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a b s t r a c t

Motivated by limitations of the Bloch–Horowitz–Brandow perturbative approach to
nuclear structure we have developed the non-perturbative ab initio no core shell model
(NCSM) capable of solving the properties of nuclei exactly for arbitrary nucleon–nucleon
(NN) and NN + three-nucleon (NNN) interactions with exact preservation of all
symmetries. We present the complete ab initio NCSM formalism and review highlights
obtained with it since its inception. These highlights include the first ab initio nuclear-
structure calculations utilizing chiralNNN interactions, which predict the correct low-lying
spectrum for 10B and explain the anomalous long 14C �-decay lifetime. We also obtain the
small quadrupole moment of 6Li. In addition to explaining long-standing nuclear structure
anomalies, the ab initio NCSM provides a predictive framework for observables that are
not yet measured or are not directly measurable. For example, reactions between short-
lived systems and reaction rates near zero energy are relevant to fusion research but may
not be known from experiment with sufficient precision. We, therefore, discuss, in detail,
the extension of the ab initio NCSM to nuclear reactions and sketch a number of promising
future directions for research emerging from theNCSM foundation, including amicroscopic
non-perturbative framework for the theorywith a core. Having a parameter-free approach,
we can construct systems with a core, which will provide an ab initio pathway to heavier
nuclei.
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To develop such an ab initio nuclear theory we: 
 1) Start with accurate nuclear forces (and currents) 

+ ... + ... + ... 

NN force NNN force NNNN force 

Q0 

LO 

Q2 

NLO 

Q3 

N2LO 

Q4 

N3LO 

Worked out by Van Kolck, Keiser, 
Meissner, Epelbaum, Machleidt, ... 

"  Two- plus three-nucleon (NN+3N) 
forces from chiral effective field 
theory (EFT) 

 

Harmonic oscillator (HO) or other 
Slater determinant (SD) basis
Single shell valence space

Relative-coordinate or SD HO 
basis truncated with Nmax
Many HO shells

Effective NN interaction fitted to 
many-nucleon data – CK, USD, 
KB3…

Chiral NN+3N interaction fitted to few-
body systems (NN, A=3,4)

- bare or renormalized by SRG      
(earlier work - Okubo-Lee-Suzuki)

Across nuclear chart Light nuclei (A≤20)
Extendable to describe scattering & 
reactions – NCSM with continuum

Solving many-nucleon Schroedinger equation 

Basis expansion method

Interaction

Predicts nuclear structure properties of nuclei 



4

D
is

co
ve

ry
,

ac
ce

le
ra

te
d

2024-07-21

Ab initio nuclear theory - 
no-core shell model (NCSM)
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Chiral Effective 
Field Theory

(parameters fitted 
to NN data)

First principles or ab initio nuclear theory

Quantum Chromodynamics
(QCD)

Current ab initio 
nuclear theory

HΨ(A) = EΨ(A)

Lawrence Livermore National Laboratory 4 LLNL#PRES#XXXXXX 

To develop such an ab initio nuclear theory we: 
 1) Start with accurate nuclear forces (and currents) 

+ ... + ... + ... 

NN force NNN force NNNN force 

Q0 

LO 

Q2 

NLO 

Q3 

N2LO 

Q4 

N3LO 

Worked out by Van Kolck, Keiser, 
Meissner, Epelbaum, Machleidt, ... 

"  Two- plus three-nucleon (NN+3N) 
forces from chiral effective field 
theory (EFT) 
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§ Basis expansion method
§ Harmonic oscillator (HO) basis truncated in a particular way (Nmax)
§ Why HO basis? 

§ Lowest filled HO shells match magic numbers of light nuclei 
(2, 8, 20 – 4He, 16O, 40Ca)

§ Equivalent description in relative(Jacobi)-coordinate and 
Slater determinant basis

§ Short- and medium range correlations
§ Bound-states, narrow resonances

NCSM

ΨSD
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a b s t r a c t

Motivated by limitations of the Bloch–Horowitz–Brandow perturbative approach to
nuclear structure we have developed the non-perturbative ab initio no core shell model
(NCSM) capable of solving the properties of nuclei exactly for arbitrary nucleon–nucleon
(NN) and NN + three-nucleon (NNN) interactions with exact preservation of all
symmetries. We present the complete ab initio NCSM formalism and review highlights
obtained with it since its inception. These highlights include the first ab initio nuclear-
structure calculations utilizing chiralNNN interactions, which predict the correct low-lying
spectrum for 10B and explain the anomalous long 14C �-decay lifetime. We also obtain the
small quadrupole moment of 6Li. In addition to explaining long-standing nuclear structure
anomalies, the ab initio NCSM provides a predictive framework for observables that are
not yet measured or are not directly measurable. For example, reactions between short-
lived systems and reaction rates near zero energy are relevant to fusion research but may
not be known from experiment with sufficient precision. We, therefore, discuss, in detail,
the extension of the ab initio NCSM to nuclear reactions and sketch a number of promising
future directions for research emerging from theNCSM foundation, including amicroscopic
non-perturbative framework for the theorywith a core. Having a parameter-free approach,
we can construct systems with a core, which will provide an ab initio pathway to heavier
nuclei.

© 2012 Elsevier B.V. All rights reserved.
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Motivated by limitations of the Bloch–Horowitz–Brandow perturbative approach to
nuclear structure we have developed the non-perturbative ab initio no core shell model
(NCSM) capable of solving the properties of nuclei exactly for arbitrary nucleon–nucleon
(NN) and NN + three-nucleon (NNN) interactions with exact preservation of all
symmetries. We present the complete ab initio NCSM formalism and review highlights
obtained with it since its inception. These highlights include the first ab initio nuclear-
structure calculations utilizing chiralNNN interactions, which predict the correct low-lying
spectrum for 10B and explain the anomalous long 14C �-decay lifetime. We also obtain the
small quadrupole moment of 6Li. In addition to explaining long-standing nuclear structure
anomalies, the ab initio NCSM provides a predictive framework for observables that are
not yet measured or are not directly measurable. For example, reactions between short-
lived systems and reaction rates near zero energy are relevant to fusion research but may
not be known from experiment with sufficient precision. We, therefore, discuss, in detail,
the extension of the ab initio NCSM to nuclear reactions and sketch a number of promising
future directions for research emerging from theNCSM foundation, including amicroscopic
non-perturbative framework for the theorywith a core. Having a parameter-free approach,
we can construct systems with a core, which will provide an ab initio pathway to heavier
nuclei.
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Early NCSM applications -
Okubo – Lee – Suzuki (OLS) 

renormalization
(calculations not variational)
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NCSM early developments

§ Confirmation that NCSM calculations of the 3H gs 
energy reproduce Faddeev method results 

§ Later, the NCSM 4He gs energy prediction with the CD-
Bonn potential was confirmed by Faddeev-Yakubovsky 
calculations

§ Jacobi-coordinate HO basis
§ Okubo-Lee-Suzuki effective interaction

NCSM is 
an ab initio 

method
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NCSM early developments

§ Structure of 12C
§ Energies of states and other properties of a complex nucleus can be predicted 

from an ab initio approach

§ Slater-Determinant HO basis
§ Okubo-Lee-Suzuki effective interaction



11Structure of mid-p-shell nuclei with chiral NN+3N interactions

§ 3N interaction essential to describe structure of nuclei
§ Both binding energies and excitation levels
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“Anomalous Long Lifetime of Carbon-14” 

Impact Objectives  
!  Solve the puzzle of the long but 

useful lifetime of 14C 
!  Determine the microscopic origin 

of the suppressed !-decay rate 

!  Establishes a major role for strong 3-nucleon forces in nuclei 
!  Verifies accuracy of ab initio microscopic nuclear theory 
!  Provides foundation for guiding DOE-supported experiments 

!  Dimension of matrix solved 
for 8 lowest states ~ 1x109 

!  Solution takes ~ 6 hours on 
215,000 cores  on Cray XT5 
Jaguar at ORNL 

!  “Scaling of ab initio nuclear 
physics calculations on 
multicore computer 
architectures," P. Maris, M. 
Sosonkina, J. P. Vary, E. G. 
Ng and C. Yang, 2010 
Intern. Conf. on Computer 
Science, Procedia Computer 
Science 1, 97 (2010) 
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Recent NCSM applications -
Similarity Renormalization Group 

(SRG) renormalization
(variational calculations) 
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§ Quite reasonable description of binding energies across the nuclear charts becomes feasible
§ The Hamiltonian fully determined in A=2 and A=3,4 systems

§ Nucleon–nucleon scattering, deuteron properties, 3H and 4He binding energy, 3H half life
§ Light nuclei – NCSM
§ Medium mass nuclei – Self-Consistent Green’s Function method 
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FIG. 21. Ratio of expectation values of three- (V3N) and
two-body (V2N) operators in the NNLOsat and NN+3N(lnl)
Hamiltonians. For the latter, the two-body part of the
centre-of-mass kinetic energy has been subtracted. For the
NN+3N(lnl) interaction, V3N contains original (i.e. SRG-
unevolved) three-body forces while induced three-body op-
erators have been included in V2N. Calculations are per-
formed at the ADC(2) level. Results are shown for N =
Z = {2, 8, 16, 20, 24, 40} nuclei (full symbols), plus 48S and
78Ni (empty symbols).

applied only to specific cases [18, 54], but never tested
in a systematic way. In the present work its main
ground-state properties as well as some selected excita-
tion spectra have been studied extensively in light and
medium-mass nuclei. Results in light systems are very
encouraging, with NCSM calculations in overall good
agreement with experiment even for spectra that are
known to be particularly sensitive to nuclear forces. To-
tal energies are well reproduced across the whole light
sector of the nuclear chart. In medium-mass nuclei,
present calculations focused on three representative iso-
topic chains. Total binding energies are found to be in
remarkable agreement with experimental values all the
way up to nickel isotopes once ADC(3) correlations are
included, thus correcting for the overbinding generated
with NN+3N(400). ADC(2) calculations of di↵erential
quantities, where ADC(3) contributions essentially can-
cel out, are also very satisfactory and are able to cap-
ture main trends and magic gaps in two-neutron sepa-
ration energies along all three chains. As evidenced in
Fig. 20, although largely improving on NN+3N(400),
rms charge radii obtained with the NN+3N(lnl) inter-
action still underestimate experiment and do not reach
the quality of NNLOsat. On the other hand this interac-
tion yields an excellent spectroscopy, also where NNLOsat

strives to give even a qualitatively correct account of
experimental data. One-nucleon addition and removal
spectra in neutron-rich calcium are well reproduced. Im-
pressively, the evolution of the energy di↵erences between
the ground and first excited states along potassium iso-
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FIG. 22. Binding energy per particle for a set of doubly
closed-shell nuclei computed with three di↵erent NN + 3N
interactions and compared to available experimental data.
NNLOsat andNN+3N(lnl) values come from the present work
and refer to ADC(3) calculations. 1.8/2.0 (EM) results were
obtained via full-space IM-SRG(2) calculations and originally
published in Ref. [30].

