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Our story so far: by the early 1940s, a lot of nuclear properties
seemed well described by the liquid drop model....

13Ba

@ . ~—"" ___.especially fission...

N o>on

235 236
35U o &3,
36Kr

O+

Shell Model 75 Symposium, July 19, 2024



The birth of the shell model

SAN DIEGO STATE
UNIVERSITY

Our story so far: by the early 1940s, a lot of nuclear properties
seemed well described by the liquid drop model....

o ‘____y<3 n . . .
O+@ R — ....especially fission...
N Son

235 236
35U o &3,
36Kr

....which led to this...

Shell Model 75 Symposium, July 19, 2024



Th

Our story so far: by

e birth of the shell model

SAN DIEGO STATE
UNIVERSITY

the early 1940s, a lot of nuclear properties

seemed well described by the liquid drop model....

145Ba

O+@ —p e O N
n
N o>on

235 236
35U o &3,
36Kr

LAMo
0% A S
V' BROJECT

MAIN GATE

PASSES MUST BE
PRESENTED TO
GUARDS

....especially fission...

....which led to this...

....developed here.

Shell Model 75 Symposium, July 19, 2024



The birth of the shell model

SAN DIEGO STATE
UNIVERSITY

As the movie Oppenheimer showed (kind of), many physicists
were recruited for the Manhattan project

I
r. . \
g B
o =

ALAMp

0% S
VY PROJECT
MAIN GATE

PASSES MUST BE
PRESENTED TO
GUARDS

Shell Model 75 Symposium, July 19, 2024



The birth of the shell model

SAN DIEGO STATE
UNIVERSITY

One of these was Maria Goeppert Mayer.

PASSES MUST BE
PRESENTED TO
GUARDS

Shell Model 75 Symposium, July 19, 2024



The birth of the shell model

SAN DIEGO STATE
UNIVERSITY

One of these was Maria Goeppert Mayer.

4 )

I’ll have more history to
report in a little while

\_ \/_/

—

s ALAMOg
‘%RoJECT
MAIN GATE

PASSES MUST BE

PRESENTED TO
GUARDS

Notre Dame

Michael Wiescher

Shell Model 75 Symposium, July 19, 2024



The birth of the shell model

SAN DIEGO STATE
UNIVERSITY

One of these was Maria Goeppert Mayer.
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One of these was Maria Goeppert Mayer.
Her Ph.D dissertation (1930, Gottingen) was on two-photon absorption.

In 1942 she worked on separation of fissile material at Columbia.
In 1945 she joined Teller at Los Alamos to work on opacities.

PASSES MUST BE
PRESENTED TO
GUARDS

Shell Model 75 Symposium, July 19, 2024



The birth of the shell model

SAN DIEGO STATE
UNIVERSITY

One of these was Maria Goeppert Mayer.

In 1946, Goeppert Mayer went to the newly formed Argonne National Lab,
protesting “I don’t know anything about nuclear physics.”

Through her work on fission, though, she noticed unusual patterns in
binding energies.
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The birth of the shell model
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On Closed Shells in Nuclei*

Maria G. MAYER
Argonne National Laboratory and Institute for Nuclear Studies, University of Chicago, Chicago, Illinois

(Received April 16, 1948)

Experimental facts are summarized to show that nuclei with 20, 50, 82, or 126 neutrons or
protons are particularly stable.
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Nuclear Configurations in the Spin-Orbit Coupling Model. I. Empirical Evidence

Maria GOEPPERT MAYER
Argonne National Laboratory, Chicago, Illinois

(Received December 7, 1949)

An extreme one particle model of the nucleus is proposed. The model is based on the succession of energy
levels of a single particle in a potential between that of a three-dimensional harmonic oscillator and a
square well. (1) Strong spin orbit coupling leading to inverted doublets is assumed. (2) An even number
of identical nucleons are assumed to couple to zero angular momentum, and, (3) an odd number to the
angular momentum of the single odd particle. (4) A (negative) pairing energy, increasmg with the j value of
the orbit is assumed. With these four assumptions all but 2 of the 64 known spins of odd nuclei are satis-
factorily explamed and all but 1 of the 46-% gnetic moments. The two spm dlscrepanaes are

agreement with the model. The exlstence 2R g e-periodic table, of nuclear isomerism is correctly
predicted.
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angular momentum of the single odd particle. (4) A (negative) pairing energy, increasmg with the j value of
the orbit is assumed. With these four assumptions all but 2 of the 64 known spins of odd nuclei are satis-
factorily explamed and all but 1 of the 46-% agnetic moments. The two spin dlscrepanmes are

agreement with the model. The exlstence 2R g e-periodic table, of nuclear isomerism is correctly
predicted.
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The birth of the shell model

SAN DIEGO STATE
UNIVERSITY

PHYSICAL REVIEW VOLUME 78, NUMBER 1 APRIL 1, 1950

Nuclear Configurations in the Spin-Orbit Coupling Model.
I1. Theoretical Considerations

Maria GOEPPERT MAYER pClI rl I'Ig!

