The Shell Structure of the Neutron-Rich Calcium Isotopes

Pieter Doornenbal

SM75, Argonne, July 19 – 21, 2024

Outline

- Motivation
 - Potential new magic numbers N = 32, 34, 40
 - Evolution of neutron single particle energies
- In-beam γ -ray and invariant-mass spectroscopy at the RIBF
 - DALI2⁺, MINOS, SAMURAI, NeuLAND/NEBULA
- Results
 - Detailed spectroscopy of ⁵⁴Ca from (p,pn) and (p,2p) reactions
 - First spectroscopy of ^{56,58}Ca from (p,2p) reactions
 - Neutron single particle states in ^{47–55}Ca
- Summary

Doubly Magic Nuclei in Lower Half of Nuclear Chart

- Red: double-LS magic nuclei
- Green: doubly magic nuclei with *j*-orbital filling
- Black lines: UNEDF1 functional cross 1 MeV separation energy
- Blue lines: *LS* magic number broken

B. Alex Brown, Physics 4, 525 (2022).

SM75, Argonne, July 19 - 21, 2024 - 3

Shell Evolution at N = 32, 34

- Reduced attractive interaction between $\pi f_{7/2}$ and $\nu f_{5/2}$
- Possible development of new sub-shell closures at N = 32 and N = 34
- A single proton in $\pi f_{7/2}$ destroys N = 34 magicity!

D. Steppenbeck *et al.*, Nature 502, 207 (2013). Prediction for N = 34 magic Number: T. Otsuka *et al.*, PRL 87, 082502 (2001).

Shell Structure of Neutron-Rich Calcium Isotopes

SM75, Argonne, July 19 – 21, 2024 – 4

Effective Neutron Single Particle Energies

- Calculations with A3DA-t and A3DA-m Hamiltonian
- Influence of $d_{5/2}$ and $g_{9/2}$? Is N = 40 magic?

• How "magic" are N = 32, 34 in ^{52,54}Ca?

• Ca: Closed proton shell \rightarrow Structure dominated by valence neutrons

Observations for Ca Isotopes

• Significant N = 32, 34 shell closures:

- Large $E(2_1^+)$: ⁵²Ca: A. Huck *et al.*, PRC 31, 2226 (1985). ⁵²Ca: A. Gade *et al.*, PRC 74, 021302 (2006). ⁵⁴Ca: D. Steppenbeck *et al.*, Nature 502, 207 (2013).
- Large shell gap Δ_{2n} : ⁵⁴Ca: F. Wienholtz *et al.*, Nature 498, 346 (2013). ^{55–57}Ca: S. Michimasa *et al.*, PRL 121, 022506 (2018).
- Small 0f_{5/2} occupation in g.s. of ⁵⁴Ca:
 S. Chen *et al.*, PRL 123, 142501 (2019).
- Large charge radii question N = 32 shell closure: ⁵²Ca: R.F. Garcia Ruiz *et al.*, Nature Physics 12, 596 (2016).
- First observation of ⁶⁰Ca:
 O. Tarasov *et al.*, PRL 121, 022501 (2018).

Experimental Setup

Shell Structure of Neutron-Rich Calcium Isotopes

SM75, Argonne, July 19 – 21, 2024 – 7

RIBF Overview

RIBF Overview

Shell Evolution And Search for Two-plus energies At RIBF (SEASTAR) with SAMURAI

Large acceptance spectrometer

- Simultaneous measurement of ^{51–58}Ca within single experiment
- Bound states with DALI2⁺, unbound states with NeuLAND and NEBULA

In-Beam Gamma-Ray Spectroscopy With a Liquid Hydrogen Target

SEASTAR III at SAMURAI Particle Identification

- ⁷⁰Zn primary beam, 345 MeV/nucleon, 240 pnA, 8 days
- Secondary beam at 240 MeV/nucleon, $\delta p/p = \pm 3\%$
- ONE unique setting
- Total beam intensity: 200 pps
- ⁵³K: 0.8 pps, ⁵⁷Sc: 13.6 pps, ⁵⁹Sc: 0.3 pps, ⁶³V: 3 pps

SEASTAR III at SAMURAI Particle Identification

- ⁷⁰Zn primary beam, 345 MeV/nucleon, 240 pnA, 8 days
- Secondary beam at 240 MeV/nucleon, $\delta p/p = \pm 3\%$
- ONE unique setting
- Total beam intensity: 200 pps
- ⁵³K: 0.8 pps, ⁵⁷Sc: 13.6 pps, ⁵⁹Sc: 0.3 pps, ⁶³V: 3 pps

Detailed Spectroscopy of ⁵⁴Ca

 55 Sc(p,2p) 54 Ca case:

First Spectroscopy of ⁵⁴Ca: D. Steppenbeck, S. Takeuchi *et al.*, Nature 502, 207 (2013). This work: F. Browne, S. Chen *et al.*, PRL 126, 252501 (2021). Theory: GXPF1Br interaction in full sd - pf - gds model space, DWIA for σ_{sp} and $P_{||}$