topes follows closely the experimental measurements.
Further insight can be gained by gauging the impor-

tance of 3N operators in the two interactions. In Fig. 21
the ratio of 3N over 2N contributions to the total en-
ergy is displayed for a selection of nuclei as a function of
mass number A for NNLOsat and NN+3N(lnl). In the
former, 3N operators are much more relevant, reaching
almost 20% of the 2N contribution in heavier systems.
On the contrary, the ratio stays rather low, around 5%,
for NN+3N(lnl). This has first of all practical conse-
quences, as in the majority of many-body calculations
the treatment of 3N operators is usually not exact, fol-
lowing either a normal-ordered two-body approximation
(see e.g. [27]) or some generalisation of it [70]. Hence a
strong 3N component is in general not desirable. On top
of that, one might worry about the hierarchy of many-
body forces from the standpoint of EFT, and possible
need to include subleading 3N or 4N operators that could
have a sizeable e↵ect.
Finally, let us compare NN+3N(lnl) and NNLOsat to

an interaction that has been extensively employed in nu-
clear structure studies in the last few years. Usually la-
belled as 1.8/2.0 (EM) and first introduced in Ref. [32], it
has proven to yield an accurate reproduction of ground-
state energies (as well as low-energy excitation spectra)
over a wide range of nuclei [30, 54, 112, 113]. Further-
more, it leads to a satisfactory description of infinite nu-
clear matter properties [11, 32, 114]. In Fig. 22 bind-
ing energies per particle obtained within in-medium simi-
larity renormalisation group (IM-SRG) calculations with
the 1.8/2.0 (EM) interaction [30] are compared, for a
set of closed-shell systems, to the ones computed at the
ADC(3) level withNN+3N(lnl) and NNLOsat. The three
sets of calculations achieve an overall excellent reproduc-
tion of experimental data. While NNLOsat results supe-
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FIG. 3. The same as in Fig. 1 for 11B and 12,13C. Basis sizes Nmax=2�8 are displayed. The importance-truncated NCSM [52, 53]
was used in the Nmax=8 space for carbon isotopes.

p-shell nuclei were performed. In the NCSM, nuclei are
considered to be systems of A nonrelativistic point-like
nucleons interacting via realistic two- and three-body in-
teractions. Each nucleon is an active degree of freedom
and the translational invariance of observables, the an-
gular momentum, and the parity of the nucleus are con-
served. The many-body wave function is expanded over
a basis of antisymmetric A-nucleon harmonic oscillator
(HO) states. The basis contains up to Nmax HO exci-
tations above the lowest possible Pauli configuration, so
that the the motion of the center of mass is fully de-
coupled and its kinetic energy can be subtracted exactly.
The basis is characterised by an additional parameter ⌦,
the frequency of the HO well, and may depend on either
Jacobi relative [56] or single-particle coordinates [57].
The convergence of the HO expansion can be greatly ac-
celerated by applying an SRG transformation on the 2N
and 3N interactions [58–62]. Except for A=3, 4 nuclei,
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FIG. 4. Ground-state energies of s-shell and selected p-
shell nuclei calculated with theNN+3N(lnl) Hamiltonian (red
lines) compared to experiment (blue lines). The error bars
indicate uncertainties of the NCSM extrapolation. SRG evo-
lution with �=2 fm�1 and HO frequency of ~⌦=20 MeV were
used.

here and in the following of the paper an SRG evolution
is applied to the NN+3N(400) and NN+3N(lnl) inter-
actions down to a scale of �=2 fm�1. On the contrary,
calculations with NNLOsat are performed with the bare
Hamiltonian.

In Figs. 1, 2 and 3 the excitation energy spectra of se-
lected Li, Be, B, and C isotopes are displayed. A correct
ordering of low-lying levels is found for all the consid-
ered lithium and beryllium isotopes, namely 6,7,9Li and
8,9Be. The 2+0 and 1+2 0 states in 6Li as well as some
of the excited states in 7Li and 8,9Be are broad reso-
nances. Here a more realistic description of 6Li and 9Be
would require a better treatment of continuum e↵ects,
see Refs. [63] and [64], respectively, in this regard. Let
us note that all excited states of 6Li are unbound with
respect to the emission of an ↵ particle and that 7Li has
only one excited state below the ↵-separation threshold.
Similarly, 8Be is never bound and even its ground state
in unstable against decay into two ↵. The lowest states
in 10B are known to be very sensitive to the details of
nuclear forces, and the 3N interaction in particular [65].
Here a good description is achieved by NN+3N(lnl), with
only the 1+2 0 state resulting incorrectly placed. The cor-
rect level ordering is also found in 11B, with the spectrum
being overall too compressed as compared to the experi-
mental one. Finally, worth-noting is the correct ordering
of T=1 states in 12C, also known to be sensitive to the 3N
interaction. On the other hand, the alpha-cluster dom-
inated 0+0 Hoyle state in 12C cannot be reproduced in
the limited NCSM basis employed here [66]. In general,
NN+3N(lnl) yields spectra that are in good agreement
with experiment. Some underestimation of level-splitting
in 9Li, 11B, and 13C emerges, and could be associated
with a weaker spin-orbit interaction strength. This is
comparable to what has been found with earlier param-
eterisations of chiral 3N forces (see, e.g. [65]).

Ground-state energies of 3H, 3,4He, and selected p-shell
nuclei from 6He to 16O are shown in Fig. 4. The calcu-
lated values (red lines) obtained with theNN+3N(lnl) in-
teraction are compared to experiment (blue lines). Theo-

1.8/2.0 (EM) results: J. Simonis, S. R. Stroberg, K. Hebeler, 
J. D. Holt, and A. Schwenk, Phys. Rev. C 96, 014303 (2017). 
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Background: Recent advances in nuclear structure theory have led to the availability of several complementary
ab initio many-body techniques applicable to light and medium-mass nuclei as well as nuclear matter. After
successful benchmarks of different approaches, the focus is moving to the development of improved models
of nuclear Hamiltonians, currently representing the largest source of uncertainty in ab initio calculations of
nuclear systems. In particular, none of the existing two- plus three-body interactions is capable of satisfactorily
reproducing all the observables of interest in medium-mass nuclei.
Purpose: A novel parametrization of a Hamiltonian based on chiral effective field theory is introduced.
Specifically, three-nucleon operators at next-to-next-to-leading order are combined with an existing (and
successful) two-body interaction containing terms up to next-to-next-to-next-to-leading order. The resulting
potential is labeled NN+ 3N(lnl). The objective of the present work is to investigate the performance of this
new Hamiltonian across light and medium-mass nuclei.
Methods: Binding energies, nuclear radii, and excitation spectra are computed using state-of-the-art no-core
shell model and self-consistent Green’s function approaches. Calculations with NN+ 3N(lnl) are compared to
two other representative Hamiltonians currently in use, namely NNLOsat and the older NN+ 3N (400).
Results: Overall, the performance of the novel NN+ 3N(lnl) interaction is very encouraging. In light nuclei, total
energies are generally in good agreement with experimental data. Known spectra are also well reproduced with
a few notable exceptions. The good description of ground-state energies carries on to heavier nuclei, all the way
from oxygen to nickel isotopes. Except for those involving excitation processes across the N = 20 gap, which is
overestimated by the new interaction, spectra are of very good quality, in general superior to those obtained with
NNLOsat. Although largely improving on NN+ 3N (400) results, charge radii calculated with NN+ 3N(lnl) still
underestimate experimental values, as opposed to the ones computed with NNLOsat that successfully reproduce
available data on nickel.
Conclusions: The new two- plus three-nucleon Hamiltonian introduced in the present work represents a
promising alternative to existing nuclear interactions. In particular, it has the favorable features of (i) being
adjusted solely on A = 2, 3, 4 systems, thus complying with the ab initio strategy, (ii) yielding an excellent
reproduction of experimental energies all the way from light to medium-heavy nuclei, and (iii) behaving well
under similarity renormalization group transformations, with negligible four-nucleon forces being induced, thus
allowing large-scale calculations up to medium-heavy systems. The problem of the underestimation of nuclear
radii persists and will necessitate novel developments.

DOI: 10.1103/PhysRevC.101.014318

I. INTRODUCTION

In the past decade, advances in many-body approaches and
internucleon interactions have enabled significant progress in
ab initio calculations of nuclear systems. At present, sev-
eral complementary methods to solve the (time-independent)
many-body Schrödinger equation are available, tailored to

*vittorio.soma@cea.fr
†navratil@triumf.ca
‡francesco.raimondi@cea.fr
§c.barbieri@surrey.ac.uk
∥thomas.duguet@cea.fr

either light systems [1,2], medium-mass nuclei [3–8], or
extended nuclear matter [9–11]. New developments, which
promise to extend (most of) these methods to higher accuracy
and/or heavy nuclei, are being currently proposed [12,13].

Over the past few years, benchmark calculations have
allowed assessment of the systematic errors associated with
both the use of a necessarily finite-dimensional Hilbert space
and the truncation of the many-body expansion at play in each
of the formalisms of interest. In state-of-the-art implemen-
tations, these errors add up to at most 5%, much less than
the uncertainty attributable to the input nuclear Hamiltonian
[14–18]. As a result, ab initio calculations have also acquired
the role of diagnostic tools as the focus of the community

2469-9985/2020/101(1)/014318(19) 014318-1 ©2020 American Physical Society
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§ Quite reasonable description of binding energies across the nuclear charts becomes feasible
§ The Hamiltonian fully determined in A=2 and A=3,4 systems

§ Nucleon–nucleon scattering, deuteron properties, 3H and 4He binding energy, 3H half life
§ Light nuclei – NCSM
§ Medium mass nuclei – Self-Consistent Green’s Function method 
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p-shell nuclei were performed. In the NCSM, nuclei are
considered to be systems of A nonrelativistic point-like
nucleons interacting via realistic two- and three-body in-
teractions. Each nucleon is an active degree of freedom
and the translational invariance of observables, the an-
gular momentum, and the parity of the nucleus are con-
served. The many-body wave function is expanded over
a basis of antisymmetric A-nucleon harmonic oscillator
(HO) states. The basis contains up to Nmax HO exci-
tations above the lowest possible Pauli configuration, so
that the the motion of the center of mass is fully de-
coupled and its kinetic energy can be subtracted exactly.
The basis is characterised by an additional parameter ⌦,
the frequency of the HO well, and may depend on either
Jacobi relative [56] or single-particle coordinates [57].
The convergence of the HO expansion can be greatly ac-
celerated by applying an SRG transformation on the 2N
and 3N interactions [58–62]. Except for A=3, 4 nuclei,
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here and in the following of the paper an SRG evolution
is applied to the NN+3N(400) and NN+3N(lnl) inter-
actions down to a scale of �=2 fm�1. On the contrary,
calculations with NNLOsat are performed with the bare
Hamiltonian.

In Figs. 1, 2 and 3 the excitation energy spectra of se-
lected Li, Be, B, and C isotopes are displayed. A correct
ordering of low-lying levels is found for all the consid-
ered lithium and beryllium isotopes, namely 6,7,9Li and
8,9Be. The 2+0 and 1+2 0 states in 6Li as well as some
of the excited states in 7Li and 8,9Be are broad reso-
nances. Here a more realistic description of 6Li and 9Be
would require a better treatment of continuum e↵ects,
see Refs. [63] and [64], respectively, in this regard. Let
us note that all excited states of 6Li are unbound with
respect to the emission of an ↵ particle and that 7Li has
only one excited state below the ↵-separation threshold.
Similarly, 8Be is never bound and even its ground state
in unstable against decay into two ↵. The lowest states
in 10B are known to be very sensitive to the details of
nuclear forces, and the 3N interaction in particular [65].
Here a good description is achieved by NN+3N(lnl), with
only the 1+2 0 state resulting incorrectly placed. The cor-
rect level ordering is also found in 11B, with the spectrum
being overall too compressed as compared to the experi-
mental one. Finally, worth-noting is the correct ordering
of T=1 states in 12C, also known to be sensitive to the 3N
interaction. On the other hand, the alpha-cluster dom-
inated 0+0 Hoyle state in 12C cannot be reproduced in
the limited NCSM basis employed here [66]. In general,
NN+3N(lnl) yields spectra that are in good agreement
with experiment. Some underestimation of level-splitting
in 9Li, 11B, and 13C emerges, and could be associated
with a weaker spin-orbit interaction strength. This is
comparable to what has been found with earlier param-
eterisations of chiral 3N forces (see, e.g. [65]).