Argonne National Laboratory, Chicago, Illinois
(Received December 7, 1949)

The assumption of short-range attractive forces between identical nucleons in the 5 j coupling model of
nuclear structure is in agreement with the empirically observed spins.
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The birth of the shell model

SAN DIEGO STATE
UNIVERSITY

On the “Magic Numbers” in Nuclear Structure

OT1TO HAXEL

AND
HANs E. Suess
Inst. f. phys. Chemie, Hamburg
April 18, 1949

A SIMPLE explanation of the ‘“magic numbers” 14, 28,
50, 82, 126 follows at once from the oscillator model of
the nucleus,! if one assumes that the spin-orbit coupling in
the Yukawa field theory of nuclear forces leads to a strong
splitting of a term with angular momentum 7 into two distinct
terms j=I/41%.
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OT1TO HAXEL

AND
HANs E. Suess
Inst. f. phys. Chemie, Hamburg
April 18, 1949

A SIMPLE explanation of the ‘“magic numbers” 14, 28,
50, 82, 126 follows at once from the oscillator model of
the nucleus,! if one assumes that the spin-orbit coupling in
the Yukawa field theory of nuclear forces leads to a strong
splitting of a term with angular momentum 7 into two distinct
terms j=I/41%.
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Notes on the j—j Coupling Shell Model*

EUGENE FEENBERG

SAN DIEGO STATE
UNIVERSITY

Washington University, St. Louis, Missouri, and Qak Ridge National Laboratory,** Oak Ridge, Tennessee

(Received July 29, 1949)

| J7-Coupling in Nuclei

B. H. FLOWERS*

Department of Mathematical Physics, The University, Edgbaston,
Birmingham, England

(Received February 21, 1952)
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Excited states of nuclei in jj-coupling

B.H. Flowers *)

Show more v

+ Addto Mendeley < Share 93 Cite

https://doi.org/10.1016/S0031-8914(52)80179-X A Get rights and content 7

Abstract

A brief account is given of the classification of states arising from a configuration j" of
neutrons and protons in jj-coupling with short-range central interactions, and evidence is
brought to suggest that the classification has experimental confirmation. On the basis of
the new classification it is possible to lay down certain approximate selection rules for
radiative transitions. Some of these rules are discussed.



The birth of the shell model

SAN DIEGO STATE
UNIVERSITY

PHYSICAL REVIEW VOLUME 99, NUMBER 3 AUGUST 1, 1955

Independent Particle Model of the Nucleus. I. Interparticle Forces
and Configuration Mixing™*

CarL LevinsoN AND KeENNETH W. Forp?
Indiana University, Bloomington, Indiana

(Received March 7, 1955)

Early configuration-interaction

A simplified method of obtaining the direct interaction between two identical nucleons in the nuclear
shell model is given for the special case of singlet forces. Configuration interaction is included in the method.
A semi-empirical analysis of simple two and three particle nuclear spectra is outlined which enables one
to determine properties of the two-body perturbing interaction provided many body forces are negligible
and coupling to the nuclear surface is weak. Corrections to the singlet force formalism due to triplet central
and tensor forces are discussed. Formulas are given for magnetic dipole and quadrupole moments and
magnetic dipole transition rates for mixed three-particle configurations. The effect of weak surface coupling
on multi-particle configuration is given in paper II of this series. A detailed discussion of the spectra of
two isotopes of calcium is given in paper III.

PHYSICAL REVIEW VOLUME 101, NUMBER 1 JANUARY 1, 1956

Intermediate Coupling in the 1p-Shell*

DieTEr KURATH
Argonne National Laboratory, Lemont, Illinois

(Received August 31, 1955)

The region between He! and O'¢ is treated for the case of intermediate strength of spin-orbit coupling and
central two-body interaction. Energy levels are presented as a function of the relative coupling strength
parameter, ¢/K. Static electromagnetic moments are also computed as functions of ¢/K. Comparison with
experimental results gives a fairly good picture, and determines a definite behavior for ¢/K as a function of
mass number. A possible interpretation of this behavior is suggested.

Shell Model 75 Symposium, July 19, 2024



The birth of the shell model

. SAN DIEGO STATE
Independent-particle model: UNIVERSITY

A single shell-model ‘configuration’

@) = [(05)*(0p3/2 )?)
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The birth of the shell model

. SAN DIEGO STATE
Independent-particle model: UNIVERSITY

A single shell-model ‘configuration’

@) = [(05)*(0p3/2 )?)

Configuration-interaction:

A superposition of different configurations

W) = ¢1](0s)*(0p3» )2>+ C2[(0s)*(0p3,2 ) (0P /2 )1> T

Shell Model 75 Symposium, July 19, 2024
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Model excited states as independent particles moving in mean-field, but UNIVERSITY

one or more particles in a higher orbit = “particle-hole excitation”

original configuration
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Model excited states as independent particles moving in mean-field, but UNIVERSITY

one or more particles in a higher orbit = “particle-hole excitation”

particle
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The birth of the shell model

SAN DIEGO STATE
Model excited states as independent particles moving in mean-field, but UNIVERSITY

one or more particles in a higher orbit = “particle-hole excitation”

particle
--------- ® - Q-----@-
?

