

Quest for a comprehensive shell model to track the evolution in nuclear structure

Rebeka Sultana Lubna

Facility for Rare Isotope Beams (FRIB)

This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics and used resources of the Facility for Rare Isotope Beams (FRIB) Operations, which is a DOE Office of Science User Facility under Award Number DE-SC0023633.

Evolution of Nuclear Shell Structure

- Nuclear shell gaps and hence the magic numbers are not constant as they were believed to be.
 - Nuclei with high N/Z → Normal magic number disappear; new magic number can emerge.

Evolution of Nuclear Shell Structure

- Nuclear shell gaps and hence the magic numbers are not constant as they were believed to be.
- Nuclei with high N/Z → Normal magic number disappear; new magic number can emerge.
- Disappearance effect of the neutron magic number 20 in the nuclei within the Island of Inversion(IoI).
 Ground state has normal

		(in)							-	1
²⁹ P	³⁰ P	31P	32p	33p	34p	5p	36p	37p	38p	39
²⁸ Si	²⁹ Si	³⁰ Si	³¹ Si	³² Si	33Si	³⁴ Si	³⁵ Si	³⁶ Si	³⁷ Si	38
²⁷ Al	²⁸ AI	²⁹ Al	30AI	³¹ Al	³² AI	33AI	³⁴ AI	³⁵ Al	³⁶ AI	37
²⁶ M	²⁷ Mg	28 Mg	²⁹ Mg	³⁰ Mg	³¹ Mg	³² Mg	³³ Mg	³⁴ Mg	³⁵ Mg	36J
²⁵ Na	²⁶ Na	²⁷ Na	²⁸ Na	²⁹ Na	³⁰ Na	³¹ Na	³² Na	³³ Na	³⁴ Na	35
²⁴ Ne	²⁵ Ne	²⁶ Ne	²⁷ Ne	²⁸ Ne	²⁹ Ne	³⁰ Ne	³¹ Ne	³² Ne	³³ Ne	34
Stable	•		10 h	> t _{1/2} > 1	0 min	Y	t _{1/2} > 10	0 <u>ms</u>		
t _{1/2} >	years		10 m	10 min > t _{1/2} > 1 min			100 ms > t _{1/2} > 10 ms			
t _{1/2} > days			t _{1/2} >10 sec				10 ms >	t _{1/2} > 1 m	ns	
t _{1/2} >	10 hours	6	10 se	ec > t _{1/2} >	1 sec					

stable

³⁶S,

Evolution of Nuclear Shell Structure Highlighted region Z \leq **20, N** \geq **20**

http://www.nuclear.csdb.cn/nuclear/index.asp

20	Ca37	Ca38 440 MS	Ca39 8596 MS	Ca40 96.94	Ca41 105000 y	Ca42 0.647	Ca43 0.135	Ca44 2.09	Ca45	Ca46 0.004	Ca47 4.556 D	Ca48	Са49 влаж	Ca50	Ca51 100 s	Ca52
19	K36 342 MS	K37 1 226 S	К38 7 <i>б</i> ърм	K39 932581	K40 0.0117	K41 6.7302	K42 12.360 н	K43 22.3 H	K44 22.13 м	К45 17.3 м	K46 105 8	K47 17.50 S	K48 685	K49 1 26 S	K50 472 MS	K51 365 MS
18	Ar35 1.7758	Ar36 0.3365	Ar37 3504 D	Ar38	Ar39 269 Y	Ar40 99.603	Ar41 109.34 M	Ar42 29 y	Ar43 5.37 M	Ar44	Ar45 21.48 S	Ar46 BAS	Ar47 _700 жs	Ar48	Ar49	Ar50
17	C134 1.5264 S	C135 7577	C136	C137 2423	C138 3724 M	С139 556 м	C140	C141 ¥84 s	C142	Cl43 338	Cl44 0.56 8	C145 400 MS	C146 223 MS	С147 >200 xs	С148 >200 xs	С149 ->170 NS
16	S33 075	\$34 421	S35 87.38 D	\$36 012	S37 505 м	S38 170.3 м	S39 11.58	S40 BBS	S41 268	S42 0.56 S	S43 220 MS	S44 123 MS	S45 ez ms	S46 >200 NS	S47 ×шхз	S48 >200 NS
15	P32 14262 D	P33 25.34 D	P34 12.438	P35 47.3 \$	P36 563	P37 2.31 8	P38 0.64 S	P39 0.16 8	P40 260 MS	P41 120 MS	P42	Р43 33 мз	Р44 >200 жs	Р45 >200 мs	Р46 >200 уз	
14	Si31 1573M	Si32	Si33 6.332 8	Si34 2.77 s	Si35 0.78 s	Si36 0458	Si37 SUMS	Si38 >1 US	Si39	Si40 >200 NS	Si41 >200 NS	Si42		<i></i>	in the	
13	A130 3£08	A131 644 MS	A132 33 MS	A133 >1 US	A134 60 MS	A135	A136 50 MS	A137	A138	А139 ×200 xs	A140 >260 MS	28				
12	Mg29 1.308	Mg30 335 MS	Mg31 230 MS	Mg32 120 MS	Mg33 soms	Mg34 20 MS	Mg35 тожа	Mg36 ×шля	Mg37 ×260 NS							
11	Na28 30.5 MS	Na29 44.9 MS	Na30 48 MS	Na31 170 MS	Na32 132 MS	Na33 82 MS	Na34 5.5 MS	Na35 1.5 MS								
10	Ne27 32 MS	Ne28 17 MS	Ne29 200 MS	Ne30	Ne31 >260 NS	Ne32 >200 NS			-							
				20												