Ground-state energies of 3H, 3,4He, and selected p-shell
nuclei from 6He to 16O are shown in Fig. 4. The calcu-
lated values (red lines) obtained with theNN+3N(lnl) in-
teraction are compared to experiment (blue lines). Theo-
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successful) two-body interaction containing terms up to next-to-next-to-next-to-leading order. The resulting
potential is labeled NN+ 3N(lnl). The objective of the present work is to investigate the performance of this
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two other representative Hamiltonians currently in use, namely NNLOsat and the older NN+ 3N (400).
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energies are generally in good agreement with experimental data. Known spectra are also well reproduced with
a few notable exceptions. The good description of ground-state energies carries on to heavier nuclei, all the way
from oxygen to nickel isotopes. Except for those involving excitation processes across the N = 20 gap, which is
overestimated by the new interaction, spectra are of very good quality, in general superior to those obtained with
NNLOsat. Although largely improving on NN+ 3N (400) results, charge radii calculated with NN+ 3N(lnl) still
underestimate experimental values, as opposed to the ones computed with NNLOsat that successfully reproduce
available data on nickel.
Conclusions: The new two- plus three-nucleon Hamiltonian introduced in the present work represents a
promising alternative to existing nuclear interactions. In particular, it has the favorable features of (i) being
adjusted solely on A = 2, 3, 4 systems, thus complying with the ab initio strategy, (ii) yielding an excellent
reproduction of experimental energies all the way from light to medium-heavy nuclei, and (iii) behaving well
under similarity renormalization group transformations, with negligible four-nucleon forces being induced, thus
allowing large-scale calculations up to medium-heavy systems. The problem of the underestimation of nuclear
radii persists and will necessitate novel developments.
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I. INTRODUCTION

In the past decade, advances in many-body approaches and
internucleon interactions have enabled significant progress in
ab initio calculations of nuclear systems. At present, sev-
eral complementary methods to solve the (time-independent)
many-body Schrödinger equation are available, tailored to
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either light systems [1,2], medium-mass nuclei [3–8], or
extended nuclear matter [9–11]. New developments, which
promise to extend (most of) these methods to higher accuracy
and/or heavy nuclei, are being currently proposed [12,13].

Over the past few years, benchmark calculations have
allowed assessment of the systematic errors associated with
both the use of a necessarily finite-dimensional Hilbert space
and the truncation of the many-body expansion at play in each
of the formalisms of interest. In state-of-the-art implemen-
tations, these errors add up to at most 5%, much less than
the uncertainty attributable to the input nuclear Hamiltonian
[14–18]. As a result, ab initio calculations have also acquired
the role of diagnostic tools as the focus of the community
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50-year-old puzzle of quenched beta decays resolved from first principles
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The dominant decay mode of atomic nuclei is beta decay 
(β-decay), a process that changes a neutron into a proton (and 
vice versa). This decay offers a window to physics beyond the 
standard model, and is at the heart of microphysical processes 
in stellar explosions and element synthesis in the Universe1–3. 
However, observed β-decay rates in nuclei have been found to 
be systematically smaller than for free neutrons: this 50-year-
old puzzle about the apparent quenching of the fundamental 
coupling constant by a factor of about 0.75 (ref. 4) is without a 
first-principles theoretical explanation. Here, we demonstrate 
that this quenching arises to a large extent from the coupling 
of the weak force to two nucleons as well as from strong corre-
lations in the nucleus. We present state-of-the-art computa-
tions of β-decays from light- and medium-mass nuclei to 100Sn 
by combining effective field theories of the strong and weak 
forces5 with powerful quantum many-body techniques6–8. Our 
results are consistent with experimental data and have impli-
cations for heavy element synthesis in neutron star mergers9–11 
and predictions for the neutrino-less double-β-decay3, where 
an analogous quenching puzzle is a source of uncertainty in 
extracting the neutrino mass scale12.

Gamow–Teller transitions are a form of β-decay in which the 
spins of the β-neutrino pair emitted during the nuclear decay are 
aligned. Remarkably, calculated Gamow–Teller strengths appear 
to reproduce most of the experimental data if the fundamental 
constant gA ≈ 1.27 characterizing the coupling of the weak inter-
action to a nucleon is quenched by a factor of q ≈ 0.75 (refs. 13–16). 
Missing nuclear correlations (that is, a lack of complexity in nuclear 
wavefunctions due to the limitations of nuclear models) as well as 
neglected contributions from meson-exchange currents (that is, 
coupling of the weak force to two nucleons) have been proposed as 
possible causes of the quenching phenomenon4. However, a solution 
has so far remained elusive. To address the quenching puzzle, we 
carry out a comprehensive study of Gamow–Teller decays through 
many-body computations of nuclei based on effective field theo-
ries (EFTs) of quantum chromodynamics5,17, including an unprec-
edented amount of correlations in the nuclear wavefunctions. The 
EFT approach offers the prospect of accuracy, by encoding the 
excluded high-energy physics through coefficients adjusted to the 

data, and precision, from the systematically improvable EFT expan-
sion. Moreover, EFT enables a consistent description of the cou-
pling of weak interactions to two nucleons via two-body currents 
(2BCs). In the EFT approach, 2BCs enter as subleading corrections 
to the one-body standard Gamow–Teller operator στ+ (with Pauli 
spin and isospin matrices σ and τ, respectively); they are smaller but 
significant corrections to weak transitions as three-nucleon forces 
are smaller but significant corrections to the nuclear interaction5,17.

In this work we focus on strong Gamow–Teller transitions, 
where the effects of quenching should dominate over cancellations 
due to fine details (as occur in the famous case of the 14C decay 
used for radiocarbon dating18,19). An excellent example is the super-
allowed β-decay of the doubly magic 100Sn nucleus (Fig. 1), which 
exhibits the strongest Gamow–Teller strength so far measured in all 
atomic nuclei20. A first-principles description of this exotic decay, 
in such a heavy nucleus, presents a significant computational chal-
lenge. However, its equal ‘magic’ numbers (Z = N = 50) of protons 
and neutrons arranged into complete shells makes 100Sn an ideal 
candidate for large-scale coupled-cluster calculations21, while the 
daughter nucleus 100In can be reached via novel extensions of the 
high-order charge-exchange coupled-cluster methods developed 
in this work (see Methods and Supplementary Figs. 4, 12 and 15 
for details). This method includes correlations via a vast number of 
particle–hole excitations of a reference state and also employs 2BCs 
in the transition operator.

Figure 1 shows our results for the strength (that is, the abso-
lute square of the transition matrix element, MGT) of the Gamow–
Teller transition to the dominant Jπ = 1+ state in the 100In daughter 
nucleus (see Supplementary Table 1 and Supplementary Fig. 12 for 
more details). To investigate systematic trends and sensitivities to 
the nuclear Hamiltonian, we employed a family of established EFT 
interactions and corresponding currents22–24. For increased preci-
sion, we also developed a new interaction labelled NN-N4LO + 3Nlnl 
which is constrained to reproduce the triton half-life (see Methods 
for details on the Hamiltonians considered). The open symbols in 
Fig. 1 depict the decay with the standard, leading-order coupling of 
the weak force to a single nucleon in the non-relativistic limit (that 
is, via the standard Gamow–Teller operator στ+). The differences 
with respect to the extreme single-particle model (ESPM), which 
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Muon capture on 𝟔𝐋𝐢, 𝟏𝟐𝐂, 𝟏𝟔𝐍 from ab initio nuclear theory
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NCSM applications to parity-violating moments:
How to calculate the sum of intermediate unnatural parity states?

§ Solving Schroedinger equation with inhomogeneous term

§ To invert this equation, we apply the Lanczos algorithm
— Bring matrix to tri-diagonal form (v1, v2 … orthonormal, H  Hermitian)

—  nth iteration computes 2nth moment
— Eigenvalues converge to extreme (largest in magnitude) values
— ~ 150-200 iterations needed for 10 eigenvalues (even for 109 states)

4

to have a Gaussian shape. WPV can not be measured
and has to be provided from sophisticated molecular cal-
culations.

We use the relativistic coupled cluster approach to de-
termine theWPV coupling constants of the BeNC, BeCN,
MgNC, and MgCN molecules with the highest possible
accuracy; these results are presented in Section IV. This
approach is considered to be the most powerful and ac-
curate method for computational investigation of atomic
and molecular properties. In the context of the NSD-PV
is was previously applied to RaF [42], HgH [43], and BaF
[20]. An advantage of this method is in the possibility
of setting uncertainty estimates on the obtained results,
which we also do in the present work. To the best of
our knowledge, no prior numerical investigations of the
sensitivity of the above systems to the NSD-PV e↵ects
are available.

III. NO-CORE SHELL MODEL NUCLEAR
CALCULATIONS

In the NCSM, nuclei are considered to be systems of A
nonrelativistic point-like nucleons interacting via realis-
tic two- and three-body interactions. Each nucleon is an
active degree of freedom and the translational invariance
of observables, the angular momentum, and the parity
of the nucleus are conserved. The many-body wave func-
tion is expanded over a basis of antisymmetric A-nucleon
harmonic oscillator (HO) states. The basis contains up
to Nmax HO excitations above the lowest possible Pauli
configuration and depends on an additional parameter ⌦,
the frequency of the HO well.

The only input for the present NCSM calculations
was the Hamiltonian from Ref. [44] consisting of chiral
nucleon-nucleon (NN) interaction obtained at the fourth
order of chiral perturbation expansion (N3LO) [45] and
chiral three-nucleon (3N) interaction at the N2LO or-
der denoted NN N3LO + 3N(lnl). For a more e�cient
convergence, the Hamiltonian was renormalized by the
Similarity-Renormalization-Group (SRG) unitary trans-
formation [46, 47] with the evolution parameter �SRG=2
fm�1. For 9Be, the largest basis space we were able
to reach was Nmax=9, while for the other p-shell nu-
clei we calculated up to Nmax=7 using the importance
truncation [48, 49] for Nmax=7. The 25Mg is on the bor-
derline of NCSM applicability. Only calculations up to
Nmax=3 were performed using importance truncation for
Nmax=3. The m-scheme dimensions of the largest basis
spaces were of the order of 108. The HO frequency of
~⌦=20 MeV, optimised in Ref. [44] was used.

