

Applications of the *Ab Initio* No-Core Shell Model

Celebrating 75 Years of the Nuclear Shell Model and Maria Goeppert-Mayer

ANL, July 19-21, 2024

Petr Navratil TRIUMF

Discovery, accelerated

Outline

- Introduction Shell Model vs. No-Core Shell Model
- *Ab initio* nuclear theory no-core shell model (NCSM)
- Early NCSM applications Okubo Lee Suzuki (OLS) renormalization
- Recent NCSM applications Similarity Renormalization Group (SRG) renormalization
- No-Core Shell Model with Continuum (NCSMC) Unified description of bound and unbound states
- Conclusions

ogress in Particle and Nuclear Physics 69 (2013) 131–181

Shell Model

No-Core Shell Model (NCSM)

Solving many-nucleon Schroedinger equation

 $H\psi_n = E_n\psi_n$

Basis expansion method

Harmonic oscillator (HO) or other Slater determinant (SD) basis Single shell valence space Relative-coordinate or SD HO basis truncated with N_{max} Many HO shells

Interaction

Effective NN interaction fitted to many-nucleon data – CK, USD, KB3...

Chiral NN+3N interaction fitted to fewbody systems (*NN*, A=3,4) - bare or renormalized by SRG (earlier work - Okubo-Lee-Suzuki)

Predicts nuclear structure properties of nuclei

Across nuclear chart

Light nuclei (A≤20)

Extendable to describe scattering & reactions – NCSM with continuum

Ab initio no core shell model

 $\Psi^{(A)} = \sum c_{\lambda} \left| \stackrel{(A)}{\$} \stackrel{(A)}{\$} \right\rangle + \sum \int d\vec{r} \, \gamma_{\nu}(\vec{r})$

Review

% TRIUMF

Ab initio nuclear theory no-core shell model (NCSM)

Δ

celerat

ac

2024-07-21

First principles or ab initio nuclear theory

Ŀ

Review Ab initio no core shell model

Bruce R. Barrett^a, Petr Navrátil^b, James P. Vary^{c,*}

Conceptually simplest ab initio method: No-Core Shell Model (NCSM)

- Basis expansion method
 - Harmonic oscillator (HO) basis truncated in a particular way (N_{max})
 - Why HO basis?
 - Lowest filled HO shells match magic numbers of light nuclei (2, 8, 20 – ⁴He, ¹⁶O, ⁴⁰Ca)
 - Equivalent description in relative(Jacobi)-coordinate and Slater determinant basis
- Short- and medium range correlations
- Bound-states, narrow resonances

$$\Psi^{A} = \sum_{N=0}^{N_{\text{max}}} \sum_{i} c_{Ni} \Phi^{HO}_{Ni}(\vec{\eta}_{1}, \vec{\eta}_{2}, ..., \vec{\eta}_{A-1})$$

$$\Psi_{SD}^{A} = \sum_{N=0}^{N_{max}} \sum_{j} c_{Nj}^{SD} \Phi_{SDNj}^{HO}(\vec{r}_{1}, \vec{r}_{2}, ..., \vec{r}_{A}) = \Psi^{A} \varphi_{000}(\vec{R}_{CM})$$

Review *Ab initio* no core shell model Bruce R. Barrett^a, Petr Navrátil^b, James P. Vary^{c.4}

7

 $E = (2n + l + \frac{3}{2})\mathfrak{h}\Omega$

Conceptually simplest *ab initio* method: No-Core Shell Model (NCSM)

- Basis expansion method
 - Harmonic oscillator (HO) basis truncated in a particular way (N_{max})
 - Why HO basis?
 - Lowest filled HO shells match magic numbers of light nuclei (2, 8, 20 – ⁴He, ¹⁶O, ⁴⁰Ca)
 - Equivalent description in relative(Jacobi)-coordinate and Slater determinant basis
- Short- and medium range correlations
- Bound-states, narrow resonances

$$\Psi^{A} = \sum_{N=0}^{N_{\text{max}}} \sum_{i} c_{Ni} \Phi_{Ni}^{HO}(\vec{\eta}_{1}, \vec{\eta}_{2}, ..., \vec{\eta}_{A-1})$$

$$\Psi_{SD}^{A} = \sum_{N=0}^{N_{max}} \sum_{j} c_{Nj}^{SD} \Phi_{SDNj}^{HO}(\vec{r}_{1}, \vec{r}_{2}, ..., \vec{r}_{A}) = \Psi^{A} \varphi_{000}(\vec{R}_{CM})$$