- Evolution of shell structure in light neutronrich systems led to the discoveries in dramatic changes in magic numbers.
- Studies conducted near N = 20, huge prospects close to N =28 with the radioactive ion beam.

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science | Michigan State University 640 South Shaw Lane • East Lansing, MI 48824, USA frib.msu.edu

R. S. Lubna, 16 May 2024, Slide 4

Experimental Signatures of Structural Evolution

C.R. Hoffman et al., Physics Letters B 672 17 (2009)

Experimental Signatures of Structural Evolution

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science | Michigan State University 640 South Shaw Lane • East Lansing, MI 48824, USA frib.msu.edu

Experimental Signatures of Structural Evolution

FRIB

٠

٠

٠

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science | Michigan State University 640 South Shaw Lane • East Lansing, MI 48824, USA frib.msu.edu

1. E. K. Warburton and B. A. Brown, Phys. Rev. C 46, 923 (1992).

P.C.Bender *et al.*, Phys. Rev. C 80, 014302 (2009)

 $WBP^{1} \longrightarrow WBP-b^{2}$

- Adjusted single-particle energies (SPE) of 0f_{7/2} and 1p_{1/2} orbitals to better reproduce energy states of odd-mass Si isotopes.
- Reduced SPE of $0f_{7/2}$ by 1.4 MeV and raised $1p_{1/2}$ by 0.4 MeV.
- Provided satisfactory interpretation of the negativeparity intruder energy levels.

<u>6781 11/2</u>	<u>6855 11/2</u>				
	5547 0/2			33	Si
<u>5254 9/2</u>	<u>5547 9/2</u>	<u>5311 11/2</u>	<u>5375 11/2</u>	Evn	WRPh
4934 3/2	4818 3/2	4998 9/2	5121 9/2	Exp.	WDI-U
					<u>4433 11/2</u>
	3887 7/2			<u>4090 11/2</u>	
<u>3623 7/2</u> Exp		<u>3533 3/2</u>	3524 3/2		<u>3497 9/2</u>
Exp.	WBP-0	<u>3134 7/2</u>	<u>2922 7/2</u>	<u>3159 9/2</u>	
²⁹	1	Exp.	WBP-b		2295 3/2
	<u>)</u>	31		<u>1981 3/2</u>	
			Si	<u>1435 7/2</u>	<u>1629 7/2</u>

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science | Michigan State University 640 South Shaw Lane • East Lansing, MI 48824, USA frib.msu.edu

- 1. E. K. Warburton and B. A. Brown, Phys. Rev. C 46, 923 (1992).
- P.-L.Tai *et al.*, Phys. Rev. C 96, 014323 (2017).

2.

$WBP^{1} \longrightarrow WBP-M^{2}$

- Adjusted single-particle energies (SPE) of fp-shell orbitals to better reproduce energy states of ²⁷Ne.
- Reduced SPE of 0f-1p shell orbitals by 0.7 MeV.
- For the nearby isotopes, it required 1.0 MeV reduction.

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science | Michigan State University 640 South Shaw Lane • East Lansing, MI 48824, USA frib.msu.edu

1. E. K. Warburton and B. A. Brown, Phys. Rev. C 46, 923 (1992).

S.M.Brown *et al.*, Phys. Rev. C 85, 011302(R) (2012).