The natural (i.e., ground-state) parity eigenstates are
obtained in the even Nmax spaces while the unnatural
parity eigenstates in the odd Nmax spaces. The parity
non-conserving (PNC) NN interaction admixes the un-

natural parity states in the ground state,

| gs Ii = | gs I
⇡i+

X

j

| j I
�⇡i (9)

⇥ 1

Egs � Ej
h j I

�⇡|V PNC
NN | gs I

⇡i ,

which then gives rise to the anapole moment. We used
the Desplanques, Donoghue and Holstein (DDH) PNC
NN interaction of Ref. [50] with their recommended pa-
rameter values except for the f⇡ ⌘ h

1
⇡=2.6⇥ 10�7 taken

from Ref. [51]. In NCSM, when the | gs I
⇡i is calculated

in Nmax space, the corresponding unnatural parity states
appearing in Eq. (9) are obtained in Nmax+1 space. It is
not neccessary to compute many excited unnatural par-
ity states as Eq. (9) suggests. Rather, the wave function
| gs Ii is obtained by solving the Schrödinger equation
with an inhomogeneous term

(Egs �H)| gs Ii = V
PNC
NN | gs I

⇡i . (10)

To invert this equation, we apply the Lanczos algo-
rithm [52–54].
In the presented calculations, we use the spin part of

the anapole operator

âs =
⇡e

m

AX

i=1

µi(ri ⇥ �i) , (11)

which gives the dominant contribution to the anapole
moment [55]. In Eq. (11), m is the nucleon mass and
µi is the nucleon magnetic moment in units of nuclear
magneton, i.e., µi=µp(1/2+tz,i) + µn(1/2�tz,i).
The relationship between A and as is given by

A =

p
2e

GF
as, (12)

with

as = h gs I Iz=I|â(1)s,0| gs I Iz=Ii. (13)

Using Eqs. (9), (11), (12), and (13) we calculate the
anapole moment similarly to Ref. [56] and find for the
dimensionless coupling constant A

A = �i4⇡
e
2

GF

~
mc

(II10|II)p
2I + 1

(14)
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X

j

h gs I
⇡||

p
4⇡/3
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µiri[Y1(r̂i)�i]
(1)|| j I
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⇥ 1

Egs � Ej
h j I

�⇡|V PNC
NN | gs I

⇡i .

Here, (II10|II)=I/

p
I(I + 1).

We have also performed NCSM calculations for the
matrix elements of the spin operators that serve as in-
put for the calculation of the coupling constant ax' �
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Hv1 =α1v1 + β1v2

Hv2 = β1v1 +α2v2 + β2v3

Hv3 =             β2v2 +α3v3 + β3v4

Hv4 =                        β3v3 +α4v4 + β4v5
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FIG. 7 (Color online) The toroidal component of current den-
sity j produces anapole moment a, with magnetic fieldB that
is entirely confined inside the “doughnut”. The azimuthal
component of current density generates magnetic dipole mo-
ment aligned with a, with its associated conventional dipolar
magnetic field not shown.

defining the constant ⌘NAM in Eq. (36). Atomic electrons
interact with NAM only inside the nucleus, as is appar-
ent from the classical analog, since the magnetic field is
entirely confined inside the “doughnut”. Another impor-
tant observation is that the NAM is proportional to the
area of the toroidal winding, i.e., / (nuclear radius)2 /
A

2/3, where A is the atomic number, illustrating the
trend in Eq. (38).

Microscopically, the nuclear anapole arises due to
nucleon-nucleon interaction, mediated by meson ex-
change, where one of the nucleon-meson vertexes is
strong and another is weak and P-violating. Thus,
determination of anapole moments from atomic parity
violation provides an important window into hadronic
PNC (Haxton and Wieman, 2001). The innards of
the anapole bubble in Fig. 5(c) are shown in Fig. 7
of the review by Haxton and Wieman (2001). The
nuclear-physics approach is to characterize weak meson-
nucleon couplings in terms of parameters of Desplan-
ques, Donoghue and Holstein (DDH) (Desplanques et al.,
1980), who deduced SM estimates of their values. These
six hadronic PNC parameters are f⇡, h

0,1,2

⇢
, h

0,1

!
, where

the subscript (⇡, ⇢,!) indicates meson type and the su-
perscript stands for isoscalar (0), isovector (1), or isoten-
sor (2). We refer the reader to Haxton and Wieman
(2001) for a detailed review of nuclear structure cal-
culations of NAMs within the DDH parameterization.
The e↵ective field theory parameterizations of hadronic
PNC, an alternative to DDH, are also discussed (Ramsey-
Musolf and Page, 2006), although NAM analysis in this
framework remains to be carried out. It should be
pointed out that a more recent review (Haxton and Hol-
stein, 2013) omits the Cs result. These authors explain
the omission by the fact that the accuracy of the con-
straints on the nucleon-nucleon PNC interaction derived

FIG. 8 (Color online) Constraints on combinations of par-
ity violating meson couplings (⇥107) derived from Cs anapole
moment (yellow band) and nuclear experiments. Bands have
a width of one standard deviation. Best value predicted by
the DDH analysis is also shown. This figure combines Cs
NAM band from Haxton and Wieman (2001) with more re-
cent nuclear-physics constraints figure from Haxton and Hol-
stein (2013).

from the NAM experiments is somewhat di�cult to as-
sess due to complex nuclear polarizability issues.

The derived bounds (Haxton and Wieman, 2001; Hax-
ton and Holstein, 2013) on PNC meson couplings are
shown in Fig. 8. The 133Cs APV result is shown in addi-
tion to constraints from scattering of polarized protons on
unpolarized proton and 4He targets and emission of cir-
cularly polarized photons from 18F and 19F nuclei. The
area colored red lies at the intersection of nuclear ex-
perimental bands. There is some tension with the Cs
anapole moment result, although the Cs result is consis-
tent with “reasonable ranges” of the DDH parameters.
Haxton and Wieman (2001) point out that additional
APV experiments with unpaired-neutron nuclei would
produce a band perpendicular to the Cs band (the 133Cs
anapole moment is primarily due to a valence proton).
This provides strong motivation for the ongoing exper-
iments to measure nuclear-spin-dependent APV e↵ects
in nuclei with unpaired neutrons such as 171Yb (Leefer
et al., 2014), 212Fr (Aubin et al., 2013), and 137Ba (De-
Mille et al., 2008a).
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§ Solving Schroedinger equation with inhomogeneous term

§ To invert this equation, we apply the Lanczos algorithm
— Bring matrix to tri-diagonal form (v1, v2 … orthonormal, H  Hermitian)

—  nth iteration computes 2nth moment
— Eigenvalues converge to extreme (largest in magnitude) values
— ~ 150-200 iterations needed for 10 eigenvalues (even for 109 states)
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and has to be provided from sophisticated molecular cal-
culations.

We use the relativistic coupled cluster approach to de-
termine theWPV coupling constants of the BeNC, BeCN,
MgNC, and MgCN molecules with the highest possible
accuracy; these results are presented in Section IV. This
approach is considered to be the most powerful and ac-
curate method for computational investigation of atomic
and molecular properties. In the context of the NSD-PV
is was previously applied to RaF [42], HgH [43], and BaF
[20]. An advantage of this method is in the possibility
of setting uncertainty estimates on the obtained results,
which we also do in the present work. To the best of
our knowledge, no prior numerical investigations of the
sensitivity of the above systems to the NSD-PV e↵ects
are available.
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fm�1. For 9Be, the largest basis space we were able
to reach was Nmax=9, while for the other p-shell nu-
clei we calculated up to Nmax=7 using the importance
truncation [48, 49] for Nmax=7. The 25Mg is on the bor-
derline of NCSM applicability. Only calculations up to
Nmax=3 were performed using importance truncation for
Nmax=3. The m-scheme dimensions of the largest basis
spaces were of the order of 108. The HO frequency of
~⌦=20 MeV, optimised in Ref. [44] was used.

The natural (i.e., ground-state) parity eigenstates are
obtained in the even Nmax spaces while the unnatural
parity eigenstates in the odd Nmax spaces. The parity
non-conserving (PNC) NN interaction admixes the un-
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appearing in Eq. (9) are obtained in Nmax+1 space. It is
not neccessary to compute many excited unnatural par-
ity states as Eq. (9) suggests. Rather, the wave function
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To invert this equation, we apply the Lanczos algo-
rithm [52–54].
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which gives the dominant contribution to the anapole
moment [55]. In Eq. (11), m is the nucleon mass and
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The relationship between A and as is given by
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matrix elements of the spin operators that serve as in-
put for the calculation of the coupling constant ax' �
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âs =
⇡e

m

AX

i=1

µi(ri ⇥ �i) , (11)

which gives the dominant contribution to the anapole
moment [55]. In Eq. (11), m is the nucleon mass and
µi is the nucleon magnetic moment in units of nuclear
magneton, i.e., µi=µp(1/2+tz,i) + µn(1/2�tz,i).
The relationship between A and as is given by

A =

p
2e

GF
as, (12)

with
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Hv1 =α1v1 + β1v2
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NCSM applications to parity-violating moments:
How to calculate the sum of intermediate unnatural parity states?
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FIG. 7 (Color online) The toroidal component of current den-
sity j produces anapole moment a, with magnetic fieldB that
is entirely confined inside the “doughnut”. The azimuthal
component of current density generates magnetic dipole mo-
ment aligned with a, with its associated conventional dipolar
magnetic field not shown.

defining the constant ⌘NAM in Eq. (36). Atomic electrons
interact with NAM only inside the nucleus, as is appar-
ent from the classical analog, since the magnetic field is
entirely confined inside the “doughnut”. Another impor-
tant observation is that the NAM is proportional to the
area of the toroidal winding, i.e., / (nuclear radius)2 /
A

2/3, where A is the atomic number, illustrating the
trend in Eq. (38).

Microscopically, the nuclear anapole arises due to
nucleon-nucleon interaction, mediated by meson ex-
change, where one of the nucleon-meson vertexes is
strong and another is weak and P-violating. Thus,
determination of anapole moments from atomic parity
violation provides an important window into hadronic
PNC (Haxton and Wieman, 2001). The innards of
the anapole bubble in Fig. 5(c) are shown in Fig. 7
of the review by Haxton and Wieman (2001). The
nuclear-physics approach is to characterize weak meson-
nucleon couplings in terms of parameters of Desplan-
ques, Donoghue and Holstein (DDH) (Desplanques et al.,
1980), who deduced SM estimates of their values. These
six hadronic PNC parameters are f⇡, h

0,1,2

⇢
, h

0,1

!
, where

the subscript (⇡, ⇢,!) indicates meson type and the su-
perscript stands for isoscalar (0), isovector (1), or isoten-
sor (2). We refer the reader to Haxton and Wieman
(2001) for a detailed review of nuclear structure cal-
culations of NAMs within the DDH parameterization.
The e↵ective field theory parameterizations of hadronic
PNC, an alternative to DDH, are also discussed (Ramsey-
Musolf and Page, 2006), although NAM analysis in this
framework remains to be carried out. It should be
pointed out that a more recent review (Haxton and Hol-
stein, 2013) omits the Cs result. These authors explain
the omission by the fact that the accuracy of the con-
straints on the nucleon-nucleon PNC interaction derived

FIG. 8 (Color online) Constraints on combinations of par-
ity violating meson couplings (⇥107) derived from Cs anapole
moment (yellow band) and nuclear experiments. Bands have
a width of one standard deviation. Best value predicted by
the DDH analysis is also shown. This figure combines Cs
NAM band from Haxton and Wieman (2001) with more re-
cent nuclear-physics constraints figure from Haxton and Hol-
stein (2013).

from the NAM experiments is somewhat di�cult to as-
sess due to complex nuclear polarizability issues.