- @ -@------ T— --------------- -{)------ T— ---------------
9 0-0-0---0---0-- QO0-0----@---0-- QO0-0----@---0--

hole
-Q--@------- @--0-- - @--@------- @®--@-- -Q--@------- @®--@--

original configuration one-particle, one-hole two-particle, two-hole
(1p1h) excitation (2p2h) excitation

Configuration-interaction:

A superposition of different configurations

(W) = C1|(05)4(0P3/2 )2>+ C2|(OS)4(OP3/2 )1(0191/2 )1> ..
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HW)= E|W)
W)= D cde) H,,; = (a[H]p)

zHaﬁcﬁ = Ec,
p



The birth of the shell model

SAN DIEGO STATE
UNIVERSITY

PHYSICAL REVIEW VOLUME 105, NUMBER 5 MARCH 1, 1957

Shell Model for the Positive-Parity States of N5}

E. C. HALBERT* AND J. B. FrRENCH
Department of Physics, University of Rochester, Rochester, New York

(Received November 16, 1956)

Edith Halbert

Energy levels and wave functions arising from the configurations sips, s¢p1%d, and s3p'2 have been calcu-
lated using a central plus single-particle spin-orbit interaction. Correlations have been made between theory
and experiment for a dozen identified positive parity levels in N (including the 5.31-Mev level). For the
seven levels below 9 Mev this has been done mainly by considering N4(d,p) ! values and reduced widths. In
order of increasing energy, the theoretical spin assignments for these levels are 5/2, 1/2, 7/2, 3/2, 5/2, 1/2,
3/2 (the third and fifth could be interchanged) ; the wave functions derived for these levels give fair agree-
ment for level positions and surprisingly good agreement for reduced widths. For the upper levels correlations
are made by means of the experimental spin assignments. The general agreement here is poor; in particular,
a state which has been invoked to explain thermal neutron capture and other neutron processes is not
predicted, and the C'® 8-decay lifetime is not properly given. In general, the wave functions indicate a small
interaction between configurations but, apart from this, are not consistent with the idea that the inequivalent
particle is effectively coupled to only one state for 4 =14.

IV. EIGENVECTORS AND EIGENVALUES

With the basic states and interaction described above,

the energy matrices were calculated, transformed to

J. Bruce French eliminate the spurious states, and then diagonalized to
produce the eigenvalues and eigenvectors. The last two

steps were carried out with the Univac at New York

Un_iyersi.ty. B
1950’s
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SAN DIEGO STATE
UNIVERSITY

"NUCLEAR
_ PHYSICS

Nuclear Physics
Volume 73, Issue 1, November 1965, Pages 1-24

Effective interactions for the 1p shell

S. Cohen, D. Kurath

1960s

Shell Model 75 Symposium, July 19, 2024



SAN DIEGO STATE
UNIVERSITY

Cohen-Kurath -

_
e
S

|
o0
-
uonounj 9ABM JO UONORIJ

_
-
S

_
o
S




o o o
~ O o©

O
b

fraction of wave function
©c o o o
(\©) B~ @)

-]

o0 O

AT

-

LR,

ST
= rd i
75
C,(SUB))

! | ! |
. Cohen-Kurath -
NCSM §

SAN DIEGO STATE
UNIVERSITY

55



The birth of the shell model

-

N

configuration-interaction Vot

~
Two challenges for any

MARCH

calculation: A

‘ave functions arising from the configurations s*ps, s*p%d, and s3p'2 have been calcu-
plus single-particle spin-orbit interaction. Correlations have been made between theory
or a dozen identified positive parity levels in N® (including the 5.31-Mev level). For the
elow 9 Mev this has been done mainly by considering N'4(d,p) ! values and reduced widths. In
Creasing energy, the theoretical spin assignments for these levels are 5/2, 1/2,7/2, 3/2,5/2, 1/2,
third and fifth could be interchanged) ; the wave functions derived for these levels give fair agree-
for level positions and surprisingly good agreement for reduced widths. For the upper levels correlations
¢ made by means of the experimental spin assignments. The general agreement here is poor; in particular,

a state which has been invoked to explain thermal neutron capture and other neutron processes is not
predicted, and the C'® 8-decay lifetime is not properly given. In general, the wave functions indicate a small
interaction between configurations but, apart from this, are not consistent with the idea that the inequivalent
particle is effectively coupled to only one state for 4 =14.

SAN DIEGO STATE
UNIVERSITY

Edith Halbert

J. Bruce French

IV. EIGENVECTORS AND EIGENVALUES

With the basic states and interaction described above,
the energy matrices were calculated, transformed to
eliminate the spurious states, and then diagonalized to
produce the eigenvalues and eigenvectors. The last two
steps were carried out with the Univac at New York

Un_iyersi.ty. B
1950’s
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Configuration-interaction method

SAN DIEGO STATE
UNIVERSITY

HW)= E|W)

W)= Yc,|a) H,; = (a|H|p)

(04

. - _
...and solving this! E Haﬁcfa’ = ECa
p

Computing this!



Configuration-interaction method:

SAN DIEGO STATE

'I'he early days UNIVERSITY

Many early calculations relied upon
“coetticients of fractional parentage”

- think “generalized Clebsch-Gordan coefficients”

)" 30 = ) el K ® 1))

K

1960s
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'I'he early days UNIVERSITY

Many early calculations relied upon
“coetticients of fractional parentage”

- think “generalized Clebsch-Gordan coefficients”
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K CFp
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Configuration-interactigsg
the early day\

Many early calculations relied upon
“coefficients of fractional parentage”

= think “generalized Clebsch-Gordan coefficients

O ) = MedlH™ k) & 1),

K CFP

1960s

Shell Model 75 Symposium, July 19, 2024



Configuration-interaction method

SAN DIEGO STATE
UNIVERSITY

Today we can find all eigenpairs of a real, symmetric matrix
using the Householder algorithm (1958).

