Microscopic effective interactions for the nuclear Shell Model

(I) OLS transformation of No-Core Shell Model solution(II) Many-body perturbation theory (in Brillouin-Wigner form)

N. Smirnova, Zhen Li, LP2IB, CNRS/IN2P3 – University of Bordeaux, France

I.J. Shin, Y. Kim, IBS, Daejeon, Republic of Korea A.M. Shirokov, SINP, Moscow State University, Russia B.R. Barrett, Arizona State University, USA J.P. Vary, P. Maris, Iowa State University, USA

Symposium in Honor of the 75th Anniversary of the Nuclear Shell Model and Maria Göppert-Mayer, Argonne National Laboratory, USA, 19-21 July 2024

No-core shell model - (full) configuration-interaction approach

Ab-initio No-Core Shell Model : sufficiently large model space so that the results for A nucleons do not depend on the basis parameters (hw and N_{max})

Review by Barrett, Navratil, Vary, PPNP 69, 131 (2013)

Basis dimension grows fast ! Heavier nuclei ?

Valence-space shell model for heavier nuclei

• Current status :

- Excellent description with experimentally constrained interactions (Cohen-Kurath, Wildenthal-Brown,..)
- Microscopic interactions -> recent progress and challenges

Effective Interactions : multipole decomposition

Particle-particle form :

$$H = \sum \varepsilon_{i} a_{i}^{\dagger} a_{i} + \frac{1}{4} \sum_{ijkl,\lambda} w_{ijkl,\lambda} \left[a_{i}^{\dagger} \widetilde{a}_{j} \right]^{(\lambda)} \left[a_{k}^{\dagger} \widetilde{a}_{l} \right]^{(\lambda)} + \cdots$$
Multipole form :

$$H = \sum_{i} \varepsilon_{i} n_{i} + \sum_{i < j} \overline{V}_{ij} \frac{n_{i}(n_{j} - \delta_{ij})}{1 + \delta_{ij}} + V_{pair} + V_{quad} + \cdots$$
Monopole part
(spherical mean-field)
Higher Multipole part
(correlations)

- Only a physically meaningful combination of these ingredients will results in a successful description !
- Important to understand the nature of nuclear excitations (competition between sphericity and deformation)

Caurier, Martinez-Pinedo, Nowacki, Poves, Zuker, RMP77,427 (2005)

Neutron ESPEs in O-isotopes (from monopole part)

USDB – universal sd interaction: Richter, Brown, PRC74 (2006)

Microscopic approaches to valence-space interactions

Many-body perturbation theory (in Rayleigh-Schrödinger formalism up to 3rd order)

Bethe, Brueckner, Goldstone (from 50's ..) ; Bertsch, Kuo, Brown, Barrett, Kirson, (from 60's) Hjorth-Jensen, Kuo, Osnes, PR261, 126 (1995); Coraggio et al, Ann. Phys. (2009) PPNP(2012),...

Poor description of the monopole term (spherical mean-field)

Missing <mark>3N</mark> forces Poves, Zuker, PR70, 71 (1981), ...

NN+3N : Otsuka et al (2010), Holt et al (2013), Fukui et al, (2018); ...

Formal issue of the order-by-order convergence are not solved ! (Roth, Langhammer, PLB (2010, 2016) – iterative approach) => converging in HF basis, but not in HO one!

Microscopic approaches to valence-space interactions

Non-perturbative approaches

□ Valence-space In-Medium Similarity Renormalization Group – IMSRG (NN + 3N)

Stroberg et al, PRC93, 051301 (2016); PRL118, 032502 (2017), etc.

 $H(s) = U(s)H(0)U^{\dagger}(s),$

$$dH(s)/ds = [\eta(s), H(s)]$$

OLS transformation applied to NCSM results

$$H_{\rm eff} = P\mathcal{H}P = \frac{U_p^{\dagger}}{\sqrt{U_p^{\dagger}U_p}} H_p^{\rm d} \frac{U_p}{\sqrt{U_p^{\dagger}U_p}}$$

Dikmen, Lisetskiy, Barrett, Maris, Shirokov, Vary, PRC91, 064301 (2015) Vary, Basili, Weiji Du et al, PRC98, 065502 (2018) Smirnova, Barrett, Shin, Kim, Shirokov, Dikmen, Maris, Vary, PRC100, 054329 (2019) Shin, Smirnova, Shirokov, Yang, Barrett, Li, Kim, Maris, Vary, arXiv:2306.17289

• Coupled-cluster theory (NN + 3N)

Jansen et al, PRC94, 011301 (2016); Sun, Morris, Hagen et al, PRC98, 054320 (2018)

For review see Stroberg, Heigert, Bogner, Holt, Ann. Rev. Nucl. Part. Science 69, 307 (2019).