Shell Structure of Neutron-Rich Calcium Isotopes

SM75, Argonne, July 19 – 21, 2024 – 13

First Spectroscopy of ⁵⁴Ca: D. Steppenbeck, S. Takeuchi *et al.*, Nature 502, 207 (2013). This work: F. Browne, S. Chen *et al.*, PRL 126, 252501 (2021). Theory: GXPF1Br interaction in full sd - pf - gds model space, DWIA for σ_{sp} and $P_{||}$

Shell Structure of Neutron-Rich Calcium Isotopes

SM75, Argonne, July 19 - 21, 2024 - 13

⁵⁵Ca(p,pn)⁵⁴Ca case:

F. Browne, S. Chen *et al.*, to be published. Theory: GXPF1Br interaction in full sd - pf - gds model space, DWIA for σ_{sp} and $P_{||}$

F. Browne, S. Chen *et al.*, to be published. Theory: GXPF1Br interaction in full sd - pf - gds model space, DWIA for σ_{sp} and $P_{||}$

First Spectroscopy of ^{56,58}Ca

Shell Structure of Neutron-Rich Calcium Isotopes

SM75, Argonne, July 19 - 21, 2024 - 14

$E(2_1^+)$ **Predictions in N-Rich Calcium Isotopes**

Various theoretical predictions, signifying the importance of the Ca isotopes

No consensus for $E(2_1^+)$ at N = 36, 38 for 56,58 Ca

predictions between 0.5–2 MeV, flat trend

$E(2_1^+)$ in ^{56,58}Ca

- 13.6 particles/s for ⁵⁷Sc
- 0.3 particles/s for ⁵⁹Sc
 - $E(2_1^+)$ differ by ≈ 340 keV
- 5^{8} Ca at the limit of feasibility • S.L = 2.8 σ for $E(2^{+}_{1})$
- particle hole symmetry of $0f_{5/2}$
 - if N = 40 closed, constant energy expected (doubly)-magic ⁶⁰Ca disfavored

S. Chen, F. Browne et al., PLB 843 138025 (2023).

$E(2_1^+)$ **Predictions in N-Rich Calcium Isotopes**

Downward slope not reproduced by most theories

Usually N = 40 shell closure

Need to confirm $E(2_1^+)$ indication for ⁵⁸Ca, final proof by spectroscopy of ⁶⁰Ca

Shell Structure of Neutron-Rich Calcium Isotopes

SM75, Argonne, July 19 – 21, 2024 – 17

First Spectroscopy of 56,58 Ca

GXPF1Bs: Shell-model neutron *pf* shell

VS-IMSRG: Valence-space in-medium similarity renormalization group 1.8/2.0 (EM) interaction neutron pf shell

- CC: Coupled-cluster theory Two-particle removed/attached equation-of-motion (2PR/2PA-EOM)
- A3DA-t: Revision of A3DA-m interaction fitted to existing $E(2_1^+)$ and S_{2n} data Neutron $pf g_{9/2}d_{5/2}$ orbitals

First Spectroscopy of 56,58 Ca

- Predictions with A3DA-T Hamiltonian
 - Sensitivity of the neutron $0g_{9/2}$ SPE \rightarrow variation of up to ± 2 MeV
 - Positive shifts of $0g_{9/2}$ SPE $\rightarrow \text{low } E(2_1^+) \text{ and } S_{2n} \text{ of } {}^{56}\text{Ca}$ $\rightarrow \text{Doubly magic } {}^{60}\text{Ca}$
 - Negative shifts of $0g_{9/2}$ SPE \rightarrow quenching of N = 34 shell gap \rightarrow Contradiction with observation
 - No shift of $0g_{9/2}$ SPE
 - ightarrow No doubly magic 60 Ca
 - \rightarrow Positive S_{2n} up to ⁷⁰Ca

Structure of Neutron-Rich Odd Ca Isotopes

Bound Excited States in 49,51,53,55 Ca from **One-Neutron Knockout**

^{47,49}Ca: H. Crawford *et al.*, PRC 95, 064317 (2017). ⁵¹Ca: M. Enciu *et al.*, PRL 129, 262501 (2022). ⁵³Ca: S. Chen *et al.*, PRL 123, 142501 (2019). ⁵⁵Ca: T. Koiwai *et al.*, 827, 136953 (2022).