But this scales as (dimension)?

64
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Entering the 1970s, the shell-model faced
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SAN DIEGO STATE
UNIVERSITY

Entering the 1970s, the shell-model faced
two challenges

Dimensionality .« Intruders
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1ds,, The challenge of dimensionality

___________________________________ SAN DIEGO STATE
UNIVERSITY
0gq /2 10 [50]
1p1jp 2 Number of many-body states goes like
Of5 /2 6 # single-particle
1 P32 4 states N N, !
Of7/2 8 (N )=N '(N —N. )'
P »!(Ns—Np)!
___________________________________ # particles —
Od; /2 4 [20]
1s 1/2 2 ] . . !
This exhibits exponential scaling!
Od; /2 §
Opi/ 2 8]
Op3 /2 4 (In the fixed-J,, or M-scheme, the actual dimensions are
""""""""""""""""""" less because of the selection rule. But the scaling still holds)
Os 1/2 2 [2]
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Number of many-body states goes like

# single-particle

states
_Ng!

/'(x;)_zvp!(lvs—zvp)!

# particles

This exhibits exponential scaling!

Opi2 2 18] p.ghell: max dim
Op3 /2 4 =84 (In the fixed-],, or M-scheme, the actual dimensions are
less because of the selection rule. But the scaling still holds)

081/2 2 [2]
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# single-particle

states NI
— S*

/(x;)_Np!(Ns—Np)!

# particles

d 4 120
(l)s 512 0 1201 sd-shell: max dim
Od1/2 6 = 93,000 This exhibits exponential scaling!
5/2
Op1/2 [8] p-shell: max dim

2
Op3 /2 4 =84 (In the fixed-],, or M-scheme, the actual dimensions are

less because of the selection rule. But the scaling still holds)
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0g¢/2 10 [50]

Ipyp 2 _ Number of many-body states goes like
Of5/2 6 lﬂf' sh_ell_: max dim # single-particle
lps;n 4 = 2 billion states —— /N, N, !
Of7/2 8 (N )=N '(N —N )'

p I(N !

# particles — ’ ’
Od 4 120
133/ 2 5 [20] sd-shell: max dim
1/2 = 93,000 This exhibits exponential scaling!

Ods,, 6
Opy1/2 [8] p-shell: max dim

2
Op3 /2 4 =84 (In the fixed-J,, or M-scheme, the actual dimensions are

"""""""""""""""""" less because of the selection rule. But the scaling still holds)
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/ Not everything scales \ UNIVERSITY
exponentially.

Number of many-body states goes like
For example, the number of terms | # single-particle

in a two-body Hamiltonian has states T (Ns\
polynomial scaling / (Np)_Np!(NS—Np)!

# particles

g _ ~tots o . o : .
H = z V; jk14; Q; A Qg This exhibits exponential scaling!

(In the fixed-],, or M-scheme, the actual dimensions are
less because of the selection rule. But the scaling still holds)
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# narticlec
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in a two-body Hamiltonian has states T (Ns\
polynomial scaling / /( )
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The exponential scaling of the
configuration-interaction basis
motivates alternate methods,
such as coupled clusters,
which have polynomial scaling
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ntial scaling!
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The challenge of dimensionality

/ Not everything scales \ SAN DIEGO STATE
exponentially. I

But configuration-interaction still has
many advantages,
such as adaptability
and ease in generating excited states

\_ /

The exponential scaling of the - -
. . . ) 'ntial
configuration-interaction basis : Q\N
motivates alternate methods, & ,.Ié

such as coupled clusters, \ /j
which have polynomial scaling the actu

/le. But

For example, the number of terms
in a two-body Hamiltonian has
polynomial scaling /

ds)
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1 2
OFI/Q 6 pf-shell: max dim With the Householder algorithm,
1; - 4 =2 billi.on we can diagonalize dimensions of up
Of >/ ! to a few thousand... how do we
i handle dimensions of 2 billion?!
Od 4 120
1 o/ o 1201 sd-shell: max dim /
S — 93,000
Ods,, 6 ’ | Q\Nl
"""""""""""""""""""" & ¢
Opi2 2 18] | pshell: max dim \ P
OpS/Q 4 = 84
081/2 2 [2]
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There 15 another way! / \

With the Householder algorithm,
we can diagonalize dimensions of up
to a few thousand... how do we
handle dimensions of 2 billion?!

o J
SNy,

A

© 5

(Cornelius Lanczos)
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SAN DIEGO STATE
UNIVERSITY

There 15 another way!

The Lanczos algorithm (you’re welcome)
and related power and Arnoldi methods
seek to find only the extremal eigenvalues,
even 1n huge dimensions

(Cornelius Lanczos)
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The challenge of dimensionalit

Today we can do UNIVERSITY
There 15 another way! dimensions of up to 35
billion!
(arXiv:2402.12606)
Anna McCoy

The Lanczos algorithm (you’re welcome)
and related power and Arnoldi methods
seek to find only the extremal eigenvalues,
even 1n huge dimensions

(Cornelius Lanczos)
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The challenge of dimensionalit

SAN DIEGO STATE
Today we can do UNIVERSITY
There 15 another way! dimensions of up to 35
billion!
(arXiv:2402.12606)
Anna McCoy

The Lanczos algorithm (you’re welcome)
and related power and Arnoldi methods
seek to find only the extremal eigenvalues,
even 1n huge dimensions

Or even more!