% TRIUMF

Early NCSM applications -Okubo – Lee – Suzuki (OLS) renormalization (calculations not variational)

8

Φ

C

NCSM early developments

- Confirmation that NCSM calculations of the ³H gs energy reproduce Faddeev method results
- Later, the NCSM ⁴He gs energy prediction with the CD-Bonn potential was confirmed by Faddeev-Yakubovsky calculations
 - Jacobi-coordinate HO basis
 - Okubo-Lee-Suzuki effective interaction

NCSM early developments

- Structure of ¹²C
 - Energies of states and other properties of a complex nucleus can be predicted from an *ab initio* approach
 - Slater-Determinant HO basis
 - Okubo-Lee-Suzuki effective interaction

Structure of mid-*p*-shell nuclei with chiral NN+3N interactions

- 3N interaction essential to describe structure of nuclei
 - Both binding energies and excitation levels

"Anomalous Long Lifetime of Carbon-14"

Objectives

 Solve the puzzle of the long but useful lifetime of ¹⁴C

Determine the microscopic origin

of the suppressed β -decay rate

- Impact
 Establishes a major role for strong 3-nucleon forces in nuclei
 - Verifies accuracy of *ab initio* microscopic nuclear theory
 - Provides foundation for guiding DOE-supported experiments

% TRIUMF

Recent NCSM applications -Similarity Renormalization Group (SRG) renormalization (variational calculations)

Φ

2024-07-21

Novel chiral Hamiltonian and observables in light and medium-mass nuclei

V. Somà,^{1,*} P. Navrátil⁰,^{2,†} F. Raimondi,^{3,4,‡} C. Barbieri⁶,^{4,§} and T. Duguet^{1,5,¶}

Binding energies of atomic nuclei with NN+3N forces from chiral Effective Field Theory

- Quite reasonable description of binding energies across the nuclear charts becomes feasible
 - The Hamiltonian fully determined in A=2 and A=3,4 systems
 - Nucleon–nucleon scattering, deuteron properties, ³H and ⁴He binding energy, ³H half life
 - Light nuclei NCSM
 - Medium mass nuclei Self-Consistent Green's Function method

NN N³LO (Entem-Machleidt 2003) 3N N²LO w local/non-local regulator

Novel chiral Hamiltonian and observables in light and medium-mass nuclei

V. Somà,^{1,*} P. Navrátil[®],^{2,†} F. Raimondi,^{3,4,‡} C. Barbieri[®],^{4,§} and T. Duguet^{1,5,∥}

Binding energies of atomic nuclei with NN+3N forces from chiral Effective Field Theory

- Quite reasonable description of binding energies across the nuclear charts becomes feasible
 - The Hamiltonian fully determined in A=2 and A=3,4 systems
 - Nucleon–nucleon scattering, deuteron properties, ³H and ⁴He binding energy, ³H half life
 - Light nuclei NCSM

-10

-20 -30

-40

Egs [MeV]

 ${}^{3}\text{H} {}^{3}\text{He}$

He 6 He 6 I ;

Medium mass nuclei – Self-Consistent Green's Function method

NN N³LO (Entem-Machleidt 2003) 3N N²LO w local/non-local regulator

50-year-old puzzle of quenched beta decays resolved from first principles

Muon capture on ⁶Li, ¹²C, ¹⁶N from *ab initio* nuclear theory

agreement with experiments

See talk by Lotta Jokiniemi on Saturday

NCSM applications to parity-violating moments:

$$a_s = \langle \psi_{\rm gs} \ I \ I_z = I | \hat{a}_{s,0}^{(1)} | \psi_{\rm gs} \ I \ I_z = I \rangle$$

How to calculate the sum of intermediate unnatural parity states?