Very little fragmentation

С

d

0.6

04

3 2

E_{rel} (MeV)

3000

M₂ 4

₹ 100 200

_{ର୍ଯ୍ୟ 150}

100

0

2000

Energy (keV)

Unbound States in ^{53,55}Ca Following the ^{54,56}Ca(p,pn)^{53,55}Ca Reaction

Unbound States in ^{53,55}Ca Following the ^{54,56}Ca(p,pn)^{53,55}Ca Reaction

Spectroscopic Strengths Distribution Following ^{54,56}Ca(p,pn)^{53,55}Ca Reaction

- Theoretical predictions: nuclear structural model + DWIA framework
- SM using GXPF1Bs interaction
- VS-IMSRG employing chiral NN+3N: 1.8/2.0 (EM), N²LO
- Bound states in ⁵³Ca: S. Chen *et al.*, PRL 123, 142501 (2019).
- Bound states in ⁵⁵Ca: T. Koiwai, K. Wimmer *et al.*, PLB 827, 136953 (2022).

Shell Structure of Neutron-Rich Calcium Isotopes

SM75, Argonne, July 19 - 21, 2024 - 23

Experimental C^2S Distributions: Nickel vs. Calcium Isotopes

^{47,49}Ca: 1n-knockout, H.L. Crawford *et al.*, PRC 95, 064317 (2017).

- ⁵⁵Ni: (*p*, *d*), A. Sanetullaev *et al.*, PLB 736, 137 (2014).
- ^{57,59,61,63}Ni: (p, d) or (³He, α), J.P. Schiffer *et al.*, PRC 87, 034306 (2013).

Shell Structure of Neutron-Rich Calcium Isotopes

SM75, Argonne, July 19 - 21, 2024 - 24

Summary

Shell Structure of Neutron-Rich Calcium Isotopes

SM75, Argonne, July 19 – 21, 2024 – 25

Summary

- Ca isotopes ideal benchmark for nuclear structure and reaction theories
- Obtained comprehensive data set
 - Spectroscopy of ^{51–58}Ca
 - Many other isotopes
- N = 32, 34 magic numbers
 - N = 32, 34 shell closures as strong as N = 28
- Approaching ⁶⁰Ca
 - $E(2_1^+)$ in Ca isotopes challenge theory
- Single particle strengths
 - Very simple picture in Ca isotopes
 - No, or very little, fragmentation
 - Obtained complete picture for $0f_{7/2}$, $1p_{3/2}$, $1p_{1/2}$, and $0f_{5/2}$ SPE up to ⁵⁵Ca

Thank You!

Shell Structure of Neutron-Rich Calcium Isotopes

SM75, Argonne, July 19 – 21, 2024 – 27

Backup slides

Shell Structure of Neutron-Rich Calcium Isotopes

SM75, Argonne, July 19 - 21, 2024 - 28

$E(2_1^+)$ Systematics

MINOS Target and TPC

DALI2⁺ (Since 2017)

- 226 Nal(TI) detectors (60 detectors from HKU)
- \approx 36 % FEP efficiency, 9 % resolution (FWHM) for 1 MeV γ ray at 100 MeV/nucleon
- Experiments with solid targets and liquid hydrogen
- S. Takeuchi et al., NIMA 763, 596 (2014).

N = 34 gap "South" of ⁵⁴Ca ⁵³K(p,2p)⁵²Ar

• Largest $E(2_1^+)$ in Ar isotopes beyond N = 20

H. Liu, A. Obertelli et al., PRL 122, 072502 (2019).

N = 34 gap "South" of ⁵⁴Ca ⁵³K(p,2p)⁵²Ar

SDPF-MU (orig): Y. Utsuno *et al.*, PRC 86, 051301(R) (2012). SDPF-MU (mod): D. Steppenbeck *et al.*, PRL 114, 252501 (2015). VS-IMSRG: J.D. Holt, R.Stroberg *et al.* EOM-CCSDT-3: G. Hagen, T. D. Morris *et al.*

H. Liu, A. Obertelli et al., PRL 122, 072502 (2019).

N = 40 Structure towards ⁶⁰Ca: ⁶³V(p,2p)⁶²Ti

M.L. Cortés, W. Rodriguez et al., Phys. Lett. B 800, 135071 (2020).

N = 40 Structure towards ⁶⁰Ca: ⁶³V(p,2p)⁶²Ti

M.L. Cortés, W. Rodriguez et al., Phys. Lett. B 800, 135071 (2020).

Testing the Robustness of N = 34: Spectroscopy of ⁵³Ca from ⁵⁴Ca(p,pn)⁵³Ca

- $E_x = 2220 \text{ keV via } \beta \text{ decay.}$ F. Perrot *et al.*, PRC 74, 014313 (2006).
- ⁵³Ca not directly populated Be(⁵⁵Sc,⁵³Ca+γ)
 D. Steppenbeck *et al.*, Nature 502, 207 (2013).
- Use direct reaction ⁵⁴Ca(p,pn)⁵³Ca
 - Direct probe of g.s. wave function of ⁵⁴Ca
 - Cross sections \rightarrow SFs
 - Only one strong 2220 keV transition \rightarrow shell closure at N = 34

⁵⁴Ca(p,pn)⁵³Ca Momentum Distributions

DWIA: Y. Chazono, K. Ogata, K. Yoshida *et al.* S. Chen, J. Lee *et al.*, PRL 123, 142501 (2019).