(Cornelius Lanczos)

Frederic Nowacki
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The challenge of dimensionality

/ SAN DIEGO STATE
UNIVERSITY
Whitehead et al (Adv. Nucl. Phys 9, 123

(1977)) introduced both the Lanczos

algorithm and a simple bit

representation of Slater
determinants.

S /

(Cornelius Lanczos)
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SAN DIEGO STATE

Product wavefunction (“Slater Determinant”) UNIVERSITY

W) = Gy () iy By () 9y ()

Each many-body state can be uniquely determined
by a list of “occupied” single-particle states
= “occupation representation”

0)

‘a>=&+a a ...a

ny"ny, "ny ny



o _ i} SAN DIEGO STATE
Product wavefunction ("Slater Determinant”) UNIVERSITY
qj(;"ifzj"; .. ) = ¢@(ﬁ)% (?2)%(;;3)- .. ¢@(FN)

. n; 1 2 3 4 5 6 7
Each many-body state can be uniquely determined =1 |1 0 0 1 1 0 1
Ey“a list of; | occupied stmfle-gartlcle states a=2 |1 0 1 0 0 1 1
= “occupation representation =3 o 1 1 1 0 1 0

0)

‘a>=&+a a ...a

ng np "nj ny
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o . i} SAN DIEGO STATE
Product wavefunction ("Slater Determinant”) UNIVERSITY
lp(;"ifzj{?, . ) = ¢@(;’i)%(?z)%(?3) . ¢@(FN)

. n; 1 2 3 4 5 6 7
Each many-body state can be uniquely determined =1 |1 0 0 1 1 0 1
Ey“a list oi | occupied s;nfle-gartlcle states a=2 |1 0 1 0 0 1 1
= “occupation representation =3 o 1 1 1 0 1 0

0)

o) =7 aar ...a

¥)=Ze,lp,n)
uv |t u v
“bit representation” / x

convenient for

digital computers \01101000 >\1oo101oo >
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Product wavefunctio
W 7y ) = oy )

Each many-body sta
by a list of “occupied
= “occupation repres

)=

“bit representation”

convenient for

digital computers

Working in the M-scheme, one
doesn’t need coefficients of
fractional parentage!

NN\

a a a ...a. |())

ny"ny, "ny ny

¥)=2c,pn)
R

\01101000 N1oo1o1oo

N

SAN DIEGO STATE
UNIVERSITY
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SAN DIEGO STATE
Product Wavefunctim/ \ UNIVERSITY
Y@ n..)=9n(#)  Working in the M-scheme, one
, . . 3 4 5 6 7
Each many-body stat doesn’t need coefficients of PSS PR PR Pan P
by a list of “occupied fractional parentage! T 1o 1o 11 It
= ‘occupation represc\ 1 1 0 1 0
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. SAN DIEGO STATE
Product wavefunctio \ UNIVERSITY
Y@ n..)=9n(#)  Working in the M-scheme, one

. e 3 4 5 6 7
Each many-body sta doesn’t need coefficients of PSS PR PR Pan P
by a list of “occupied fractional parentage! T 1o 1o 1= I
= “occupation repres . . 5 : 5
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Configuration-interaction method

SAN DIEGO STATE

coo 'I'O d a y UNIVERSITY

HW) = E|W)

W)=Y, |a) H,; = (a|H|p)

(04

Can compute quickly using
bit manipulation

... and solve for low
2 H c, = Ec,
b

eigenstates with
Lanczos
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The challenge of infruders

SAN DIEGO STATE

UNIVERSITY

a N
What about the other
problem...intruders?

N J

o
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The challenge of infruders

SAN DIEGO STATE
UNIVERSITY
BRUCE CAMPBELL SAM RAIMI / \

(THE EVIL DEAD, ARMY OF DARKNESS) (Director of SPIDER-MAN, DARKMAN, THE GIFT)

What about the other
problem...intruders?

o

HE’S JUST BOUT THIS STORE!
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The challenge of intruders
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P+Q =1

¢ “excluded” space

4= model space
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The challenge of intruders
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P+Q =1

¢ “excluded” space

energy

4= model space
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energy

The challenge of intruders

P+Q =1
g R

Intruders are states predominantly
in Q, but low-lying in energy

" /

Shell Model 75 Symposium, July 19, 2024
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energy

The challenge of intruders

P+Q =1
C R

Early calculations worked in the P-
space, but accounted for Q
through perturbation theory

U J
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UNIVERSITY

1970 Barrett and Kirson, 1972 Schucan and Weidenmuller:
Intruder states can cause perturbative expansions
to ultimately diverge.

This in particular applies to particle-hole states.
This makes expanding beyond the valence space problematic,

and almost kills the field (except for a stubborn few) for
twenty years.



SAN DIEGO STATE
UNIVERSITY

94



1991-1993: Vary and Barrett introduced the no-core

shell model:
Without a core, there 1s no "particle-hole” expansion.

Around this same time high-precision phase shift data from
NN scattering became available.

Fitted to this data, the Argonne potential showed one could
reproduce nuclear many-body data.

Then chiral EFT gave a systematic way to characterize
nuclear forces

The field lurches back to life!