The derived bounds (Haxton and Wieman, 2001; Hax-
ton and Holstein, 2013) on PNC meson couplings are
shown in Fig. 8. The 133Cs APV result is shown in addi-
tion to constraints from scattering of polarized protons on
unpolarized proton and 4He targets and emission of cir-
cularly polarized photons from 18F and 19F nuclei. The
area colored red lies at the intersection of nuclear ex-
perimental bands. There is some tension with the Cs
anapole moment result, although the Cs result is consis-
tent with “reasonable ranges” of the DDH parameters.
Haxton and Wieman (2001) point out that additional
APV experiments with unpaired-neutron nuclei would
produce a band perpendicular to the Cs band (the 133Cs
anapole moment is primarily due to a valence proton).
This provides strong motivation for the ongoing exper-
iments to measure nuclear-spin-dependent APV e↵ects
in nuclei with unpaired neutrons such as 171Yb (Leefer
et al., 2014), 212Fr (Aubin et al., 2013), and 137Ba (De-
Mille et al., 2008a).
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§ Solving Schroedinger equation with inhomogeneous term

§ To invert this equation, we apply the Lanczos algorithm
— Bring matrix to tri-diagonal form (v1, v2 … orthonormal, H  Hermitian)

—  nth iteration computes 2nth moment
— Eigenvalues converge to extreme (largest in magnitude) values
— ~ 150-200 iterations needed for 10 eigenvalues (even for 109 states)
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to have a Gaussian shape. WPV can not be measured
and has to be provided from sophisticated molecular cal-
culations.

We use the relativistic coupled cluster approach to de-
termine theWPV coupling constants of the BeNC, BeCN,
MgNC, and MgCN molecules with the highest possible
accuracy; these results are presented in Section IV. This
approach is considered to be the most powerful and ac-
curate method for computational investigation of atomic
and molecular properties. In the context of the NSD-PV
is was previously applied to RaF [42], HgH [43], and BaF
[20]. An advantage of this method is in the possibility
of setting uncertainty estimates on the obtained results,
which we also do in the present work. To the best of
our knowledge, no prior numerical investigations of the
sensitivity of the above systems to the NSD-PV e↵ects
are available.

III. NO-CORE SHELL MODEL NUCLEAR
CALCULATIONS

In the NCSM, nuclei are considered to be systems of A
nonrelativistic point-like nucleons interacting via realis-
tic two- and three-body interactions. Each nucleon is an
active degree of freedom and the translational invariance
of observables, the angular momentum, and the parity
of the nucleus are conserved. The many-body wave func-
tion is expanded over a basis of antisymmetric A-nucleon
harmonic oscillator (HO) states. The basis contains up
to Nmax HO excitations above the lowest possible Pauli
configuration and depends on an additional parameter ⌦,
the frequency of the HO well.

The only input for the present NCSM calculations
was the Hamiltonian from Ref. [44] consisting of chiral
nucleon-nucleon (NN) interaction obtained at the fourth
order of chiral perturbation expansion (N3LO) [45] and
chiral three-nucleon (3N) interaction at the N2LO or-
der denoted NN N3LO + 3N(lnl). For a more e�cient
convergence, the Hamiltonian was renormalized by the
Similarity-Renormalization-Group (SRG) unitary trans-
formation [46, 47] with the evolution parameter �SRG=2
fm�1. For 9Be, the largest basis space we were able
to reach was Nmax=9, while for the other p-shell nu-
clei we calculated up to Nmax=7 using the importance
truncation [48, 49] for Nmax=7. The 25Mg is on the bor-
derline of NCSM applicability. Only calculations up to
Nmax=3 were performed using importance truncation for
Nmax=3. The m-scheme dimensions of the largest basis
spaces were of the order of 108. The HO frequency of
~⌦=20 MeV, optimised in Ref. [44] was used.

The natural (i.e., ground-state) parity eigenstates are
obtained in the even Nmax spaces while the unnatural
parity eigenstates in the odd Nmax spaces. The parity
non-conserving (PNC) NN interaction admixes the un-

natural parity states in the ground state,
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NN interaction of Ref. [50] with their recommended pa-
rameter values except for the f⇡ ⌘ h
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in Nmax space, the corresponding unnatural parity states
appearing in Eq. (9) are obtained in Nmax+1 space. It is
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ity states as Eq. (9) suggests. Rather, the wave function
| gs Ii is obtained by solving the Schrödinger equation
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To invert this equation, we apply the Lanczos algo-
rithm [52–54].
In the presented calculations, we use the spin part of

the anapole operator
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which gives the dominant contribution to the anapole
moment [55]. In Eq. (11), m is the nucleon mass and
µi is the nucleon magnetic moment in units of nuclear
magneton, i.e., µi=µp(1/2+tz,i) + µn(1/2�tz,i).
The relationship between A and as is given by

A =
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as, (12)

with

as = h gs I Iz=I|â(1)s,0| gs I Iz=Ii. (13)

Using Eqs. (9), (11), (12), and (13) we calculate the
anapole moment similarly to Ref. [56] and find for the
dimensionless coupling constant A
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We have also performed NCSM calculations for the
matrix elements of the spin operators that serve as in-
put for the calculation of the coupling constant ax' �
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where the coefficients ĝi(ω) are finite continued fractions
formed from the entries in the tridiagonal matrix. For example,

ĝ1(ω) = 1

ω − α1 − β2
1

ω−α2−
β2

2
ω−α3−β2

3

.

. . . (12)

With each additional iteration, one additional Lanczos vector is
added to the expansion, and each continued fraction increases
in rank by one through the addition of a new αn+1 and βn.
As most Green’s function applications involve convolutions
with relatively smooth operators, often Ĝn(ω)|v1⟩ becomes
numerically equivalent to G(ω)|v1⟩ after a few Lanczos
iterations (∼20) [13].

An important consequence of Eq. (11) is that, once the
Lanczos calculation is completed, the Green’s function is
known as a function of ω. This will be important in the
applications we discuss later.

III. ELECTROWEAK RESPONSE FUNCTIONS AT
ARBITRARY q2

The discussion of the previous section addressed the special
case of a fixed operator, like the GT operator, that governs
the weak nuclear response along the q = 0 line in the (ω, q)
response plane. However, many electroweak processes of
interest—intermediate-energy electron or neutrino scattering,
muon capture, etc.—involve appreciable three-momentum
transfers (and the associated excitation of radial modes in the
nucleus). That is, the relevant response function is

S(ω, q) =
N∑

i=1

|⟨ψEi
|O(q)|g.s.⟩|2δ(ω − Ei), (13)

where O(q) is (an assumed one-body) electroweak operator
that depends explicitly on q. If one naively applies the
formalism of the preceding section, a new calculation would
be needed for each desired q, because the operator evolves
with q. This would require tediously stepping over a grid of
fixed q’s computing a Lanczos calculation for each value, to
map the full surface above the response plane.

Here we discuss procedures for evaluating S(ω, q) very
efficiently as a function of q (and ω) over the entire response
plane, at the cost of only a few Lanczos calculations. The
approach depends on the assumption that the shell-model
basis of Slater determinants has been formed from harmonic-
oscillator single-particle wave functions. This choice allows
one to exploit attractive properties of the matrix elements of
O(q) between such wave functions.

While we will delay details of the test application (electro-
magnetic response functions for 28Si) to the next section, here
we sketch the basic idea. One can write O(q)|g.s.⟩ in second
quantization,

∑

α,β

⟨α|O(q)|β⟩a†
αaβ |g.s.⟩, (14)

where α and β represent a complete set of single-particle
quantum numbers. For the choice of harmonic oscillators, ma-
trix elements of the standard charge, longitudinal, transverse
electric, and transverse magnetic multipoles can be evaluated
in closed form, leading to [14,15]

⟨α|OJ (q)|β⟩ = y(J−K)/2e−ypαβ(y). (15)

Here we denote the multipolarity of the operator by J,K =
2(1) for normal (abnormal) parity operators, and y = (qb/2)2,
where b is the oscillator parameter. The crucial point is that
p(y) is a finite polynomial in y or q2. In the 28Si test case, the
most complicated operator that arises has only three nonzero
terms in p(y).

We first go through a schematic argument to show how this
y dependence might be exploited. Denoting the order of the
polynomial p by m, it follows that

O(q)|g.s.⟩
= y(J−K)/2e−y

(
c0

∣∣v0
1

〉
+ c1y

∣∣v1
1

〉
+ · · · + cmym

∣∣vm
1

〉)

≡ y(J−K)/2e−yc(y)|v1(y)⟩, (16)

with a notation analogous to that of Eq. (6) and with the
strength cj chosen to make |vj

1 ⟩ a unit vector. For parity-
conserving interactions and standard phase conventions, all
quantities can be taken as real, with the c’s non-negative.
The |vj

1 ⟩, of course, are not orthonormal. Similarly c(y) and
|v1(y)⟩ can be viewed as a y-dependent strength and unit vector,
respectively. It follows that

S(ω, q) = yJ−Ke−2y |c(y)|2
N∑

i=1

|⟨ψEi
|v1(y)⟩|2δ(ω − Ei),

(17)

where

|c(y)|2|⟨ψEi
|v1(y)⟩|2 =

m∑

j,k=0

c∗
kcj y

j+k⟨vk
1 |ψEi

⟩⟨ψEi
|vj

1 ⟩, (18)

so that the response function has a similar polynomial form. It
also follows that moments of S(ω) have the form
∫ ∞

0
S(ω)ωλdω = yJ−Ke−2y |c(y)|2

N∑

i=1

|⟨ψEi
|v1(y)⟩|2Eλ

i .

(19)

These last two results simply state that if one had a complete
set of N eigenvalues and eigenfunctions, each contributing
transition probability would have a simple, analytical behavior
in y.

Of course, these results are only of academic interest: As
we are assuming that N is prohibitively large, a complete
diagonalization is impossible. This leaves a much more
interesting question: Can we find an analog of Eq. (7) or (8), an
efficient Lanczos representation of S(ω, q), that also exploits
the polynomial behavior of the response in y? If so, it would
appear to be a practical way to construct the response over the
entire (ω, q) plane.

We have explored several of the possibilities, uncovering
some of the numerical pitfalls. Even the less successful
methods are interesting conceptually, so we describe the
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Abstract. The Lorentz integral transform (LIT) method, which allows ab-
initio calculations of few-body cross sections, is reformulated via the Lanczos
algorithm. The new technique, being quite general, is tested on inclusive and
exclusive photonuclear reactions on three- and four-body nuclei. Due to the
rapid convergence of the algorithm one gains a substantial decrease in CPU
time with an excellent agreement with the results of a conventional LIT calcu-
lation. The present work opens up the possibility of ab-initio calculations for
inclusive and exclusive processes for systems with a number of particles
N ! 6.

1 Introduction

The study of reaction cross sections is an important tool to reveal the dynamics of
particle systems. For systems with a small number of particles one aims at micro-
scopic calculations trying to take into account all relevant degrees of freedom of
the considered process. However, calculations via the classical approach, where
one uses initial and continuum state wave functions, are very difficult to perform
for reactions at energies beyond the three-body breakup thresholds. The Lorentz
integral transform (LIT) method [1] offers an alternative solution to the problem:
The transition matrix elements entering in the cross sections are obtained in a direct
way, without the explicit knowledge of the complicated continuum wave functions,
but taking into account final state interactions correctly. Various applications of this
method for electromagnetic reactions on light nuclei can be found in the literature
[1–8].

The LIT method is based on Schr€oodinger-like equations with source terms
(which depend on the kind of reaction one is treating), whose solutions have bound-
state-like asymptotic boundary conditions. The solutions of these equations can be

| gs Ii ⇡
X

k

gk(E0)|vki
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to have a Gaussian shape. WPV can not be measured
and has to be provided from sophisticated molecular cal-
culations.