$$|\psi_{\rm gs} I\rangle = |\psi_{\rm gs} I^{\pi}\rangle + \sum_{j} |\psi_{j} I^{-\pi}\rangle \frac{1}{E_{\rm gs} - E_{j}} \langle \psi_{j} I^{-\pi} | V_{\rm NN}^{\rm PNC} | \psi_{\rm gs} I^{\pi}\rangle$$

• Solving Schroedinger equation with inhomogeneous term $(T_{1}, U_{2}, U_{2},$

 $(E_{\rm gs} - H)|\psi_{\rm gs} I\rangle = V_{\rm NN}^{\rm PNC}|\psi_{\rm gs} I^{\pi}\rangle$

• To invert this equation, we apply the Lanczos algorithm

NCSM applications to parity-violating moments: How to calculate the sum of intermediate unnatural parity states?

$$a_s = \langle \psi_{\rm gs} \ I \ I_z = I | \hat{a}_{s,0}^{(1)} | \psi_{\rm gs} \ I \ I_z = I \rangle$$

 $|\psi_{\rm gs} I\rangle = |\psi_{\rm gs} I^{\pi}\rangle + \sum_{j} |\psi_{j} I^{-\pi}\rangle \frac{1}{E_{\rm gs} - E_{j}} \langle \psi_{j} I^{-\pi} | V_{\rm NN}^{\rm PNC} | \psi_{\rm gs} I^{\pi} \rangle$

Solving Schroedinger equation with inhomogeneous term

 $(E_{\rm gs} - H)|\psi_{\rm gs} I\rangle = V_{\rm NN}^{\rm PNC}|\psi_{\rm gs} I^{\pi}\rangle$

- To invert this equation, we apply the Lanczos algorithm
 - Bring matrix to tri-diagonal form (v_1 , v_2 ... orthonormal, H Hermitian)

 $H\mathbf{v}_{1} = \alpha_{1}\mathbf{v}_{1} + \beta_{1}\mathbf{v}_{2}$ $H\mathbf{v}_{2} = \beta_{1}\mathbf{v}_{1} + \alpha_{2}\mathbf{v}_{2} + \beta_{2}\mathbf{v}_{3}$ $H\mathbf{v}_{3} = \beta_{2}\mathbf{v}_{2} + \alpha_{3}\mathbf{v}_{3} + \beta_{3}\mathbf{v}_{4}$ $H\mathbf{v}_{4} = \beta_{3}\mathbf{v}_{3} + \alpha_{4}\mathbf{v}_{4} + \beta_{4}\mathbf{v}_{5}$

- nth iteration computes 2nth moment
- Eigenvalues converge to extreme (largest in magnitude) values
- $\sim 150-200$ iterations needed for 10 eigenvalues (even for 10⁹ states)

NCSM applications to parity-violating moments: How to calculate the sum of intermediate unnatural parity states?

$$|\psi_{\rm gs} I\rangle = |\psi_{\rm gs} I^{\pi}\rangle + \sum_{j} |\psi_{j} I^{-\pi}\rangle \frac{1}{E_{\rm gs} - E_{j}} \langle \psi_{j} I^{-\pi} | V_{\rm NN}^{\rm PNC} | \psi_{\rm gs} I^{\pi} \rangle$$

- Solving Schroedinger equation with inhomogeneous term $(E_{\rm gs} - H) |\psi_{\rm gs} I\rangle = V_{\rm NN}^{\rm PNC} |\psi_{\rm gs} I^{\pi}\rangle$
- To invert this equation, we apply the Lanczos algorithm

$$|\mathbf{v}_1\rangle = V_{\rm NN}^{\rm PNC} |\psi_{\rm gs} I^{\pi}\rangle$$

$$\psi_{\rm gs} I \rangle \approx \sum_k g_k(E_0) |\mathbf{v}_k\rangle$$

$$\hat{g}_1(\omega) = \frac{1}{\omega - \alpha_1 - \frac{\beta_1^2}{\omega - \alpha_2 - \frac{\beta_2^2}{\omega - \alpha_3 - \beta_3^2}}}$$

Lanczos continued fraction method

Efficient Method for Lorentz Integral Transforms of Reaction Cross Sections

M. A. Marchisio¹, N. Barnea², W. Leidemann¹, and G. Orlandini¹

 $a_s = \langle \psi_{gs} I I_z = I | \hat{a}_{s,0}^{(1)} | \psi_{gs} I I_z = I \rangle$