SAN DIEGO STATE
UNIVERSITY
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1991-1993: Vary and Barrett introduced the no-core

shell model:
Without a core, there 1s no "particle-hole” expansion.

Around this same time high-precision phase shift data from
NN scattering became available.

Fitted to this data, the Argonne potential showed one could
reproduce nuclear many-body data.

Then chiral EFT gave a systematic way to characterize
nuclear forces

The field lurches back to life!

Bl alamy stock photo



The birth of the shell model

a

&

Today bases can be a linear combination of simple Slater
determinants with fixed total J,/M (‘M-scheme’)
or configurations with good total J (‘J-scheme’)
or other group-theory label (‘symmetry-adapted’)

/

Configuration-interaction:

A superposition of different configurations

(W) = C1|(05)4(0P3/2 )2>+ C2|(05)4(0P3/2 )1(0191/2 )1> ...
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A diversity of approaches
Phylogenetic Tree of Life ey

Bacteria Archaea Eucarya
Green
Filamentous Slime
Spiroghetes bagteria Entamoebae MQlds Apimals
s Methanosargina Fungi
| r:!nive Methanobacterjurp Halgphiles —
c b Protuobarigria P Tt Methanococgu
S T. ceker Ciliates
Planctomyce Thermoprotgus S
Pyrodicticuxy agellates
Bacteroides \ ‘ .
Cytophaga ~ Trichomonads
Thermotoga Microsporidia
Aquifex—* Diplomonads
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A diversity of approaches

SAN DIEGO STATE

Phylogenetic tree of Shell-models UNIVERSITY
PANASHh
Symmetry-
NCSMC adapted
MCSM| \ NCSM DNO-SM
Auxiliary-field NCSM \ /
path-integral \ Symmetry- GCM-SM
(SMMC) - — M-schem\e adapted
J-scheme
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A diversity of approaches

SAN DIEGO STATE

& Phylogenetic tree of Shell-models UNIVERSITY

Symmetry-
Yusuke Tsunoda —_ adapted Frederic Nowacki
-------- NCSM DNO-SM

/

xiliary-field
GCM-SM

h-integral
MC)

Yoram Alhassid

e
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Choice of wave function basis
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One chooses between a few, complicated states
or many simple states
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Choice of wave function basis
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One chooses between a few, complicated states
or many simple states

1010
108

106

M-scheme J-scheme SU(3) MCSM
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Choice of wave function basis
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One chooses between a few, complicated states
or many simple states

1010
108

106

basis dimension

M-scheme J-scheme SU(3) MCSM
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Choice of wave function basis

SAN DIEGO STATE
UNIVERSITY

One chooses between a few, complicated states
or many simple states

1010

effort to compute
108 matrix elements
10°

basis dimension

M-scheme J-scheme SU(3) MCSM
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SAN DIEGO STATE
UNIVERSITY

It’s also important to know:

Computational burden is not primarily the dimension

but is the # of nonzero Hamiltonian matrix elements.

EHaﬁcﬁ = kc,,
p
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SAN DIEGO STATE
UNIVERSITY

J-scheme matrices are smaller but much denser than
M-scheme, and “symmetry-adapted” (i.e. SU(3))

matrices are smaller (and denser) still.

example: 12C Np.x = 8

scheme basis dim
M 6x 108
J(J=4) 9x107
SU(3) 9x 10°

(truncated)

From Dytrych, et al, Comp Phys Comm 207, 202 (2016)
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SAN DIEGO STATE
UNIVERSITY
J-scheme matrices are smaller but much denser than
M-scheme, and “symmetry-adapted” (i.e. SU(3))
matrices are smaller (and denser) still.
example: 12C Np.x = 8
scheme basis dim # of nonzero matrix elements
M 6x 108 5x 1011 4 Tb of memory!
J(J=4) 9x107 3 x 1013 240 Tb of memory!
SU(3) 9 x 106 2 x 1012 16 Tb of memory!
(truncated)

From Dytrych, et al, Comp Phys Comm 207, 202 (2016)
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AONIVERSITY
J-scheme matrices are smaller but much denser than
M-scheme, and “symmetry-adapted” (i.e. SU(3))
matrices are smaller (and denser) still.
example: 12C Npax = 8
scheme basis dim  # of nonzero matrix elements butleast amount of work!
M large dimension 4 Tb of memory!
J(J=4) 9x107 3 x 1013 240 Tb of memory!
SU(3) 9 x 106 2 x 1012 16 Tb of memory!
(truncated)

From Dytrych, et al, Comp Phys Comm 207, 202 (2016)
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/ \ SAN DIEGO STATE
UNIVERSITY
J- . i , . n
M But more ‘complicated’ basis
states can give insight
m

"

example: 12C Np.x = 8

scheme basis dim # of nonzero matrix ele but least amount of work!
M large dimension memory!
J(J=4) 9x107 3x 1013 240 Thb

SU(3) 9 x 106 2x 102 16 Tb of

(truncated)

From Dytrych, et al, Comp Phys Comm 207, 202 (2010)
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CASE sTUDY: HLT

SAN DIEGO STATE
UNIVERSITY

-

..>
il — il

One proton outside a One proton outside a
filled shell filled shell
+ filled neutron shell + neutron 2p-2h
"“island of inversion” Frederic Nowacki
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CASE sTUDY: LT
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2
o L [ [ 3
®—® ho. (hQ=20MeV)
15— _
S 10| intruder states 1
=3 2hw
4 L _
L 12, |
- P r t
X
i normal states £ .
3/2 , Ohw *
ot @ & ® ® -
6 8 10
N

max
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CASE sTUDY: LT

SAN DIEGO STATE
UNIVERSITY
g
o L [ [ 3
®—® ho. hQ=20MeV)