$WBP \xrightarrow{1} WBP-M$

- Adjusted single-particle energies (SPE) of fp-shell orbitals to better reproduce energy states of ²⁷Ne.
- Reduced SPE of 0f-1p shell orbitals by 0.7 MeV.
- For the nearby isotopes, it required 1.0 MeV reduction.

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science | Michigan State University 640 South Shaw Lane • East Lansing, MI 48824, USA frib.msu.edu

1. E. K. Warburton and B. A. Brown, Phys. Rev. C 46, 923 (1992). 2.

S.M.Brown et al., Phys. Rev. C 85, 011302(R) (2012).

$WBP^{1} \longrightarrow WBP-M^{2}$

- Adjusted single-particle energies (SPE) of fp-shell orbitals to better reproduce energy states of ²⁷Ne.
- Reduced SPE of 0f-1p shell orbitals by 0.7 MeV.
- For the nearby isotopes, it required 1.0 MeV reduction.

interesting to develop a new interaction that would succeed in reducing the effective gap between the $0d_{3/2}$ orbital and the 0f-1p shell in a natural way, without the need for *ad hoc* changes.

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science | Michigan State University 640 South Shaw Lane • East Lansing, MI 48824, USA frib.msu.edu

1. E. K. Warburton and B. A. Brown, Phys. Rev. C 46, 923 (1992).

2. S.M.Brown et al., Phys. Rev. C 85, 011302(R) (2012).

- Empirical shell-model interaction FSU^{1, 2} was developed within *spsdfp* modelspace using data fitting procedure.
- A modified version of the WBP³ interaction was used as the starting point.
- sd-shell TBME replaced with USDB.⁴
- Fp-shell TBME replaced with gxpf1a.⁵
- Data fitting was performed within the *p*sd-fp model-space.
- A linear combination of 70 parameters were fitted by using 270 experimentally observed states compiled from the NNDC.⁶
 - R. S. Lubna et al., Phys. Rev. C 100, 034308 (2019)
 R. S. Lubna et al., Phys. Rev. Research 2, 043342 (2020)
 E. K. Warburton and B. A. Brown, Phys. Rev. C 46, 923 (1992).
 B. A. Brown and W. A. Richter, Phys. Rev. C 74, 034315 (2006).
 M. Homa et al., Eur. Phys. J A 25, 499 (2005).
 www.nndc.bnl.gov

Are we there yet?

- Do we have a comprehensive model for the *s-p-sd-pf* model space?
- Short answer is "Not yet"
- Major limitations lies in predicting structural properties for
- > Higher ratio of N/Z.
- > Mid-shell nuclei.
- > Opposite-parity intruder states.
- > And many more...
- Require 'useful' data from experiments.

β⁻ Decay in Exploring Shell Evolution

β^{-} decay grants access to very exotic isotopes

βxn branches:

- Understand the process of β -delayed neutron emission. <u> β -delayed γ transitions:</u>
- Level structure of the descendant nuclei.
- GT and FF transition strength. Ground-state half-life:
- First insight into the structure.
- Shell-structure and evolution. Isomers and Shape co-existence:
- β-decay can populate isomers.
- Can decay via β , γ or IC/ IPF.
- Provide Insight into shape/ configuration coexistence.

β decay of neutron-rich CI isotopes, ⁴⁵CI

Complete spectroscopy performed

at FRIB followed by β -decay of ⁴⁵Cl.

FRIB

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science | Michigan State University 640 South Shaw Lane • East Lansing, MI 48824, USA frib.msu.edu

I. Cox et al., Phys. Rev. Lett. 132, 152503 (2024)

β decay of neutron-rich Cl isotopes, ⁴⁵Cl

nTOF (ns)

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science | Michigan State University 640 South Shaw Lane • East Lansing, MI 48824, USA frib.msu.edu

Cox et al., Phys. Rev. Lett. 132, 152503 (2024)

β decay of neutron-rich Cl isotopes, ⁴⁵Cl

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science | Michigan State University 640 South Shaw Lane • East Lansing, MI 48824, USA frib.msu.edu

Cox *et al.*, Phys. Rev. Lett. 132, 152503 (2024) *Y. Utsuno *et al., Phys. Rev.* C 86, 051301(R) (2012)

β decay of neutron-rich Cl isotopes, ⁴⁷Cl

- (a) Possible first-forbidden decay channel in the single-particle picture of ⁴⁷Cl.
- (b) Cumulative β-feeding probability of ⁴⁷Cl with SDPF-MU¹ shell-model interaction.