Ab-initio effective Hamiltonian from NCSM

Okubo-Lee-Suzuki (OLS) similarity transformation of the NCSM solution

Okubo, Prog. Theor. Phys. 12 (1954); Suzuki, Lee, Prog. Theor. Phys. 68 (1980) Dikmen, Lisetskiy, Barrett, Maris, Shirokov, Vary, PRC91, 064301 (2015) Vary, Basili, Weiji Du et al, PRC98, 065502 (2018) Smirnova, Barrett, Shin, Kim, Shirokov, Dikmen, Maris, Vary, PRC100 (2019) Shin, Smirnova, Shirokov et al, arXiv:2306.17289

FLOW

 \square ¹⁸F from NCSM at N_{max}

 \Box H_{eff} for ¹⁸F at N=0

 \Box ¹⁶O from the NCSM at N_{max}

➡ Core energy

 \Box ¹⁷O, ¹⁷F from the NCSM at N_{max}

One-body terms

□ Single-particle energies ε_i two-body matrix elements V_{ijkl}

No-Core Shell Model

$$H = \sum_{i < j} \frac{\left(\overrightarrow{p_i} - \overrightarrow{p_j}\right)^2}{2mA} + \sum_{i < j}^A V_{ij} + \left(\sum_{i < j < k}^A V_{ijk}\right)$$

Daejeon16 NN potential (EM-N3LO + SRG evolved + PETs)

-70 -70 -70 16 O ^{18}O ^{17}O -80 -80 -80 Ground state energy (MeV) -90 -90 -90 Extrap Extrap Extrap 100 -100 -100 Exp Exp -110 -110 -110 -120 -120 -120 -130 -130 -130 -140 -140 -140 -150 -150 -150 12 14 16 18 20 22 24 26 12 20 22 24 26 12 22 26 14 16 18 16 18 20 24 14 hΩ (MeV) $h\Omega$ (MeV) hΩ (MeV)

Daejeon16: Shirokov, Shin, Kim, Sosonkina, Maris, Vary, PLB761, 87 (2016) NCSM : Barrett, Navratil, Vary, PPNP 69, 131 (2013). MFDn code: Vary, Maris et al, Iowa State University

Low-energy spectrum of ¹⁸O from the NCSM with Daejeon16

- The states dominated by sdshell components are quickly converged!
- Intruder states (identified experimentally by large E2 matrix elements) are not converged yet!
- Such general structure of the spectrum is also typical for heavier sd-shell nuclei

Ab-initio effective Hamiltonian from the NCSM : A>18 nuclei

²³O

14 states : rms error 63 keV

Theoretical valence-space TBMEs and s.p.e.'s (without any A-dependence) robustly reproduce the NCSM results !

Sometimes poor agreement with experiment -> wrong theo s.p. energies

9 states : rms error 225 keV

universite

Ab-initio effective Hamiltonian from the NCSM : Theory & Experiment

N3LO : from chiral EFT by Entem, Machleidt, PRC68 (2003) JISP16 : Shirokov et al, PRC70, 044005 (2004) Daejeon16 : Shirokov et al, PLB761, 87 (2016) – based on N3LO + SRG evolved + phase-equivalently transformed Drawbacks (hw=14 MeV):

 Inversion of s1/2 and d5/2 orbitals
 Too large d3/2 – d5/2 spin-orbit splitting

> We adopt USDB single-particle energies and impose an A^{-0.3} mass dependence on TBMEs

Comparison of monopole properties valence-space interactions

Neutron ESPEs in O-isotopes

Some monopole modifications to DJ16 (change of centroids by ~100-300 keV) can be useful !

IMSRG results : Stroberg et al, PRL118, 032502 (2017).

