

The Nilsson Model and Medium-Mass Nuclei

Heather Crawford Nuclear Science Division Lawrence Berkeley National Laboratory

Celebrating 75 Years of the Nuclear Shell Model and Marie Goeppert-Mayer – July 19-21, 2024 – Argonne National Laboratory

Overview

- Welcome to the Nilsson Model
- The case of $^{18,19}F$
- Islands of Inversion and the Nilsson Model
	- $-$ N=8 and ^{12}Be
	- $-$ N=20 and ^{33}Mg , ^{29}F
- Outlook

The Nilsson Model – A Little Bit of History

A Deformed Nuclear Shell Model

- In the early 1950's the first experimental examples of rotational bands in nuclei showed energy levels following a J(J+1) pattern as for molecular rotational spectra
- This implied a non-spherical nuclear shape could have been described as coherent superpositions of p-h excitations in a spherical potential, but such a description was intractable at the time
- Models were constructed with the same ingredients as the spherical shell model but in a potential deformed into an ellipsoidal shape – Bohr, Mottelson, Nilsson
- For an axially symmetric potential, have a Hamiltonian of the form:

$$
H=\frac{1}{2}m\omega_z^2z^2+\frac{1}{2}m\omega_\perp^2(x^2+y^2)-c_1\ell\cdot s-c_2(\ell^2-\langle\ell^2\rangle_N)
$$

The Nilsson Model – A Little Bit of History

A Deformed Nuclear Shell Model

- Nilsson wavefunctions evolve with deformation (β_2/ε_2) and can be expressed as linear combination of spherical orbitals weighted by Nilsson amplitudes
- Still a shell model nucleons fill Nilsson states in pairs; unpaired valence nucleon(s) determine nuclear state quantum numbers

Single Particle Structure and Collectivity in Light Nuclei

"It was quite a dramatic moment when it was realized that some of the spectra in the light nuclei could be given a very simple interpretation in terms of the rotational coupling scheme." – A. Bohr, 1975 Nobel Lecture

- Duality of single-particle and collective model descriptions for atomic nuclei has been recognized for decades
- ¹⁹F was an early example, where shell-model calculations in the sd model space with only 3 valence nucleons outside ¹⁶O and a rotational model description both reproduced experimental energy levels

• Within Nilsson (rotational) model, relevant orbitals in the 'sd' space are

 $\frac{1}{2}[220], \frac{3}{2}[211], \text{ and } \frac{5}{2}[202]$

E. B. Paul, Philosophical Magazine, 311, 2:15 (1957). "The interpretation of the levels of 19 F in the rotational model"

• Within Nilsson (rotational) model, relevant orbitals in the 'sd' space are

 $\frac{1}{2}[220], \frac{3}{2}[211], \text{ and } \frac{5}{2}[202]$

 $\langle \frac{1}{2}[220] \rangle = C_{1/2,0,1/2} |s_{1/2}\rangle + C_{3/2,2,1/2} |d_{3/2}\rangle + C_{5/2,2,1/2} |d_{5/2}\rangle$ $|\frac{3}{2}[211]\rangle = C_{3/2,3/2}|d_{3/2}\rangle + C_{5/2,2,3/2}|d_{5/2}\rangle$ $|\frac{5}{2}[202]\rangle = |d_{5/2}\rangle$

> E. B. Paul, Philosophical Magazine, 311, 2:15 (1957). "The interpretation of the levels of 19 F in the rotational model"

Single Particle Structure and Collectivity in Light Nuclei

- The success in describing ¹⁹F within the rotational model opens the door to considering the description of transfer reactions, i.e. $^{18}F(d, p)^{19}F$
- Consider ¹⁸F in the rotational model...

Strongly coupled (deformation aligned) band

A. J. Kreiner, Z. Physik A 288, 373 (1978).

PHYSICAL REVIEW LETTERS 120, 122503 (2018)

Probing the Single-Particle Character of Rotational States in ¹⁹F Using a Short-Lived Isomeric Beam

D. Santiago-Gonzalez,^{1,2} K. Auranen,² M.L. Avila,² A.D. Ayangeakaa,^{2,*} B.B. Back,² S. Bottoni,^{2,†} M.P. Carpenter,² J. Chen,² C. M. Deibel,¹ A. A. Hood,¹ C. R. Hoffman,² R. V. F. Janssens,^{2,‡} C. L. Jiang,² B. P. Kay,² S. A. Kuvin,³ A. Lauer,¹
J. P. Schiffer,² J. Sethi,^{4,2} R. Talwar,² I. Wiedenhöver,⁵ J. Winkel

- $•¹⁸F$ beam with substantial components of both 1⁺ ground state and 5+ isomer (162ns) was used to study (d, p) reactions into rotational band states of $19F$
- Relative spectroscopic factors well reproduced by shell-model using the USDB effective interaction