We use the relativistic coupled cluster approach to de-
termine theWPV coupling constants of the BeNC, BeCN,
MgNC, and MgCN molecules with the highest possible
accuracy; these results are presented in Section IV. This
approach is considered to be the most powerful and ac-
curate method for computational investigation of atomic
and molecular properties. In the context of the NSD-PV
is was previously applied to RaF [42], HgH [43], and BaF
[20]. An advantage of this method is in the possibility
of setting uncertainty estimates on the obtained results,
which we also do in the present work. To the best of
our knowledge, no prior numerical investigations of the
sensitivity of the above systems to the NSD-PV e↵ects
are available.

III. NO-CORE SHELL MODEL NUCLEAR
CALCULATIONS

In the NCSM, nuclei are considered to be systems of A
nonrelativistic point-like nucleons interacting via realis-
tic two- and three-body interactions. Each nucleon is an
active degree of freedom and the translational invariance
of observables, the angular momentum, and the parity
of the nucleus are conserved. The many-body wave func-
tion is expanded over a basis of antisymmetric A-nucleon
harmonic oscillator (HO) states. The basis contains up
to Nmax HO excitations above the lowest possible Pauli
configuration and depends on an additional parameter ⌦,
the frequency of the HO well.

The only input for the present NCSM calculations
was the Hamiltonian from Ref. [44] consisting of chiral
nucleon-nucleon (NN) interaction obtained at the fourth
order of chiral perturbation expansion (N3LO) [45] and
chiral three-nucleon (3N) interaction at the N2LO or-
der denoted NN N3LO + 3N(lnl). For a more e�cient
convergence, the Hamiltonian was renormalized by the
Similarity-Renormalization-Group (SRG) unitary trans-
formation [46, 47] with the evolution parameter �SRG=2
fm�1. For 9Be, the largest basis space we were able
to reach was Nmax=9, while for the other p-shell nu-
clei we calculated up to Nmax=7 using the importance
truncation [48, 49] for Nmax=7. The 25Mg is on the bor-
derline of NCSM applicability. Only calculations up to
Nmax=3 were performed using importance truncation for
Nmax=3. The m-scheme dimensions of the largest basis
spaces were of the order of 108. The HO frequency of
~⌦=20 MeV, optimised in Ref. [44] was used.

The natural (i.e., ground-state) parity eigenstates are
obtained in the even Nmax spaces while the unnatural
parity eigenstates in the odd Nmax spaces. The parity
non-conserving (PNC) NN interaction admixes the un-

natural parity states in the ground state,

| gs Ii = | gs I
⇡i+

X

j

| j I
�⇡i (9)

⇥ 1

Egs � Ej
h j I

�⇡|V PNC
NN | gs I

⇡i ,

which then gives rise to the anapole moment. We used
the Desplanques, Donoghue and Holstein (DDH) PNC
NN interaction of Ref. [50] with their recommended pa-
rameter values except for the f⇡ ⌘ h

1
⇡=2.6⇥ 10�7 taken

from Ref. [51]. In NCSM, when the | gs I
⇡i is calculated

in Nmax space, the corresponding unnatural parity states
appearing in Eq. (9) are obtained in Nmax+1 space. It is
not neccessary to compute many excited unnatural par-
ity states as Eq. (9) suggests. Rather, the wave function
| gs Ii is obtained by solving the Schrödinger equation
with an inhomogeneous term

(Egs �H)| gs Ii = V
PNC
NN | gs I

⇡i . (10)

To invert this equation, we apply the Lanczos algo-
rithm [52–54].
In the presented calculations, we use the spin part of

the anapole operator

âs =
⇡e

m

AX

i=1

µi(ri ⇥ �i) , (11)

which gives the dominant contribution to the anapole
moment [55]. In Eq. (11), m is the nucleon mass and
µi is the nucleon magnetic moment in units of nuclear
magneton, i.e., µi=µp(1/2+tz,i) + µn(1/2�tz,i).
The relationship between A and as is given by

A =

p
2e

GF
as, (12)

with

as = h gs I Iz=I|â(1)s,0| gs I Iz=Ii. (13)

Using Eqs. (9), (11), (12), and (13) we calculate the
anapole moment similarly to Ref. [56] and find for the
dimensionless coupling constant A

A = �i4⇡
e
2

GF

~
mc

(II10|II)p
2I + 1

(14)

⇥
X

j

h gs I
⇡||

p
4⇡/3

AX

i=1

µiri[Y1(r̂i)�i]
(1)|| j I

�⇡i

⇥ 1

Egs � Ej
h j I

�⇡|V PNC
NN | gs I

⇡i .

Here, (II10|II)=I/

p
I(I + 1).

We have also performed NCSM calculations for the
matrix elements of the spin operators that serve as in-
put for the calculation of the coupling constant ax' �
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FIG. 7 (Color online) The toroidal component of current den-
sity j produces anapole moment a, with magnetic fieldB that
is entirely confined inside the “doughnut”. The azimuthal
component of current density generates magnetic dipole mo-
ment aligned with a, with its associated conventional dipolar
magnetic field not shown.

defining the constant ⌘NAM in Eq. (36). Atomic electrons
interact with NAM only inside the nucleus, as is appar-
ent from the classical analog, since the magnetic field is
entirely confined inside the “doughnut”. Another impor-
tant observation is that the NAM is proportional to the
area of the toroidal winding, i.e., / (nuclear radius)2 /
A

2/3, where A is the atomic number, illustrating the
trend in Eq. (38).

Microscopically, the nuclear anapole arises due to
nucleon-nucleon interaction, mediated by meson ex-
change, where one of the nucleon-meson vertexes is
strong and another is weak and P-violating. Thus,
determination of anapole moments from atomic parity
violation provides an important window into hadronic
PNC (Haxton and Wieman, 2001). The innards of
the anapole bubble in Fig. 5(c) are shown in Fig. 7
of the review by Haxton and Wieman (2001). The
nuclear-physics approach is to characterize weak meson-
nucleon couplings in terms of parameters of Desplan-
ques, Donoghue and Holstein (DDH) (Desplanques et al.,
1980), who deduced SM estimates of their values. These
six hadronic PNC parameters are f⇡, h

0,1,2

⇢
, h

0,1

!
, where

the subscript (⇡, ⇢,!) indicates meson type and the su-
perscript stands for isoscalar (0), isovector (1), or isoten-
sor (2). We refer the reader to Haxton and Wieman
(2001) for a detailed review of nuclear structure cal-
culations of NAMs within the DDH parameterization.
The e↵ective field theory parameterizations of hadronic
PNC, an alternative to DDH, are also discussed (Ramsey-
Musolf and Page, 2006), although NAM analysis in this
framework remains to be carried out. It should be
pointed out that a more recent review (Haxton and Hol-
stein, 2013) omits the Cs result. These authors explain
the omission by the fact that the accuracy of the con-
straints on the nucleon-nucleon PNC interaction derived

FIG. 8 (Color online) Constraints on combinations of par-
ity violating meson couplings (⇥107) derived from Cs anapole
moment (yellow band) and nuclear experiments. Bands have
a width of one standard deviation. Best value predicted by
the DDH analysis is also shown. This figure combines Cs
NAM band from Haxton and Wieman (2001) with more re-
cent nuclear-physics constraints figure from Haxton and Hol-
stein (2013).

from the NAM experiments is somewhat di�cult to as-
sess due to complex nuclear polarizability issues.

The derived bounds (Haxton and Wieman, 2001; Hax-
ton and Holstein, 2013) on PNC meson couplings are
shown in Fig. 8. The 133Cs APV result is shown in addi-
tion to constraints from scattering of polarized protons on
unpolarized proton and 4He targets and emission of cir-
cularly polarized photons from 18F and 19F nuclei. The
area colored red lies at the intersection of nuclear ex-
perimental bands. There is some tension with the Cs
anapole moment result, although the Cs result is consis-
tent with “reasonable ranges” of the DDH parameters.
Haxton and Wieman (2001) point out that additional
APV experiments with unpaired-neutron nuclei would
produce a band perpendicular to the Cs band (the 133Cs
anapole moment is primarily due to a valence proton).
This provides strong motivation for the ongoing exper-
iments to measure nuclear-spin-dependent APV e↵ects
in nuclei with unpaired neutrons such as 171Yb (Leefer
et al., 2014), 212Fr (Aubin et al., 2013), and 137Ba (De-
Mille et al., 2008a).



21

NCSM applications to parity-violating moments: 
Anapole moments & EDMs of light stable nuclei

Examples of Nmax convergence 3

0

0.01

0.02

0.03

0.04

0.05

D
(p

ol
) /G -0 π [

e 
fm

]

h- Ω=20 MeV
h- Ω=30 MeV

0

0.01

0.02

0.03

0.04

D
(p

ol
) /G -1 π [

e 
fm

]

3 5 7 9 11 13 15 17
Nmax

0

0.01

0.02

0.03

0.04

D
(p

ol
) /G -2 π [

e 
fm

]

Figure 1. The polarization contribution to 3He EDM (in e fm)
due to the ⇡-exchange PTV NN interaction (5). Dependence
on the NCSM basis size characterized by Nmax for two HO
frequencies is shown. Chiral N3LO PTC NN interaction from
Ref. [35] was used.

with the electric dipole moment operator projected in the
z-direction.

To compute matrix elements of the V
PTV
NN interaction

(5) and solve the equation (6), we adapted codes used for
calculations of anapole moments of light nuclei reported
in Ref. [48]. To benchmark our codes, we calculated the
EDM of 3He using PTC chiral N3LO NN interaction [35]
without any renormalization as 3He EDM results for this
interaction together with the PTV interaction (5) were
published in Ref. [17]. The NCSM basis convergence for
the polarization contribution to 3He EDM is shown in
Fig. 1 and our D

(1) and D
(pol) results are summarized

in Table I. The D
(pol)

Nmax convergence is quite satis-
factory while that of D(1) is still faster. In Fig. 1, the
odd Nmax values correspond to the unnatural states in
Eq. (4), i.e., the largest space for the ground-state was
Nmax=16. While our D

(1) results agree with those re-
ported in Ref. [17] (Table 1, the EFT NN column in
that paper), the present D

(pol) results are smaller by a
factor of 1/2 compared to Ref. [17] (Table 2, the EFT
NN columns in that paper). It should be noted that the
same 1/2 discrepancy was reported in Ref. [20] for the
isoscalar and isovector terms, while a discrepancy of 1/5
was found for the isotensor terms. Similarly, a factor
of 1/2 di↵erence was found in Ref. [25] although for all
the terms. Our results are then consistent with those of
Ref. [25]. The NCSM was applied in Ref. [17] (and also in
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Figure 2. The polarization contribution to 6Li and 9Be EDM
(in e fm) due to the isovector ⇡-exchange PTV NN interac-
tion (5). Dependence on the NCSM basis size characterized
by Nmax is shown. SRG-evolved chiral NN+3N(lnl) PTC in-
teraction from Ref. [34] was used. The HO frequency ~⌦=20
MeV was used.