Two-body effective interaction from NCSM + empirical s.p. energies

II. Brillouin-Wigner Many-body Perturbation theory for closed-shell and open-shell nuclei

Advances in Many-body Perturbation theory for closedshell and open-shell nuclei

Zhen Li, Ph.D. thesis University of Bordeaux (2020 – 2023) *Present address : TU Darmstadt

- Brillouin-Wigner perturbation expansion & convergence criterion

- Rayleigh-Schrödinger perturbation expansion – extension of the diagrammatic approach (automatic generation and evaluation of Feynman-Goldstone diagrams)

P-space Schrödinger equation: Exact Solution

□ P-space Schrödinger equation with an energy-dependent effective Hamiltonian

$$H|\Psi_k\rangle = E_k|\Psi_k\rangle \implies H_{\text{eff}}(E_k)|\Psi_k^{\mathbb{P}}\rangle = E_k|\Psi_k^{\mathbb{P}}\rangle$$
$$H_{\text{eff}}(E) \equiv PHP + PHQ\frac{1}{E - QHQ}QHP$$

Bloch, Horowitz, Nucl. Phys. 8, 91 (1958) Feschbach, Ann. Phys. 85, 357 (1958)

$$\boldsymbol{E}_{\mathbf{k}} \quad \begin{cases} H_{\text{eff}}(E) |\psi_{n}^{\mathbb{P}}(E)\rangle = f_{n}(E) |\psi_{n}^{\mathbb{P}}(E)\rangle \\ f_{n}(E) = E \end{cases}$$

• Singularities at the eigenvalues of *QHQ*

 $|\Psi_k\rangle = P|\Psi_k\rangle + Q|\Psi_k\rangle$ $f'_n(E) \le 0$ $f'_n(E_k) = -\frac{\langle \Psi_k | Q | \Psi_k \rangle}{\langle \Psi_k | P | \Psi_k \rangle} \le 0$

□ Constructing the effective Hamiltonian by perturbative expansion

$$H_{\rm eff}(E) \equiv PHP + PHQ \frac{1}{E - QHQ} QHP$$

$$\frac{1}{E - QHQ} = \underbrace{\frac{1}{(E - QH_0Q - Q\xi Q)}}_X - \underbrace{(QH_1Q - Q\xi Q)}_Y$$

- Ratio of geometric series (*E*-dependent)
- \succ Hamiltonian partitioning parameter: ξ

$$\frac{1}{X-Y} = \frac{1}{X} + \frac{1}{X}Y\frac{1}{X-Y} = \frac{1}{X} + \frac{1}{X-Y}Y\frac{1}{X}$$
$$= \frac{1}{X} + \frac{1}{X}Y\frac{1}{X} + \frac{1}{X}Y\frac{1}{X}Y\frac{1}{X} + \dots = \lim_{n \to \infty} \sum_{k=0}^{n} R^{k}\frac{1}{X},$$

$$R \equiv \frac{1}{X}Y = 1 + \frac{1}{E - Q(H_0 + \xi)Q}(QHQ - E)$$

Convergence Criterion : the spectral radius of **R** should be smaller than 1

 $\rho(R) < 1$

As long as $E < E_1^{QHQ}$ the BW perturbation series can always be made convergent, i.e. for the lowest states of each J^{π} (in particular, ground state) due to the variational principle.

Universal conclusion, independent of the choice of basis (HO or HF) or the choice of the internucleon interaction (soft or hard).

Zhen Li, Smirnova, Phys. Lett. B854, 138749 (2024)

□ High perturbative order calculations by direct *QRQ* matrix multiplication

$$H_{\rm eff}(E) = PHP + PHQ \left(\lim_{n \to \infty} \sum_{k=0}^{n} R^k \right) \frac{1}{E - QH_0Q - Q\xi Q} QHP,$$