Few-Body Systems 33, 259–276 (2003) DOI 10.1007/s00601-003-0017-z

NCSM applications to parity-violating moments: Anapole moments & EDMs of light stable nuclei

Y. Hao, P. Navratil et al., PRA 102, 052828 (2020)

Synergy of precision experiments and *ab initio* nuclear theory to test CKM unitarity Structure corrections for the extraction of the V_{ud} matrix element from the ¹⁰C \rightarrow ¹⁰B Fermi transition

- CKM unitarity sensitive probe of BSM physics
 - V_{ud} element from super-allowed Fermi transitions

$$|V_{ud}|^2 = \frac{\hbar^7}{G_F^2 m_e^5 c^4} \frac{\pi^3 \ln(2)}{\mathcal{F}t} \qquad \qquad \mathcal{F}t = \frac{K}{G_V^2 |M_{F0}|^2 (1 + \Delta_R^V)}$$

$$\mathcal{F}t(1+\Delta_R^V) = ft(1+\delta_R')(1-\delta_C+\delta_{NS})$$

- δ_{NS} parametrizes correction to free γW box
- Ab initio no-core shell model (NCSM)
 - A very good convergence consistent with what used in latest evaluation with a substantially reduced theoretical uncertainties

An *ab initio* strategy for taming the nuclear-structure dependence of V_{ud} extractions: the ${}^{10}C \rightarrow {}^{10}B$ superallowed transition arXiv: 2405.19281

Michael Gennari^{1,2}, Mehdi Drissi¹, Mikhail Gorchtein^{3,4}, Petr Navrátil^{1,2}, and Chien-Yeah Seng^{5,6}

NCSM applicable also to ${}^{14}O \rightarrow {}^{14}N$ and possibly ${}^{18}Ne \rightarrow {}^{18}F$, ${}^{22}Mg \rightarrow {}^{22}Na$

% TRIUMF

No-Core Shell Model with Continuum (NCSMC) -Unified description of bound and unbound states

Discovery, accelerate

Ab Initio Calculations of Structure, Scattering, Reactions Unified approach to bound & continuum states

No-Core Shell Model with Continuum (NCSMC)

$$\Psi^{(A)} = \sum_{\lambda} c_{\lambda} \left| {}^{(A)} \mathfrak{B}, \lambda \right\rangle + \sum_{\nu} \int d\vec{r} \gamma_{\nu}(\vec{r}) \hat{A}_{\nu} \left| \mathfrak{B}_{(A-a)}^{\vec{r}} \mathfrak{B}_{(a)}, \nu \right\rangle$$

Ab Initio Calculations of Structure, Scattering, Reactions

Unified approach to bound & continuum states

No-Core Shell Model with Continuum (NCSMC)

$$\Psi^{(A)} = \sum_{\lambda} c_{\lambda} | \stackrel{(A)}{\Longrightarrow}, \lambda \rangle + \sum_{\nu} \int d\vec{r} \gamma_{\nu}(\vec{r}) \hat{A}_{\nu} | \stackrel{\vec{r}}{\Longrightarrow}_{(A-a)} , \nu \rangle$$

$$N = N_{\max} + 1 \stackrel{(A)}{\longrightarrow}_{N=1} \stackrel{(A)}{\longrightarrow}_{N=0} \stackrel{(A)}{\longrightarrow}_{N=1} \stackrel{(A)}{\longrightarrow}_{N=0} \stackrel{(A)}{\longrightarrow}_{N=1} \stackrel{(A)$$

Static solutions for aggregate system, describe all nucleons close together

Ab Initio Calculations of Structure, Scattering, Reactions

Unified approach to bound & continuum states

No-Core Shell Model with Continuum (NCSMC)

Static solutions for aggregate system, describe all nucleons close together

27

Ab Initio Calculations of Structure, Scattering, Reactions

Unified approach to bound & continuum states

No-Core Shell Model with Continuum (NCSMC)