- Role of First Forbidden transitions in determining P_{xn} values and $T_{1/2}$ values.
- Understanding the delayed neutron spectrum and its relation to the B(GT) strength distribution.
- Understand the structure of the descendant nuclei.

Systematics of odd-mass CI and K isotopes

- Spin-parity assigned mainly following systematics, γ-ray decay pattern, β-decay, theory predictions.
- No direct measurements were conducted.

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science | Michigan State University 640 South Shaw Lane • East Lansing, MI 48824, USA frib.msu.edu

Vandana Tripathi et alPhys. Rev. C 109, 044320 (2024)

Systematics of odd-mass CI and K isotopes

- Spin-parity assigned mainly following systematics, γ-ray decay pattern, β-decay, theory predictions.
- No direct measurements were conducted.

Facility for Rare Isotope Beams

U.S. Department of Energy Office of Science | Michigan State University 640 South Shaw Lane • East Lansing, MI 48824, USA frib.msu.edu

- Ground-state spin inversion between 3/2⁺ and 1/2⁺ in odd-mass K and Cl isotopes.
- Experimental energy differences compared with the shell model performed with the SD-PF-SDG^{*} interaction.

Vandana Tripathi *et al*Phys. Rev. C 109, 044320 (2024) * S. Yoshida *et al.*, Phys. Rev. C 97, 054321 (2018)

- No experimental data for higher masses available from direct reaction.
- Radioactive Ion (RI) beams can help.

- ^{36,38,40}Ar(*d*,³He)^{35,37,39}Cl reactions provide measurement of proton pickup.
- Ground-state configuration dominated by unpaired proton in d_{3/2}.

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science | Michigan State University 640 South Shaw Lane • East Lansing, MI 48824, USA frib.msu.edu

G.MAirle et al., Nucl. Phys. A 565, 543 (1993)

• ^{36,38,40}Ar(*d*,³*He*)^{35,37,39}Cl reactions provide measurement of proton-hole states.

Ground-state configuration dominated by unpaired proton in d_{3/2}.

• Proton removal reactions can provide direct insight into the proton shell evolutions.

⁴⁶Ar*(d,³He)*⁴⁵Cl reaction to study the ground-state proton configuration of ⁴⁵Cl.

FRIB

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science | Michigan State University 640 South Shaw Lane • East Lansing, MI 48824, USA frib.msu.edu

G.MAirle et al., Nucl. Phys. A 565, 543 (1993)

- ^{36,38,40}Ar(*d*,³*He*)^{35,37,39}Cl reactions provide measurement of proton-hole states.
- Ground-state configuration dominated by unpaired proton in d_{3/2}.

- Proton removal reactions can provide direct insight into the proton shell evolutions.
 - For neutron shell evolutions, some best choices are neutron adding/removal reactions.

⁴⁶Ar*(d,³He)*⁴⁵Cl reaction to study the ground-state proton configuration of ⁴⁵Cl.

⁴⁴Cl*(d,p)*⁴⁵Cl reaction to study the emptiness or fullness of the f_{7/2}, p_{3/2}, evolution of the fp-shell orbitals.

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science | Michigan State University 640 South Shaw Lane • East Lansing, MI 48824, USA frib.msu.edu

G.MAirle et al., Nucl. Phys. A 565, 543 (1993)

N=28 shell gap migration via particle-transfer reactions

- Evolution in SPE and spin-orbit (SO) splitting between $1p_{3/2}$ and $1p_{1/2}$ around N=28 isotones were studied.
- Systematics around N=20 was explored.
- Single nucleon transfer reaction is one of the best approaches.

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science | Michigan State University 640 South Shaw Lane • East Lansing, MI 48824, USA frib.msu.edu *Y. Utsuno et al., Phys. Rev. C 86, 051301(R) (2012)

N=28 shell gap migration via particle-transfer reactions

J. Chen et al., Phys. Lett. B 835, 138678 (2024)

SPE (MeV)

Facility for Rare Isotope Beams

U.S. Department of Energy Office of Science | Michigan State University 640 South Shaw Lane • East Lansing, MI 48824, USA frib.msu.edu

- S isotopes around *N*=28 are well known for their deformed ٠ nature.
- (d,p), (d,t) reactions can extract single particle properties. ٠
- Determine spin-orbit splitting from SPE of the *fp*-shell orbitals. ٠
- Fragmentation of single particle strength. ٠
- Energy, spectroscopic factors predicted with the SDPF-MU interaction*.

*Y. Utsuno et al., Phys. Rev. C 86, 051301(R) (2012)

Unlocking Potentials...