Time complexity in each multiplication ~ $O(d_q^3)$

□ High perturbative order calculations by *K*-box iterations (Zhen Li, PhD thesis)

$$\begin{split} H_{\text{eff}}(E) &= PHP + P\hat{K}(E)Q\frac{1}{E - QH_0Q - Q\xi Q}QHP.\\ \hat{K}(E) &\equiv PHQ + PHQ\frac{1}{E - QHQ}(QH_1Q - Q\xi Q)\\ &= PHQ + P\hat{K}(E)Q\frac{1}{E - QH_0Q - Q\xi Q}(QH_1Q - Q\xi Q)\\ \hat{K}^{(n+1)}(E) &= PHQ + P\hat{K}^{(n)}(E)Q\frac{1}{E - QH_0Q - Q\xi Q}(QH_1Q - Q\xi Q), \ n = 0, 1, 2, \cdots\\ |\Psi_k\rangle &= |\Psi_k^{\mathbb{P}}\rangle + \frac{1}{E_k - QH_0Q - Q\xi Q}\hat{K}^{\dagger}(E_k)|\Psi_k^{\mathbb{P}}\rangle\\ \text{Time complexity in each iteration} \sim O(d_p \cdot d_q^2) \end{split}$$

Møller-Plesset (MP) partitioning with a normalordered Hamiltonian (cf. R.Roth, J. Langhammer, PLB683, 282 (2010))

BORDEAUX

*BORDEAUX

Zhen Li, PhD Thesis, University of Bordeaux (2023)

Zhen Li, PhD Thesis, University of Bordeaux (2023)

Zhen Li, Smirnova, Phys. Lett. B854, 138749 (2024)

 $\xi = 0 \,\,\mathrm{MeV}$

6Li : exact solution by matrix inversion

Zhen Li, PhD Thesis, University of Bordeaux (2023) Zhen Li, N. Smirnova, Phys. Rev. C109, 064318 (2024)

université **BORDEAUX** of ⁶Li,

 $\hbar\omega = 18$ MeV,

 $N_{\text{max}}=2.$

Zhen Li, PhD Thesis, University of Bordeaux (2023) Zhen Li, Smirnova, Phys. Rev. C109, 064318 (2024)

P-space Schrödinger equation for ⁷Li: Exact Solution

 $1/2^{-}$ states in ⁷Li with Daejeon16, HO basis : $\hbar \omega = 18$ MeV, $N_{max}=2$ $1/2^{-}$ states in ⁷Li with N3LO, HO basis : $\hbar \omega = 18$ MeV, $N_{max}=2$

NCSM calculation for ⁷Li : 1/2⁻ states

Conclusions and Perspectives

- Microscopic derivation of effective valence-space interaction for the nuclear shell model is still challenging, although it rapidly progresses (talk by S.R. Stroberg)
- OLS transformation of the NCSM solution gives encouraging results :

further steps are foreseen towards larger NCSM spaces and/or larger valence-spaces (*p-sd-pf*).

- MBPT revisited convergence criterion for BW MBPT always converging for the lowest J^π (*PhD thesis of Zhen LI*) => further implications for RS MBPT ?
- Importance of microscopic approaches to effective interactions and transition operators as first-principles derivation of the Nuclear Shell Model, started 75 years by M. Goeppert-Mayer et al, and towards precision nuclear theory for spectroscopy of exotic nuclei, fundamental interaction studies and astrophysical applications

BACKUP SLIDES

Hermitian Effective Hamiltonian

$$\begin{split} H_{\text{eff}}^{\text{her}} &= \sum_{\alpha \in \mathbb{P}} E_{\alpha} | \bar{\Psi}_{\alpha}^{\mathbb{P}} \rangle \langle \bar{\Psi}_{\alpha}^{\mathbb{P}} | \\ &= \sum_{\alpha \in \mathbb{P}} E_{\alpha} \frac{1}{\sqrt{\mathscr{V}} \mathscr{V}^{\dagger}} | \Psi_{\alpha}^{\mathbb{P}} \rangle \langle \Psi_{\alpha}^{\mathbb{P}} | \frac{1}{\sqrt{\mathscr{V}} \mathscr{V}^{\dagger}} \\ &= \sum_{\alpha \in \mathbb{P}} E_{\alpha} \frac{1}{\sqrt{\mathscr{V}} \mathscr{V}^{\dagger}} \mathscr{V} | \Phi_{\alpha} \rangle \langle \Phi_{\alpha} | \mathscr{V}^{\dagger} \frac{1}{\sqrt{\mathscr{V}} \mathscr{V}^{\dagger}} \\ &= \frac{1}{\sqrt{\mathscr{V}} \mathscr{V}^{\dagger}} \mathscr{V} \sum_{\alpha \in \mathbb{P}} E_{\alpha} | \Phi_{\alpha} \rangle \langle \Phi_{\alpha} | \mathscr{V}^{\dagger} \qquad 1 \\ &= \frac{1}{\sqrt{\mathscr{V}} \mathscr{V}^{\dagger}} \mathscr{V} H_{\text{eff}}^{\text{diag}} \mathscr{V}^{\dagger} \frac{1}{\sqrt{\mathscr{V}} \mathscr{V}^{\dagger}}, \end{split}$$