Static solutions for aggregate system, describe all nucleons close together

Coupled NCSMC equations

$$H \Psi^{(A)} = E \Psi^{(A)} \qquad \Psi^{(A)} = \sum_{\lambda} c_{\lambda} | {}^{(A)} \mathfrak{D}_{\lambda} , \lambda \rangle + \sum_{\nu} \int d\vec{r} \gamma_{\nu}(\vec{r}) \hat{A}_{\nu} | \mathfrak{D}_{\lambda} | \mathfrak{D}_{\lambda} , \nu \rangle$$

$$E_{\lambda}^{NCSM} \delta_{\lambda\lambda'} \qquad \begin{pmatrix} \langle A \rangle \mathfrak{D}_{\lambda} | \mathcal{H} \hat{A}_{\nu} | \mathfrak{D}_{\lambda} |$$

Physica Scripta doi:10.1088/0031-8949/91/5/053002

mment

ed *ab initio* approaches to nuclear structure and reactions

Petr Navrátil¹, Sofia Quaglioni², Guillaume Hupin^{3,4}, Carolina Romero-Redondo² and Angelo Calci¹

Studies of exotic nuclei – continuum effects

$\Psi^{(A)} = \sum_{\lambda} c_{\lambda} \Big|^{(A)} \bigotimes_{\nu}, \lambda \Big\rangle + \sum_{\nu} \int d\vec{r} \, \gamma_{\nu}(\vec{r}) \, \hat{A}_{\nu} \Big|_{\substack{\bullet \\ (A-a)}} \stackrel{\vec{r}}{\underset{(a)}{\bullet}}, \nu \Big\rangle$

Photo-disassociation of ¹¹Be

Bound to bound	NCSM	NCSMC-phenom	Expt.
B(E1; 1/2 ⁺ →1/2 ⁻) [e ² fm ²]	0.0005	0.117	0.102(2)

Studies of exotic nuclei – continuum effects

$$\Psi^{(A)} = \sum_{\lambda} c_{\lambda} \Big|^{(A)} \bigotimes_{\nu}, \lambda \Big\rangle + \sum_{\nu} \int d\vec{r} \, \gamma_{\nu}(\vec{r}) \, \hat{A}_{\nu} \Big|_{\substack{\bullet \\ (A-a)}} \stackrel{\vec{r} \longrightarrow}{}_{(a)}, \nu \Big\rangle$$

Photo-disassociation of ¹¹Be

Bound to bound	NCSM	NCSMC-phenom	Expt.
B(E1; 1/2 ⁺ →1/2 ⁻) [e ² fm ²]	0.0005	0.117	0.102(2)

% TRIUMF

Radiative Capture Reaction: ⁴He(d,γ)⁶Li

Responsible for ⁶Li production in BBN – 10³ discrepancy between theory/observation

Deficiency in observation, theory, or new physics?

Radiative capture of protons on ⁷**Be**

- Solar pp chain reaction, solar ⁸B neutrinos
- NCSMC calculations with a set of chiral NN+3N interactions as input
 - Radiative capture S-factor
 - Dominated by E1 non-resonant
 - M1/E2 significant at 1⁺ and 3⁺ resonances
 - Correlations between results obtained by different chiral interactions and experimental data → evaluation of the S-factor at E=0 energy relevant for the solar physics

Recommended value $S_{17}(0) \sim 19.8(3)$ eV b

Latest evaluation in *Rev. Mod. Phys.* **83**,195–245 (2011): $S_{17}(0) = 20.8 \pm 0.7(expt) \pm 1.4(theory) eV b$

Ab initio informed evaluation of the radiative capture of protons on ⁷Be K. Kravvaris^{a,*}, P. Navrátil^b, S. Quaglioni^a, C. Hebborn^{c,a}, G. Hupin^d

See talk by Peter Gysbers on Sunday

Recently developed NCSMC capability – charge-exchange reaction calculations

- The first published application ⁷Li+p scattering and radiative capture
 - Wave function ansatz

Conclusions

- Ab initio nuclear theory
 - Makes connections between the low-energy QCD and many-nucleon systems
- No-core shell model is an *ab initio* extension of the original nuclear shell model
 - Applicable to nuclear structure, reactions including those relevant for astrophysics, electroweak processes, tests of fundamental symmetries

∂TRIUMF

Thank you! Merci!

Thanks to all my collaborators over the years!

Discovery, accelerated