S 10| intruder states
f,, _ 2hw
o0
L 12, S
-
* ke expt °
L normal states . l
3/2l Ohw *
0t @ & ® ® -
6 8 10

N

max
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CASE STUDY: 1LI

SAN DIEGO STATE
UNIVERSITY

I/-\I‘ \P> = F ‘ \P> millions or even billions

of components (in M-scheme)
W)= D cla)

(04
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CASE sTUDY: LT

SAN DIEGO STATE
UNIVERSITY

millions or even billions
of components (in M-scheme)

We can “x-ray’ the wave function

) Jerry Draayer
using group theory
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fraction of wave function

CASE sTUDY: L1

S
o

e
'

e
o

o

o
o

e
=

<
o

e

normal states
Ohw

intruder states

2hw

| | 1 | | A Iees B

100

125

C,(Sp(3,R))

312,

1

SAN DIEGO STATE
UNIVERSITY

Group-
theoretical
Decomposition

Symplectic
Sp(3.R)
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CASE sTUDY: ¢°F

SAN DIEGO STATE
UNIVERSITY

29F is an analog of 11Li

..:
il — il

One proton outside a One proton outside a
filled shell filled shell
+ filled neutron shell + neutron 2p-2h

“island of inversion"”
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CASE sTUDY: 29F

..:
1

E_(MeV)

SAN DIEGO STATE
UNIVERSITY
29F is an analog of '1Li
+ | I i
- 1/2 +.::::\ ]
— 52 \:§:§§§ —130
| "‘\. . .
B “intruder” {25 l
| Entem-Machleidt N3LO Daejeon-16 .
__ hw =20 MeV hw =175 —_20
i 12"
i + .======
5 5/t T TTEse—al -
R
m
I 1/2 ) ) . 17 m .
. normal .
I | | |
2 4 5 4
N
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fraction of wave function

CASE sTUDY: 29F

<o

0.6

0.4

2,

1900

et o
C,(Sp(3.R))

Npax = 4, natural orbitals

2200

Group-
theoretical
Decomposition

Symplectic
Sp(3.R)

SAN DIEGO STATE
UNIVERSITY
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The future (?) of the shell model
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The future (?) of the shell model
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The quantum computing gold rush....

— =3

Y/

'
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Qubits = superposition of bits
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0=alo+bl) Nt



Qubits = superposition of bits

SAN DIEGO STATE

UNIVERSITY

0=alo+blD Ayt

oo x) ... = (a|0) + b|1))(a |0) + b|1))...
= (0000 ...) + |1000 ... )+ |0100 ...) ...



Qubits = superposition of bits

SAN DIEGO STATE
UNIVERSITY

0=alo+bl) Nt

yalvelvalvelye s

1 35 gb ‘word’> = 34.7 billion elements in a vector



Qubits = superposition of bits

SAN DIEGO STATE
UNIVERSITY

e

This solves the problem of
exponential scaling!

&

-~ v

yalvalvalvelvene Vuri Manin

1 35 gb ‘word’> = 34.7 billion elements in a vector
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Qubits = superposition of bits

SAN DIEGO STATE
UNIVERSITY

e

So build those quantum
computers!

S

‘XMXMXMXMX) 'Richard feynman

1 35 gb ‘word’> = 34.7 billion elements in a vector
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Quantum computing & the shell model

SAN DIEGO STATE
UNIVERSITY
a 4

So we’re good?
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Quantum computing & the shell model

-

So we’re good?
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Not quite!

\
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Quantum computing & the shell model

-

So we’re good?

We still have to
represent the
Hamiltonian

SAN DIEGO STATE
UNIVERSITY

-

Not quite!
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Quanfum LanCZOS in real time

SAN DIEGO STATE

Parrish and McMahon, arXiv:1909.08925 UNIVERSITY

“Quantum Filter Diagonalization”

Key idea of “Quantum Lanczos”: take states at different ‘times’
to form a non-orthogonal reduced basis

lY,) = e|1/;0) Non = Wm[0n)  Hpn = (W | A0 In this reduced basis,

solve generalized
eigenvalue problem:

HY =ENv
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Quan'l'um LAaNCZoS in real time

SAN DIEGO STATE

Parrish and McMahon, arXiv:1909.08925 UNIVERSITY

“Quantum Filter Diagonalization”

Key idea of “Quantum Lanczos”: take states at different ‘times’
to form a non-orthogonal reduced basis

lY,) = e|1/)0) Non = Wm[0n)  Hpn = (W | A0 In this reduced basis,

solve generalized
eigenvalue problem:

Ho =E Nv
Amanda Bowman, SDSU M.S. student
in Computational Science

MS thesis: “Nuclear Spectra from Quantum Lanczos Algorithm with
Real-Time Evolution and Multiple Reference States”

arXiv:2309.00759

Ionel Stetcu,
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Quan'l'um LAaNCZoS in real time