OLS transformation!

Zhen Li, PhD thesis (2023)

$$\mathscr{V} \equiv \sum_{\alpha \in \mathbb{P}} |\Psi_{\alpha}^{\mathbb{P}}\rangle \langle \Phi_{\alpha}|,$$

$$\mathscr{V}|\Phi_{\alpha}\rangle = |\Psi_{\alpha}^{\mathbb{P}}\rangle, \ |\Phi_{\alpha}\rangle = \frac{1}{\mathscr{U}}|\Psi_{\alpha}^{\mathbb{P}}\rangle.$$
$$|\Psi_{\alpha}^{\mathbb{P}}\rangle = \sum_{\beta \in \mathbb{P}} c_{\beta}^{\alpha}|\Phi_{\beta}\rangle,$$

$$\mathscr{V} \equiv \sum_{\alpha \in \mathbb{P}} |\Psi_{\alpha}^{\mathbb{P}}\rangle \langle \Phi_{\alpha}| = \sum_{\alpha \beta \in \mathbb{P}} c_{\beta}^{\alpha} |\Phi_{\beta}\rangle \langle \Phi_{\alpha}| = \begin{pmatrix} c_{1}^{1} & c_{1}^{2} & c_{1}^{3} & \cdots & c_{1}^{d_{p}} \\ c_{2}^{1} & c_{2}^{2} & c_{2}^{3} & \cdots & c_{2}^{d_{p}} \\ c_{3}^{1} & c_{3}^{2} & c_{3}^{3} & \cdots & c_{3}^{d_{p}} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ c_{d_{p}}^{1} & c_{d_{p}}^{2} & c_{d_{p}}^{3} & \cdots & c_{d_{p}}^{d_{p}} \end{pmatrix},$$

 U_P

BW MBPT: Practical Calculations for Closed-Shell Nuclei

TABLE I. NCSM and BW perturbative calculations (up to sth order) for ground-state energies of ⁴He and ¹⁶O in the HO basis (with $\xi = -110$ MeV for ⁴He and $\xi = -700$ MeV for ¹⁶O in the BW calculation) and in the HF basis (with $\xi = \langle \Phi_0^{\text{HF}} | H_1 | \Phi_0^{\text{HF}} \rangle$ in the BW calculation) using Daejeon16 at $\hbar \omega = 18$ MeV. All results are in MeV.

⁴He, ¹⁶O Daejeon16 HO basis HF basis

	${}^{4}\mathrm{He}$ (N_{r}	$_{\max} = 8)$	${}^{16}O(N_{\rm max} = 4)$		
	НО	HF	НО	HF	
$E_0^{s=2}$	-28.01359	-27.14811	-118.13825	-112.40727	
$E_0^{s=3}$	-28.00295	-27.17558	-120.06510	-112.54381	
$E_0^{s=4}$	-28.26353	-27.25373	-121.33342	-113.07813	
$E_0^{s=5}$	-28.28442	-27.25545	-121.91554	-113.10792	
$E_0^{s=15}$	-28.35976	-27.28330	-123.30212	-113.30945	
$E_0^{s=30}$	-28.36002	-27.28484	-123.41894	-113.31082	
$E_0^{s=100}$	-28.36002	-27.28575	-123.42361	-113.31083	
$E_0^{s=500}$	-28.36002	-27.28577	-123.42361	-113.31083	
$E_0^{s=1000}$	-28.36002	-27.28577	-123.42361	-113.31083	
$E_0^{ m NCSM}$	-28.36002	-27.28577	-123.42361	-113.31083	

BW MBPT: Practical Calculations for Closed-Shell Nuclei

TABLE IV. NCSM and BW perturbative calculations (up to s-th order) for the ground-state energy of ⁴He in the HO basis (with $\xi = -100$ MeV for the BW calculation) and in the HF basis (with $\xi = \langle \Phi_0^{\text{HF}} | H_1 | \Phi_0^{\text{HF}} \rangle$ for the BW calculation) using bare N³LO at $\hbar \omega = 18$ MeV. All results are in MeV. The BW calculation with Newton-Raphson method is accurate to five decimals.