- Huge discovery potential with the rare isotope (RI) beams and state-of-arts detection systems.
- More exotic isotopes can be explored.
- Unconventional structural properties.
- Can provide crucial role in developing comprehensive models to track the structural trajectories from stable towards drip-line nuclei consistently.

Thank you

Sincere thanks to the collaborators.

Work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under Grant No DE-SC0020451 (FRIB).

Back up slides

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science | Michigan State University 640 South Shaw Lane • East Lansing, MI 48824, USA frib.msu.edu

R. S. Lubna, 16 May 2024, Slide 34

Туре	L	$\Delta \boldsymbol{\pi}$	Fermi ∆ <i>I</i>	Gamow-Teller ∆ <i>I</i>	Log ft
Superallowed	0	No	0	0	2.9-3.7
Allowed	0	No	0	0,1	4.4-6.0
1st Forbidden	1	Ye s	0, 1	0, 1, 2	6-10
2nd Forbidden	2	Ye s	1,2	1, 2, 3	10-13

³⁴Si: Transitional Nucleus along N = 20

- Compared the experimental levels with some modern theoretical models.
- SDPF-U-MIX, SDPF-MU, VS-IMSRG calculations consider mixing. FSU calculations do not consider any mixing in different types of excitations.
- FSU, SDPF-U-MIX and VS-IMSRG well predicts the first excited 0⁺ and 2⁺ with the $2\hbar\omega$ excitation.

- The first negative parity 3⁻, 4⁻, 5⁻ states are dominated by the $1\hbar\omega$ excitation with the dominant configuration $\left(\nu d_{\frac{3}{2}}\right) 1 \otimes \left(\nu f_{\frac{7}{2}}\right) 1$
- All except for FSU interaction fail to predict opposite parity states.

Facility for Rare Isotope Beams

U.S. Department of Energy Office of Science | Michigan State University 640 South Shaw Lane • East Lansing, MI 48824, USA frib.msu.edu

1. Phys. Rev. C 109, 014309 (2024)

2. Phys. Rev. C 100, 034306 (2019).

3. Phys. Rev. C 86, 051301(R) (2012).

Particle transfer reaction with SOLARIS at FRIB Simultaneous (*d*, *p*) and (*d*, *t*) with ^{40,42}S beams (Accepted)

- S isotopes around *N*=28 are well known for their deformed nature.
- The advantage of simultaneous measurements is a reliable extraction of the effective single-particle energies (ESPE) of the neutron fp-shell orbitals.
- Determine spin-orbit splitting from ESPE of the fp-shell orbitals.
- Evolution of ESPEs
- Fragmentation of single particle strength.

____1/2

 Experimentally observed energy states compared with the predictions made by SDPF-MU interaction

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science | Michigan State University 640 South Shaw Lane • East Lansing, MI 48824, USA frib.msu.edu

1. www.nndc.bnl.gov

2. Y. Utsuno et al., Phys. Rev. C 86, 051301(R) (2012)

2000

R. S. Lubna, 16 May 2024, Slide 37

EXP¹

Particle transfer reaction with SOLARIS at FRIB Simultaneous (*d*, *p*) and (*d*, *t*) with ^{40,42}S beams (Accepted)

 One neutron adding S.F. plotted for different energy levels of ^{41,43,45}S predicted with the SDPF-MU¹shellmodel interaction.

 Simultaneous (d, p) and (d, t) using SOLARIS at FRIB with ^{40,42}S beams.

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science | Michigan State University 640 South Shaw Lane • East Lansing, MI 48824, USA frib.msu.edu

1. Y. Utsuno et al., Phys. Rev. C 86, 051301(R) (2012)

³⁴Si Structure: Shell-model Predictions

- Compared the experimental levels with two modern theoretical models.
- Lowest 3⁻, 4⁻, 5⁻ states are dominated by the $1\hbar\omega$ excitation with the dominant configuration $(\nu d_{3/2})^1 \otimes (\nu f_{7/2})^1$
- FSU successfully predicts systematics of –ve parity even-mass Si isotopes.

Facility for Rare Isotope BeamsR.S.U.S. Department of Energy Office of Science | Michigan State University640 South Shaw Lane • East Lansing, MI 48824, USAfrib.msu.edu

R.S. Lubna et al., Phys. Rev. C 109, 014309 (2024)

Evolution of SPE and spin-orbit spacing

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science | Michigan State University 640 South Shaw Lane • East Lansing, MI 48824, USA frib.msu.edu

J. Chen et al., Phys. Lett. B 835, 138678 (2024)

Interpretation of the experimental observables