PHYSICAL REVIEW LETTERS 120, 122503 (2018)

Probing the Single-Particle Character of Rotational States in ¹⁹F Using a Short-Lived Isomeric Beam

D. Santiago-Gonzalez,^{1,2} K. Auranen,² M.L. Avila,² A.D. Ayangeakaa,^{2,*} B.B. Back,² S. Bottoni,^{2,†} M.P. Carpenter,² J. Chen,² C. M. Deibel,¹ A. A. Hood,¹ C. R. Hoffman,² R. V. F. Janssens,^{2,‡} C. L. Jiang,² B. P. Kay,² S. A. Kuvin,³ A. Lauer,¹
J. P. Schiffer,² J. Sethi,^{4,2} R. Talwar,² I. Wiedenhöver,⁵ J. Winkel

- $•¹⁸F$ beam with substantial components of both 1⁺ ground state and 5+ isomer (162ns) was used to study (d, p) reactions into rotational band states of $19F$
- Relative spectroscopic factors well reproduced by shell-model using the USDB effective interaction
- Does the rotational model description similarly provide good agreement?

$18F(d,p)$ ¹⁹F in the Nilsson Formalism

Deformation aligned coupling – strongly coupled band

$$
S_{i,f}(j\ell,K) = \frac{(2I_i+1)}{(2I_f+1)} \langle I_i j \Omega_\nu K_i | I_f K_f \rangle^2 C_{j,\ell,\nu}^2 U_\nu^2 \langle \phi_f | \phi_i \rangle^2
$$

Rotation aligned coupling – decoupled band

$$
S_{i,f} = \left(\sum_{K} A_K S_{i,f}^{1/2}(j\ell,K)\right)^2 \qquad \psi_I = \sum_{K} A_K |IK\rangle
$$

$$
\mathcal{A}_K \approx d_{5/2,K}^{5/2}(\pi/2)
$$

B. Elbek and P. Tjom, Advances in Nucl. Phys. 3, 259 (1969). R. G. Lanier, et al., Phys. Rev. 178, 1919 (1969). F. S. Stephens, R. M. Diamond, and S. G. Nilsson, Phys. Lett. B 44, 429 (1973). $^{18}F_{\rm gs}(d, p)^{19}F$ in the Nilsson Formalism

Transfer from the $GS \implies$ Deformation-aligned (strong) coupling

$$
S_{i,f}(j\ell,K)=\frac{(2I_i+1)}{(2I_f+1)}\langle I_i j\Omega_\nu K_i |I_f K_f\rangle^2 C_{j,\ell,\nu}^2 U_\nu^2 \langle \phi_f|\phi_i\rangle^2
$$

 $18F^m(d, p)¹⁹F$ in the Nilsson Formalism

Transfer from the 5^+ Isomer \implies Decoupling

$$
\psi_I = \sum_K \mathcal{A}_K | I K \rangle
$$

\n
$$
\mathcal{A}_K \approx d_{5/2,K}^{5/2}(\pi/2)
$$

\n
$$
\mathcal{A}_K \approx d_{5/2,K}^{5/2}(\pi/2)
$$

\n
$$
\mathcal{B}.
$$
 Elbek and P. Tjom, Advances in Nucl. Phys. 3, 259 (1969).
\nR. G. Lanier, et al., Phys. Rev. 178, 1919 (1969).

F. S. Stephens, R. M. Diamond, and S. G. Nilsson, Phys. Lett. B 44, 429 (1973).

18F(d,p)¹⁹F in the Nilsson Formalism

Ground state

\n
$$
S_{i,f}(j\ell, K) = \frac{(2I_i + 1)}{(2I_f + 1)} \langle I_i j \Omega_\nu K_i | I_f K_f \rangle^2 C_{j,\ell,\nu}^2 U_\nu^2 \langle \phi_f | \phi_i \rangle^2
$$
\nIsomer state

\n
$$
\psi_I = \sum_K \mathcal{A}_K | IK \rangle \qquad S_{i,f} = \left(\sum_K \mathcal{A}_K S_{i,f}^{1/2}(j\ell, K) \right)^2
$$
\n
$$
\mathcal{A}_K \approx d_{5/2,K}^{5/2}(\pi/2) \qquad \text{fixed}
$$