	НО			HF				
n	$N_{\rm max} = 2$	$N_{\rm max} = 4$	$N_{\rm max} = 6$	$N_{\rm max} = 8$	$N_{\rm max} = 2$	$N_{\rm max} = 4$	$N_{\rm max} = 6$	$N_{\rm max} = 8$
$E_0^{s=2}$	-0.530832	-4.149134	-7.473451	-10.719939	-0.125452	-0.526093	-1.510957	-2.896199
$E_0^{s=3}$	-0.547340	-3.882176	-6.428496	-9.069256	-0.195070	-0.608768	-1.528564	-2.686137
$E_0^{s=4}$	-0.632759	-4.481249	-7.442481	-10.503010	-0.237846	-0.667145	-1.632932	-2.892069
$E_0^{s=5}$	-0.638694	-4.434704	-7.235149	-9.993368	-0.265701	-0.699333	-1.662130	-2.889808
$E_0^{s=15}$	-0.652676	-4.681085	-7.784302	-10.471968	-0.320884	-0.815951	-1.758446	-3.000200
$E_0^{s=30}$	-0.652677	-4.683303	-7.807257	-10.505933	-0.321967	-0.845367	-1.772948	-3.007236
$E_0^{s=60}$	-0.652677	-4.683305	-7.807468	-10.506586	-0.321970	-0.849591	-1.778828	-3.008488
$E_0^{s=100}$	-0.652677	-4.683305	-7.807468	-10.506587	-0.321970	-0.849665	-1.779707	-3.008655
$E_0^{s=500}$	-0.652677	-4.683305	-7.807468	-10.506587	-0.321970	-0.849665	-1.779779	-3.008674
$E_0^{s=1000}$	-0.652677	-4.683305	-7.807468	-10.506587	-0.321970	-0.849665	-1.779779	-3.008674
$E_0^{ m NCSM}$	-0.652677	-4.683305	-7.807468	-10.506587	-0.321970	-0.849665	-1.779779	-3.008674

⁴He bare N³LO HO basis HF basis

TABLE VIII. NCSM and BW perturbative calculations (up to *s*-th order) for the ground-state energy of ¹⁶O in the HO basis (with $\xi = -560$ MeV for the BW calculation) and in the HF basis (with $\xi = \langle \Phi_0^{\text{HF}} | H_1 | \Phi_0^{\text{HF}} \rangle$ for the BW calculation) using bare N³LO at $\hbar \omega = 18$ MeV. All results are in MeV. The BW calculation with Newton-Raphson method is accurate to five decimals.

-	Н	0	Н	F
	$N_{ m max}=2$	$N_{\rm max} = 4$	$N_{ m max}=2$	$N_{\rm max} = 4$
$E_0^{s=2}$	42.545013	29.961898	20.239825	16.480781
$E_0^{s=3}$	38.888442	25.850009	20.047393	16.177286
$E_0^{s=4}$	37.362261	23.426032	19.964050	15.886262
$E_0^{s=5}$	36.667869	22.153320	19.934056	15.806596
$E_0^{s=15}$	36.002796	19.207584	19.874920	15.681176
$E_0^{s=30}$	36.001904	19.070073	19.870695	15.678891
$E_0^{s=60}$	36.001904	19.068297	19.870600	15.678772
$E_0^{s=100}$	36.001904	19.068297	19.870600	15.678772
$E_0^{s=500}$	36.001904	19.068297	19.870600	15.678772
$E_0^{s=1000}$	36.001904	19.068297	19.870600	15.678772
$E_0^{ m NCSM}$	36.001904	19.068297	19.870600	15.678772

¹⁶O bare N³LO HO basis HF basis