_36.. ..................................................................................................... < Initial state: We evolved in
\ imaginary time a random state
=378 20Ne until < H > = Eyyy
S W, Real time
] “
L _38 N e
= \ \ — exact
S \ -®- QITE
= \ A -¥- RTE
8 -39 ‘\\ V\\
1N} \\ ‘~\\
40 e T
B 4 e MR ¥ v
/ . g.s. energy
-4l i 5 5 4 s 6
S = # iterations
—54
Imaginary time B ./ ...............................................................
)
=35 kY 22Nq
— \)
S . b
Here At = At = 0.1 MeV-! s —56 ‘\:\\ Higher density of states (odd-odd) - HF
= \ _ . — exact
S \“ . = smaller separation of gs. = oI
S _ 57 \ M = more work to extract g.s. —¥- RTE
& "%
e TV-o
W W
—8 R F“*-"““"--’F——w
g.s. energy —8
=90 2 4 6 8 10 12

S = # iterations

SAN DIEGO STATE
UNIVERSITY
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Quanfum LanCzoS in real time
8Be in full Op-shell

spherical (good j,m) basis Hartree-Fock basis
15 15
10" —— exact E1 -=- [E3 10 —— exact E, -=- [3
57 -¥- Egs - E2 - E4 57 -—¥- Egs —-—= E2 - E4
% a . *\\\"‘\ 2 ’) Tl
E _5 \\\ \\\-\ \\\.\~ E —5’ l\\\ \%,§ <
>-10 e Ml >-10 e
g -15 e R g -15 — !
c i e -—_ o gy c SU— _ L _ L]
H-207 W —20° e
-25 . e L] e D GG
-30 B S -30 e S
=350 2 4 6 8 10 "o 2 4 6 8 10
S S
(a) (b)

Figure 8.1. Numerical simulations of the QLanczos algorithm with exact real-
time evolution to solve for the lowest five energy states of the valence particles
of ®Be (two protons and two neutrons in the full p-shell). The simulation was
run using a single reference state; (a) the lowest energy configuration in the
spherical basis and (b) the Hartree-Fock state. A fixed number of real-time
evolution iterations was used (S = 8) with a time step size of At =0.1.

SAN DIEGO STATE
UNIVERSITY
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Quanfum LanCzoS in real time
SBg in full Op-shell

Dt}llbl.’lb ‘) /
/ 15
10+ —— exact -+- E -=- [E3

Energy (Mev)

57 -¥- Egs ——- E2 - E4

s 0 n el
(0] Q < .
E —57 \-\ \"s
~—10 . N BN
o -~ '~~"‘I———_..\ T~e
GC) —-15¢ e _ S~<g I
W20 =

-25 Y - R

-30. i e

—35 2 4 6 8 /10

S
(a)

Figure 8.1. Numerical simulations of the QLanczos algorithm with exact real-
time evolution to solve for the lowest five energy states of the valence particles
of ®Be (two protons and two neutrons in the full p-shell). The simulation was
run using a single reference state; (a) the lowest energy configuration in the
spherical basis and (b) the Hartree-Fock state. A fixed number of real-time

_30 L

=35

we obtain the g.s.
and excited states...
but...

(b)

evolution iterations was used (S = 8) with a time step size of At =0.1.

In just a few ‘iterations’

SAN DIEGO STATE
UNIVERSITY
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Quanfum LG”CZOS in real time

8Be in full Op-shell SAN DIEGO STATE
s SPITCTIC B / \
. . . :
10 — exact -+~ B = E In just a few ‘iterations
L —¥r Egs -+- E -- B4 .
. I A we obtain the g.s.
> = - B R
> S S e S and excited states...
515 S E but...
207 =S B
-25 \\\ S U —25[w_ N~
R e R S 300 Tt ) S S
-35 -35
\ 0 2 4 S 6 8 ]ﬂ 0 2 4 S 6 8

(b)
1e QLanczos algorithm with exact real-
/e energy states of the valence particles

H requires 975 Pauli strings

and ~ 24 000 gates in the full p-shell). The simulation was
’ the lowest energy configuration in the
e e eiei ey oo o=~ _ ock state. A fixed number of real-time

evolution iterations was used (S = 8) with a time step size of At =0.1.
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Let’s look at the data requirements

. . SAN DIEGO STATE
in more detail UNIVERSITY

Consider ?C, N .=8
M-scheme dimension 0.6 billion

55 single-particle orbitals (n 1)
440 single particle states(nljm) |011001...>



Let’s look at the data requirements

. . SAN DIEGO STATE
in more detail UNIVERSITY

Consider ?C, N .=8
M-scheme dimension 0.6 billion
S5 single-particle orbitals (n 1))

440 single particle states (nljm) | 011001...>

= estimate # of qubits needed



Let’s look at the data requirements
in more detail

Consider °C, N, .,.=8
M-scheme dimension 0.6 billion by superposition

# uncoupled 2-body matrix elements
~ 10 million! Vijkl a+i a+j ad = # ‘Pauli Strings,

= # of terms to be evaluated in a quantum circuit
(or, # of separate quantum circuits to be evaluated!)

~ 250,000,000 gates
(but polynomial scaling)

SAN DIEGO STATE
UNIVERSITY
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Quantum computing useful for the shell model
is still a ways off!
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Summary SAN DIEGO STATE

UNIVERSITY
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Summar SAN DIEGO STATE
Y

UNIVERSITY

The shell-model has come a long way in 75 years...

and the journey is not yet over!

Enjoy the Symposium!
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