Ref. [19]). However, the Jacobi-coordinate HO basis was
employed as opposed to the SD HO basis used here, i.e.,
di↵erent codes were utilized. We plan to reexamine the
codes used in Ref. [17] to investigate the issue further.
Basis-size convergence of the polarization contribu-

tions to the EDM for p-shell nuclei is also quite reasonable
and comparable to that of the anapole moments [48]. In
Fig. 2, we show the Nmax convergence of the isovector
⇡-exchange contribution for 6Li and 9Be as a representa-
tive example. Again, the the oddNmax values correspond
to the unnatural-parity states in Eq. (4). The largest
spaces that we were able to reach for 6,7Li wereNmax=11,
while for 9Be Nmax=9. For 10,11B, our calculations have
been performed up to Nmax=7. For 13C, 14,15N we also
reached Nmax=7 basis space. However, we applied the
importance truncation [50, 51] at Nmax=7 for these iso-
topes. The 19F is on the borderline of NCSM applica-
bility. Only calculations up to Nmax=5 were performed
although without any importance truncation. The M -
scheme dimension was 189 million in this case.

OurD(1) andD
(pol) results for all considered nuclei are

shown in Table I. In Fig. 3, we display all the calculated
polarization contributions to the EDMs of the p-shell sta-
ble nuclei and 19F. We can evaluate the uncertainties of
our results due to the basis size convergence at about
10% (20% for 19F). The other sources of uncertainty are
renormalization and incompleteness of the transition op-
erators and the uncertainties due to the description of the
nuclear PTC and PTV forces. A rough estimate of the
accuracy of our calculations can be obtained by a com-
parison of the calculated and experimental magnetic mo-
ments shown in the last two columns of Table I. For 19F,
we obtain in addition the magnetic moment +3.73 µN

for the 5/2+ excited state that can be compared to the

Examples of Nmax convergence

Y. Hao, P. Navratil et al., 
PRA 102, 052828 (2020) 
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FIG. 7 (Color online) The toroidal component of current den-
sity j produces anapole moment a, with magnetic fieldB that
is entirely confined inside the “doughnut”. The azimuthal
component of current density generates magnetic dipole mo-
ment aligned with a, with its associated conventional dipolar
magnetic field not shown.

defining the constant ⌘NAM in Eq. (36). Atomic electrons
interact with NAM only inside the nucleus, as is appar-
ent from the classical analog, since the magnetic field is
entirely confined inside the “doughnut”. Another impor-
tant observation is that the NAM is proportional to the
area of the toroidal winding, i.e., / (nuclear radius)2 /
A

2/3, where A is the atomic number, illustrating the
trend in Eq. (38).

Microscopically, the nuclear anapole arises due to
nucleon-nucleon interaction, mediated by meson ex-
change, where one of the nucleon-meson vertexes is
strong and another is weak and P-violating. Thus,
determination of anapole moments from atomic parity
violation provides an important window into hadronic
PNC (Haxton and Wieman, 2001). The innards of
the anapole bubble in Fig. 5(c) are shown in Fig. 7
of the review by Haxton and Wieman (2001). The
nuclear-physics approach is to characterize weak meson-
nucleon couplings in terms of parameters of Desplan-
ques, Donoghue and Holstein (DDH) (Desplanques et al.,
1980), who deduced SM estimates of their values. These
six hadronic PNC parameters are f⇡, h

0,1,2

⇢
, h

0,1

!
, where

the subscript (⇡, ⇢,!) indicates meson type and the su-
perscript stands for isoscalar (0), isovector (1), or isoten-
sor (2). We refer the reader to Haxton and Wieman
(2001) for a detailed review of nuclear structure cal-
culations of NAMs within the DDH parameterization.
The e↵ective field theory parameterizations of hadronic
PNC, an alternative to DDH, are also discussed (Ramsey-
Musolf and Page, 2006), although NAM analysis in this
framework remains to be carried out. It should be
pointed out that a more recent review (Haxton and Hol-
stein, 2013) omits the Cs result. These authors explain
the omission by the fact that the accuracy of the con-
straints on the nucleon-nucleon PNC interaction derived

FIG. 8 (Color online) Constraints on combinations of par-
ity violating meson couplings (⇥107) derived from Cs anapole
moment (yellow band) and nuclear experiments. Bands have
a width of one standard deviation. Best value predicted by
the DDH analysis is also shown. This figure combines Cs
NAM band from Haxton and Wieman (2001) with more re-
cent nuclear-physics constraints figure from Haxton and Hol-
stein (2013).

from the NAM experiments is somewhat di�cult to as-
sess due to complex nuclear polarizability issues.

The derived bounds (Haxton and Wieman, 2001; Hax-
ton and Holstein, 2013) on PNC meson couplings are
shown in Fig. 8. The 133Cs APV result is shown in addi-
tion to constraints from scattering of polarized protons on
unpolarized proton and 4He targets and emission of cir-
cularly polarized photons from 18F and 19F nuclei. The
area colored red lies at the intersection of nuclear ex-
perimental bands. There is some tension with the Cs
anapole moment result, although the Cs result is consis-
tent with “reasonable ranges” of the DDH parameters.
Haxton and Wieman (2001) point out that additional
APV experiments with unpaired-neutron nuclei would
produce a band perpendicular to the Cs band (the 133Cs
anapole moment is primarily due to a valence proton).
This provides strong motivation for the ongoing exper-
iments to measure nuclear-spin-dependent APV e↵ects
in nuclei with unpaired neutrons such as 171Yb (Leefer
et al., 2014), 212Fr (Aubin et al., 2013), and 137Ba (De-
Mille et al., 2008a).
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Synergy of precision experiments and ab initio nuclear theory to test CKM unitarity
Structure corrections for the extraction of the Vud matrix element from the 10C→10B Fermi transition

§ CKM unitarity sensitive probe of BSM physics
§ Vud element from super-allowed Fermi transitions

 
§ 𝛿NS parametrizes correction to free 𝛾W box
§ Ab initio no-core shell model (NCSM) 

§ A very good convergence – consistent with what used in latest 
evaluation with a substantially reduced theoretical uncertainties

NCSM applicable also to 14O →	14N and possibly 18Ne → 18F, 22Mg → 22Na

arXiv: 2405.19281
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Unified approach to bound & continuum states

No-Core Shell Model with Continuum (NCSMC)
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r

S. Baroni, P. Navratil, and S. Quaglioni, 
PRL 110, 022505 (2013); PRC 87, 034326 (2013).
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1max += NN
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N = 1

Static solutions for aggregate system,
describe all nucleons close together
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Static solutions for aggregate system,
describe all nucleons close together

Continuous microscopic cluster states,
describe long-range projectile-target
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… to be simultaneously determined  
by solving the coupled NCSMC equations 
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Abstract
The description of nuclei starting from the constituent nucleons and the realistic interactions
among them has been a long-standing goal in nuclear physics. In addition to the complex nature
of the nuclear forces, with two-, three- and possibly higher many-nucleon components, one faces
the quantum-mechanical many-nucleon problem governed by an interplay between bound and
continuum states. In recent years, significant progress has been made in ab initio nuclear
structure and reaction calculations based on input from QCD-employing Hamiltonians
constructed within chiral effective field theory. After a brief overview of the field, we focus on
ab initio many-body approaches—built upon the no-core shell model—that are capable of
simultaneously describing both bound and scattering nuclear states, and present results for
resonances in light nuclei, reactions important for astrophysics and fusion research. In particular,
we review recent calculations of resonances in the 6He halo nucleus, of five- and six-nucleon
scattering, and an investigation of the role of chiral three-nucleon interactions in the structure of
9Be. Further, we discuss applications to the 7Be gp, B8( ) radiative capture. Finally, we highlight
our efforts to describe transfer reactions including the 3H d, n 4( ) He fusion.

Keywords: ab initio methods, many-body nuclear reaction theory, nuclear reactions involving
few-nucleon systems, three-nucleon forces, radiative capture

(Some figures may appear in colour only in the online journal)

1. Introduction

Understanding the structure and the dynamics of nuclei as
many-body systems of protons and neutrons interacting
through the strong (as well as electromagnetic and weak)
forces is one of the central goals of nuclear physics. One of
the major reasons why this goal has yet to be accomplished
lies in the complex nature of the strong nuclear force, emer-
ging form the underlying theory of quantum chromodynamics
(QCD). At the low energies relevant to the structure and
dynamics of nuclei, QCD is non-perturbative and very diffi-
cult to solve. The relevant degrees of freedom for nuclei are

nucleons, i.e., protons and neutrons, that are not fundamental
particles but rather complex objects made of quarks, anti-
quarks and gluons. Consequently, the strong interactions
among nucleons is only an ‘effective’ interaction emerging
non-perturbatively from QCD. Our knowledge of the
nucleon–nucleon (NN) interactions is limited at present to
models. The most advanced and most fundamental of these
models rely on a low-energy effective field theory (EFT) of
the QCD, chiral EFT [1]. This theory is built on the sym-
metries of QCD, most notably the approximate chiral sym-
metry. However, it is not renormalizable and has an infinite
number of terms. Chiral EFT involves unknown parameters,

| Royal Swedish Academy of Sciences Physica Scripta
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Can Ab Initio Theory Explain the Phenomenon of Parity Inversion in 11Be?
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The weakly bound exotic 11Be nucleus, famous for its ground-state parity inversion and distinct
nþ 10Be halo structure, is investigated from first principles using chiral two- and three-nucleon forces.
An explicit treatment of continuum effects is found to be indispensable. We study the sensitivity of the 11Be
spectrum to the details of the three-nucleon force and demonstrate that only certain chiral interactions are
capable of reproducing the parity inversion. With such interactions, the extremely large E1 transition
between the bound states is reproduced. We compare our photodisintegration calculations to conflicting
experimental data and predict a distinct dip around the 3=2−1 resonance energy. Finally, we predict
low-lying 3=2þ and 9=2þ resonances that are not or not sufficiently measured in experiments.

DOI: 10.1103/PhysRevLett.117.242501

The theoretical understanding of exotic neutron-rich nuclei
constitutes a tremendous challenge. These systems often
cannot be explained bymean-field approaches and contradict
the regular shell structure. The spectrum of 11Be has some
very peculiar features. The 1=2þ ground state (g.s.) is loosely
bound by 502 keVwith respect to the nþ 10Be threshold and
is separated by only 320 keV from its parity-inverted 1=2−

partner [1], which would be the expected g.s. in the standard
shell-model picture. Such parity inversion, already noticed by
Talmi and Unna [2] in the early 1960s, is one of the best
examples of the disappearance of the N ¼ 8 magic number
with an increasing neutron to proton ratio. The next
(nþ nþ 9Be) breakup threshold appears at 7.31 MeV [3],
such that the rich resonance structure at low energies is
dominated by the nþ 10Be dynamics. Peculiar also is the
electric-dipole transition strength between the two bound
states, which has attracted much attention since its first
measurement in 1971 [4] and was remeasured in 1983 [5]
and2014 [6]. It is the strongest known transitionbetween low-
lying states, attributed to the halo character of 11Be.
An accurate description of this complex spectrum is

anticipated to be sensitive to the details of the nuclear force
[7], such that a precise knowledge of the nucleon-nucleon
(NN) interaction, desirably obtained from first principles,
is crucial. Moreover, the inclusion of three-nucleon (3N)
effects has been found to be indispensable for an accurate
description of nuclear systems [8,9]. The chiral effective
field theory constitutes one of the most promising candi-
dates for deriving the nuclear interaction. Formulated by
Weinberg [10–12], it is based on the fundamental sym-
metries of QCD and uses pions and nucleons as relevant
degrees of freedom. Within this theory, NN, 3N, and
higher many-body interactions arise in a natural hierarchy

