 parameters, 50 events are generated from each cross-section (sigmal, sigma2, sigma3)
Each cross-section generates 250 points per event

Julie Bessac




Latent space of dimension 9 — Encoded-decoded events

25

Original test event

25

Original test event

Original test event

Original test event

Original test event

25

25

25

Event distribution

(=
o

o
o

02 04 06 08 10 02 04 06 08 10 02 04 06 08 10 02 04 06 08 10 02 04 06 08 10
- Decoded test event 2 Decoded test event - Decoded test event 2 Decoded test event % Decoded test event
20 - 20 - 20 - 20 -
c
S
215' 15 4 15 1 15 -
8
°
< 10 | 10 4 10 | 10 |
L7
=
w
5 1 5 1 5 1 5 1
0 4 0 0 4 - 0 4
00 02 04 06 08 10 ©00 02 04 06 08 10 ©00 02 04 O06 O08 10 00O ©02 04 06 08 10 O00 02 04 06 08 10

Sigmal events

Julie Bessac

Sigmal events

Sigmal events

Sigmal events

Sigmal events



400

200

0

800

400

200

Latent space of dimension 9 — Latent space analysis

Latent space dimension 0
Mean: -1.107 - Std: 0.1441

Latent space dimension 1
Mean: -0.716 - Std: 0.1165

Latent space dimension 2
Mean: 1.574 - Std: 0.1563

Latent space dimension 3
Mean: 0.231 - Std: 0.3607

Latent space dimension 4
Mean: 0.486 - Std: 0.1185
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Correlation among latent dimensions
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Latent space of dimension 9 — latent space analysis

Scatterplot of latent dimensions
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Comparison of loss function for different AE

Dim 5 : loss: 0.5620 - val_loss: 0.5609
Dim 7 : loss: 0.5620 - val_loss: 0.5609
Dim 9 : loss: 0.5620 - val_loss: 0.5608

What’s next:

- Shall we learn a parameterization of the reduced space?

- How to select the optimal latent dimension?

Julie Bessac