Spectator proton wavefunctions

Results: Spectroscopic Factors

B. E. Chi, Nuclear Physics 83, 97 (1966).

18F(d,p)¹⁹F in the Nilsson Formalism

Ground state

\n
$$
S_{i,f}(j\ell, K) = \frac{(2I_i + 1)}{(2I_f + 1)} \langle I_{i}j\Omega_{\nu}K_i | I_{f}K_{f} \rangle^{2} \underbrace{C_{j,\ell,\nu}^{2}U_{\nu}^{2}|\phi_{f}|\phi_{i} \rangle^{2}}_{\text{Isomer state}}
$$
\n
$$
\psi_{I} = \sum_{K} A_{K}|IK\rangle \qquad S_{i,f} = \left(\sum_{K} A_{K}S_{i,f}^{1/2}(j\ell, K)\right)^{2}
$$
\n
$$
A_{K} \approx d_{5/2,K}^{5/2}(\pi/2) \qquad \text{Fixed}
$$

Spectator proton wavefunctions

⇒ Minimization on Nilsson amplitudes

19

Results: Spectroscopic Factors

Transfer from the $GS \implies$ Deformation-aligned (strong) coupling

[2] R.L. Kozub et al., Phys. Rev. C 73, 044307 (2006). $_{20}$ [1] D. Santiago-Gonzalez et al., Phys. Rev. Lett. 120, 122503 (2018).

Results: Spectroscopic Factors

Transfer from the 5⁺ Isomer \Rightarrow Decoupling

21

Nilsson Model and Islands of Inversion

- "Classic" magic numbers are generally correct only for stable and near stable isotopes
- Experimental studies of exotic isotopes revealed changes in shell structure and collectivity and provided insight on the important role played by the NN central, tensor, and higher order forces in these changes.

A. Poves and J. Retamosa, Phys. Lett. B 184, 311 (1987).

E.K. Warburton, J.A. Becker and B.A. Brown, Phys. Rev. C 41, 1147 (1990).

- T. Otsuka et al., Phys. Rev. Lett. 87, 082502 (2001).
- O. Sorlin and M. Porquet, Prog. Part.Nucl. Phys. 61, 602 (2008).

K. Heyde and J. L. Wood, Rev. Mod. Phys. 83, 1467 (2011).

Nilsson Model and Islands of Inversion

- "Classic" magic numbers are generally correct only for stable and near stable isotopes
- Experimental studies of exotic isotopes revealed changes in shell structure and collectivity and provided insight on the important role played by the NN central, tensor, and higher order forces in these changes.

A. Poves and J. Retamosa, Phys. Lett. B 184, 311 (1987).

E.K. Warburton, J.A. Becker and B.A. Brown, Phys. Rev. C 41, 1147 (1990).

- T. Otsuka et al., Phys. Rev. Lett. 87, 082502 (2001).
- O. Sorlin and M. Porquet, Prog. Part.Nucl. Phys. 61, 602 (2008).

K. Heyde and J. L. Wood, Rev. Mod. Phys. 83, 1467 (2011).

N=8 Island of Inversion

W. Von Oertzen, M. Freer, and Y. Kanada-En'yo Physics Reports 432, 43 (2006). I. Hamamoto and S. Shimoura J. Phys. G: Nucl. Part. Phys. 34, 2715 (2007).

Direct Reaction Studies in the N=8 IoI

-1n Removal

- A. Navin et al., Phys. Rev. Lett. 85, 266 (2000).
- S. Pain et al., Phys. Rev. Lett. 96, 032502 (2006).

(d,p) – Neutron adding reaction

- R. Kanungo et al., Phys. Lett. B 682, 391 (2010).
- K. T. Schmitt et al., Phys. Rev. Lett. 108, 192701 (2012).
- J. G. Johansen et al., Phys. Rev. C 88, 044619 (2013).

$$
S_{i,f} = \frac{(2I_i + 1)}{(2I_f + 1)} g^2 \langle I_{i} j K_i \Delta K | I_f K_f \rangle^2 C_{j,\ell}^2 \langle \phi_f | \phi_i \rangle^2
$$

Results in the N=8 Island of Inversion

Total of 12 relations connecting the experimental data to four unknown amplitudes which we determine from a chi2-minimization procedure.

Weighted fit of the relative spectroscopic factor values with respect to the ground state transition for each of the data sets, and of the absolute value of the ¹¹Be ground-state magnetic moment.

Results in the N=8 Island of Inversion

Results in the N=8 Island of Inversion

Hamamoto and Shimoura, J. Phys. G: Nucl. Part. Phys. 34, 2715 (2007).

Predictions for ¹²Be(d,p)¹³Be

Predictions for ${}^{12}Be(d,p)$ ¹³Be

 $\left|\frac{1}{2}[220]\right| = -0.72(3)|s_{1/2}\rangle - 0.09(2)|d_{3/2}\rangle + 0.69(2)|d_{5/2}\rangle$ $\left|\frac{1}{2}[101]\right\rangle = 0.68(4)|p_{1/2}\rangle + 0.73(3)|p_{3/2}\rangle$

Predictions for ¹²Be(d,p)¹³Be

$$
\left|\frac{1}{2}[220]\right\rangle = -0.72(3)|s_{1/2}\rangle - 0.09(2)|d_{3/2}\rangle + 0.69(2)|d_{5/2}\rangle
$$

$$
\left|\frac{1}{2}[101]\right\rangle = 0.68(4)|p_{1/2}\rangle + 0.73(3)|p_{3/2}\rangle
$$

⇒ Recent results showed two dominant s and p-wave resonances

Kovoor *et al*.Phys. Rev. C 108, 034601 (2023).