[10–16]. The details of these interactions depend on the
specific choices made during the construction. In particular,
the way the interactions are constrained to experimental
data can have a strong impact [17].
In this Letter, we tackle the question if ab initio

calculations can provide an accurate description of the
11Be spectrum and reproduce the experimental ground
state. Pioneering ab initio investigations of 11Be did not
account for the important effects of 3N forces and were
incomplete in the treatment of either long- [18] or short-
range [19,20] correlations, both of which are crucial to
arrive at an accurate description of this system.
In this Letter, we report the first complete ab initio

calculations of the 11Be nucleus using the framework of
the no-core shell model with continuum (NCSMC) [21–23],
which combines the capability to describe the extended
nþ 10Be configurations of Refs. [19,20] with a robust
treatment of many-body short-range correlations. We adopt
a family of chiral interactions in which theNN component is
constrained, in a traditional sense, to two-nucleon properties
[24] and the 3N force is fitted in three- and sometimes four-
body systems [25–28]. In addition, we also employ a newer
chiral interaction, obtained from a simultaneous fit of NN
and 3N components to nucleon-nucleon scattering data and
selected properties of nuclei as complex as 25O [29–31].
Many-body approach.—The general idea of the NCSMC

is to represent the A-nucleon wave function as the gener-
alized cluster expansion [21–23]

jΨJπT
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The weakly bound exotic 11Be nucleus, famous for its ground-state parity inversion and distinct
nþ 10Be halo structure, is investigated from first principles using chiral two- and three-nucleon forces.
An explicit treatment of continuum effects is found to be indispensable. We study the sensitivity of the 11Be
spectrum to the details of the three-nucleon force and demonstrate that only certain chiral interactions are
capable of reproducing the parity inversion. With such interactions, the extremely large E1 transition
between the bound states is reproduced. We compare our photodisintegration calculations to conflicting
experimental data and predict a distinct dip around the 3=2−1 resonance energy. Finally, we predict
low-lying 3=2þ and 9=2þ resonances that are not or not sufficiently measured in experiments.
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The theoretical understanding of exotic neutron-rich nuclei
constitutes a tremendous challenge. These systems often
cannot be explained bymean-field approaches and contradict
the regular shell structure. The spectrum of 11Be has some
very peculiar features. The 1=2þ ground state (g.s.) is loosely
bound by 502 keVwith respect to the nþ 10Be threshold and
is separated by only 320 keV from its parity-inverted 1=2−

partner [1], which would be the expected g.s. in the standard
shell-model picture. Such parity inversion, already noticed by
Talmi and Unna [2] in the early 1960s, is one of the best
examples of the disappearance of the N ¼ 8 magic number
with an increasing neutron to proton ratio. The next
(nþ nþ 9Be) breakup threshold appears at 7.31 MeV [3],
such that the rich resonance structure at low energies is
dominated by the nþ 10Be dynamics. Peculiar also is the
electric-dipole transition strength between the two bound
states, which has attracted much attention since its first
measurement in 1971 [4] and was remeasured in 1983 [5]
and2014 [6]. It is the strongest known transitionbetween low-
lying states, attributed to the halo character of 11Be.
An accurate description of this complex spectrum is

anticipated to be sensitive to the details of the nuclear force
[7], such that a precise knowledge of the nucleon-nucleon
(NN) interaction, desirably obtained from first principles,
is crucial. Moreover, the inclusion of three-nucleon (3N)
effects has been found to be indispensable for an accurate
description of nuclear systems [8,9]. The chiral effective
field theory constitutes one of the most promising candi-
dates for deriving the nuclear interaction. Formulated by
Weinberg [10–12], it is based on the fundamental sym-
metries of QCD and uses pions and nucleons as relevant
degrees of freedom. Within this theory, NN, 3N, and
higher many-body interactions arise in a natural hierarchy

[10–16]. The details of these interactions depend on the
specific choices made during the construction. In particular,
the way the interactions are constrained to experimental
data can have a strong impact [17].
In this Letter, we tackle the question if ab initio

calculations can provide an accurate description of the
11Be spectrum and reproduce the experimental ground
state. Pioneering ab initio investigations of 11Be did not
account for the important effects of 3N forces and were
incomplete in the treatment of either long- [18] or short-
range [19,20] correlations, both of which are crucial to
arrive at an accurate description of this system.
In this Letter, we report the first complete ab initio

calculations of the 11Be nucleus using the framework of
the no-core shell model with continuum (NCSMC) [21–23],
which combines the capability to describe the extended
nþ 10Be configurations of Refs. [19,20] with a robust
treatment of many-body short-range correlations. We adopt
a family of chiral interactions in which theNN component is
constrained, in a traditional sense, to two-nucleon properties
[24] and the 3N force is fitted in three- and sometimes four-
body systems [25–28]. In addition, we also employ a newer
chiral interaction, obtained from a simultaneous fit of NN
and 3N components to nucleon-nucleon scattering data and
selected properties of nuclei as complex as 25O [29–31].
Many-body approach.—The general idea of the NCSMC

is to represent the A-nucleon wave function as the gener-
alized cluster expansion [21–23]
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information of the ab initio approach. In the following, we
use a phenomenology-inspired approach indicated by
NCSMC-pheno that has been already applied in
Refs. [36,55]. In this approach, we adjust the 10Be and
11Be excitation energies of the NCSM eigenstates entering
expansion (1) to reproduce the experimental energies of the
first low-lying states. Note that the obtained NCSMC-
pheno energies are fitted to the experiment, while the
theoretical widths, quoted in Table I, are predictions.
An intuitive interpretation of the 11Be g.s. wave function

is provided in Fig. 4 by the overlap of the full solution for the
g.s. jΨJπT

ν i in (1) with the cluster portion jΦJπT
ν;r i given by

rhΦJπT
ν;r jAνjΨJπT

A i. A clearly extended halo structure beyond
20 fm can be identified for the S wave of the 10Beð0þÞ þ n
relative motion. The phenomenological energy adjustment
only slightly influences the asymptotic behavior of the S
wave, as seen by comparing the solid and dashed black
curves, while other partial waves are even indistinguishable
on the plot resolution. The corresponding spectroscopic
factors for the NCSMC-pheno approach, obtained by
integrating the squared cluster form factors in Fig. 4, are
S ¼ 0.90 (S wave) and S ¼ 0.16 (D wave). The S-wave
asymptotic normalization coefficient is 0.786 fm−1=2.

The BðE1Þ transitions are summarized in Table II.
Calculations without continuum effects predict the wrong
g.s. and underestimate the E1 strength by several orders
of magnitude. For the NCSMC calculations with the
NN þ 3Nð400Þ interaction, the 1=2þ state is very weakly
bound, leading to an unrealistic E1 transition. The
N2LOSAT interaction successfully reproduces the strong
E1 transition, albeit the latest measurement [6] is slightly
overestimated, even after the phenomenological energy
adjustment. There might be small effects arising from a
formally necessary SRG evolution of the transition oper-
ator. Works along these lines for 4He suggest a slight
reduction of the dipole strength [56,57]. A similar effect
would bring the calculated E1 transition in better agree-
ment with the experiment [6].
Finally, we study the photodisintegration of the 11Be g.s.

into nþ 10Be in Fig. 5. This is proportional to dipole
strength distribution dBðE1Þ=dE. In all approaches, a peak
of nonresonant nature (see Fig. 3) is present at about
800 keV above the nþ 10Be threshold, particularly pro-
nounced in the 3=2− partial wave. The strong peak for
the NCSMC with the N2LOSAT interaction is caused by
the slightly extended S-wave tail in Fig. 4 and hence the
underestimated binding energy of the 1=2þ state. The
theoretical predictions are compared to indirect measure-
ments of the photodissociation process extracted from the
scattering experiments of 11Be on lead [58–60] and carbon

TABLE I. Excitation spectrum of 11Be with respect to the
nþ 10Be threshold. Energies and widths are in MeV. The
calculations are carried out at Nmax ¼ 9.

NCSMC NCSMC-pheno

NN þ 3Nð400Þ N2LOSAT N2LOSAT Experiment

Jπ E Γ E Γ E Γ E Γ
1=2þ −0.001 % % % −0.40 % % % −0.50 % % % −0.50 % % %
1=2− −0.27 % % % −0.35 % % % −0.18 % % % −0.18 % % %
5=2þ 3.03 0.44 1.47 0.12 1.31 0.10 1.28 0.1
3=2−1 2.34 0.35 2.14 0.21 2.15 0.19 2.15 0.21
3=2þ 3.48 % % % 2.90 0.014 2.92 0.06 2.898 0.122
5=2− 3.43 0.001 2.25 0.0001 3.30 0.0002 3.3874 <0.008
3=2−2 5.52 0.20 6.62 0.29 5.72 0.19 3.45 0.01
9=2þ 7.44 2.30 5.42 0.80 5.59 0.62 % % % % % %

FIG. 4. Comparison of the cluster form factors with the
N2LOSAT interaction at Nmax ¼ 9. Note the coupling between
the 10Be target and neutron in the cluster state jΦJπT

ν;r i ∼
½ðj10Be∶Iπ11 T1ijn∶1=2þ1=2iÞsTYlðr̂Þ'J

πT .

TABLE II. Reduced transition probability BðE1∶1=2−→1=2þ)
between 11Be bound states in e2 fm2.

NCSM NCSMC NCSMC-pheno Experiment

NN þ 3Nð400Þ 0.0005 % % % 0.146
0.102(2) [6]

N2LOSAT 0.0005 0.127 0.117

FIG. 5. Dipole strength distribution dBðE1Þ=dE of the photo-
disintegration process as a function of the photon energy. Theo-
retical dipole strength distributions for two chiral interactions with
(solid line) and without (dashed line) the phenomenological energy
adjustment are compared to the experimental measurements at GSI
[58,61] (black dots) and RIKEN [58–60] (violet dots).
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2024-07-21

Responsible for 6Li production in BBN – 103 discrepancy between theory/observation

Deficiency in observation, theory, or new physics?

NCSMC calculation w/ chiral forces

Radiative capture S-factor
 Dominated by E2
 M1 significant at low energy
 E1 negligible (isospin supressed)

Thermonuclear reaction rate
 Smaller than NACRE II evaluation
 Agrees w/ LUNA; reduced 
 uncertainty

Radiative Capture Reaction: 4He(d,γ)6Li 
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Radiative capture of protons on 7Be

§ Solar pp chain reaction, solar 8B neutrinos
§ NCSMC calculations with a set of chiral NN+3N interactions 

as input
§ Radiative capture S-factor

§ Dominated by E1 non-resonant 
§ M1/E2 significant at 1+ and 3+ resonances

§ Correlations between results obtained by different chiral 
interactions and experimental data → evaluation of the 
S-factor at E=0 energy relevant for the solar physics

Recommended value S17(0) ~ 19.8(3) eV b

Latest evaluation in Rev. Mod. Phys. 83,195–245 (2011): 
S17(0) = 20.8 ± 0.7(expt) ± 1.4(theory) eV b 

7Be(p,γ)8B



33

Recently developed NCSMC capability – 
charge-exchange reaction calculations

§ The first published application - 7Li+p scattering and radiative capture
§ Wave function ansatzInput states from NCSM
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See talk by Peter Gysbers on Sunday
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§ Ab initio nuclear theory 
§ Makes connections between the low-energy QCD and many-nucleon systems

§ No-core shell model is an ab initio extension of the original nuclear shell model
§ Applicable to nuclear structure, reactions including those relevant for astrophysics, electroweak 

processes, tests of fundamental symmetries
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Thank you!
Merci!

Thanks to all my collaborators 
over the years!