Assume ground state of ³³Mg is the 3/2[321] neutron Nilsson level.

$$
|\tfrac{3}{2}[321]\rangle=C_{3/2,1}|p_{3/2}\rangle+C_{5/2,3}|f_{5/2}\rangle+C_{7/2,3}|f_{7/2}\rangle
$$

"Standard" Nilsson amplitudes do not reproduce experimental spectroscopic factors – fit amplitudes to the data…

But spectroscopic factors alone cannot uniquely constrain the Nilsson amplitudes – include the ground state magnetic moment of 33Mg.

The Southern Shore at N=20: 29F

The Southern Shore at N=20: 29F

(decoupled band) is expected.

Structure of 29F: PRM Solution

$$
|I, \alpha\rangle = \sum_{\Omega_p=1/2}^{5/2} C_{I\Omega_p}^{\alpha} |I, \Omega_p\rangle
$$

$$
\frac{C_{I\Omega}^{\alpha} \approx d_{\alpha,\Omega}^j(\pi/2)}{\uparrow}
$$
Decoupled band

Structure of 29F: PRM Solution

The $1/2^+$ excited state in ²⁹F, in the decoupled limit, is proportional to the rotational energy of the core, or $E(2^+)$ in ^{28}O .

Structure of 29F: PRM Solution

P. Doornenbal, et al., Phys. Rev. C 95, 041301(R) (2017).

Summary

- The Nilsson model offers the "intuition" of the spherical shell model for deformed systems
- The Nilsson model is impressively successful in describing light and medium-mass deformed nuclear systems – in nuclei as light as N=8 this 'collective' description captures the physics, reproducing experimental nucleon transfer cross-sections and spectra
- The Islands of Inversion at N=20 and N=28 have also been considered, including ^{29}F and $33Mg - 43P(-1p)^{42}$ Si was also investigated showing good agreement with data
- Application at N=40 and the He isotopes is underway…stay tuned

Acknowledgments

PHYSICAL REVIEW C 105, 014309 (2022)

Structure of ⁴³P and ⁴²Si in a two-level shape-coexistence model

Physics Letters R 775 (2017) 160-162

Structure of ^{29}F in the rotation-aligned coupling scheme of the particle-rotor model

CrossMarl

A.O. Macchiavelli^{*}, H.L. Crawford, P. Fallon, C.M. Campbell, R.M. Clark, M. Cromaz, M.D. Jones, I.Y. Lee, M. Salathe

PHYSICAL REVIEW C 97, 011302(R) (2018)

Rapid Communications

A. O. Macchiavelli \bullet , ¹ H. L. Crawford \bullet , ¹ C. M. Campbell, ¹ R. M. O P. Fallon, ¹ I. Y. Lee \odot , ¹ A. Gade \odot , ² A. Poves, ³ and E. ¹Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley ²National Superconducting Cyclotron Laboratory, East Lansing, Mich ³Departamento de Física Teórica and IFT-UAM/CSIC, Universidad Autónoma de ⁴Department of Physics and Astronomy, Ohio University, Athens.

Analysis of spectroscopic factors in 11 Be and 12 Be in the Nilsson strong-coupling limit

A. O. Macchiavelli, H. L. Crawford, C. M. Campbell, R. M. Clark, M. Cromaz, P. Fallon, M. D. Jones, I. Y. Lee, and M. Salathe Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

PHYSICAL REVIEW C 96, 054302 (2017)

Spectroscopic factors in the $N = 20$ island of inversion: The Nilsson strong-coupling limit

A. O. Macchiavelli,¹ H. L. Crawford,¹ C. M. Campbell,¹ R. M. Clark,¹ M. Cromaz,¹ P. Fallon,¹ M. D. Jones,¹ I. Y. Lee,¹

¹Nuclear Science Division, Law ²Department of Physic

PHYSICAL REVIEW C 101, 044319 (2020)

Analysis of the $^{18}F^{g,m}(d, p)$ ¹⁹F reactions in the rotational model

A. O. Macchiavelli, H. L. Crawford, P. Fallon, I. Y. Lee, R. M. Clark, C. M. Campbell, M. Cromaz, C. Morse, and C. Santamaria Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

Work supported by U.S. DOE, Office of Science under contract number DE-AC02-05CH11231.

Results: Nilsson Amplitudes for 18F

Results for N=8 Island of Inversion