⁵⁴Ca(p,pn)⁵³Ca Momentum Distributions

DWIA: Y. Chazono, K. Ogata, K. Yoshida *et al.* S. Chen, J. Lee *et al.*, PRL 123, 142501 (2019).

Spectroscopy of ⁵³Ca from the ⁵⁴Ca(p,pn)⁵³Ca Reaction

		Exp	DWIA	GXPF1Bs			<i>NN + 3N</i> (InI)		
J^{π}	-1 <i>n</i>	$\sigma_{\text{-1}n}(mb)$	$\sigma_{ m sp}({\sf mb})$	E _x (keV)	C^2S	$\sigma^{ ext{th}}_{ ext{-}1n}$	E _x (keV)	C^2S	$\sigma^{ ext{th}}_{ ext{-}1n}$
1/2⁻	$p_{1/2}$	15.9(17)	7.27	0	1.82	13.2	0	1.56	11.3
3/2⁻	$p_{3/2}$	19.1(12)	6.24	2061	3.55	22.2	2635	3.12	18.5
5/2⁻	$f_{5/2}$	1.0(3)	4.19	1934	0.19	0.8	1950	0.01	0.1
		36.0(12)				36.2			29.9
GXPF1Bs: T. Otsuka, Y. Utsuno et al.				DWIA: Y. Chazono, K. Ogata, K. Yoshida et al.					
	J ^π 1/2 ⁻ 3/2 ⁻ 5/2 ⁻ s: T. Ot	J^{π} -1 n $1/2^{-}$ $p_{1/2}$ $3/2^{-}$ $p_{3/2}$ $5/2^{-}$ $f_{5/2}$ s: T. Otsuka, Y.	Exp J^{π} $-1n$ σ_{-1n} (mb) $1/2^{-}$ $p_{1/2}$ 15.9(17) $3/2^{-}$ $p_{3/2}$ 19.1(12) $5/2^{-}$ $f_{5/2}$ 1.0(3) $36.0(12)$ 36.0(12)	J^{π} -1nExp σ_{-1n} (mb)DWIA σ_{sp} (mb) $1/2^{-}$ $p_{1/2}$ 15.9(17)7.27 $3/2^{-}$ $p_{3/2}$ 19.1(12)6.24 $5/2^{-}$ $f_{5/2}$ 1.0(3)4.1936.0(12)36.0(12)36.0(12)	J^{π} -1nExp σ_{-1n} (mb)DWIA σ_{sp} (mb)GX E_x (keV) $1/2^{-}$ $p_{1/2}$ 15.9(17)7.270 $3/2^{-}$ $p_{3/2}$ 19.1(12)6.242061 $5/2^{-}$ $f_{5/2}$ 1.0(3)4.19193436.0(12)36.0(12)DWIA: Y. C	J^{π} -1nExp σ_{-1n} (mb)DWIA σ_{sp} (mb)GXPF1Bs E_x (keV) C^2S $1/2^ p_{1/2}$ 15.9(17)7.2701.82 $3/2^ p_{3/2}$ 19.1(12)6.2420613.55 $5/2^ f_{5/2}$ 1.0(3)4.1919340.19s: T. Otsuka, Y. Utsuno <i>et al.</i> DWIA: Y. Chazono,	ExpDWIAGXPF1Bs J^{π} -1n σ_{-1n} (mb) σ_{sp} (mb) E_x (keV) C^2S σ_{th}^{th} $1/2^ p_{1/2}$ 15.9(17)7.2701.8213.2 $3/2^ p_{3/2}$ 19.1(12)6.2420613.5522.2 $5/2^ f_{5/2}$ 1.0(3)4.1919340.190.836.0(12)36.0(12)36.236.2	L_{π} L_{π} L_{π} L_{π} L_{π} L_{π} R_{π} <	J^{π} -1nExp σ_{-1n} (mb)DWIA σ_{sp} (mb)GXPF1Bs $NN + 3N$ (In E_x (keV) J^{π} -1n σ_{-1n} (mb) σ_{sp} (mb) E_x (keV) C^2S σ_{-1n}^{th} E_x (keV) C^2S $1/2^ p_{1/2}$ 15.9(17)7.2701.8213.201.56 $3/2^ p_{3/2}$ 19.1(12)6.2420613.5522.226353.12 $5/2^ f_{5/2}$ 1.0(3)4.1919340.190.819500.01 $36.0(12)$ DWIA: Y. Chazono, K. Ogata, K. Yoshida <i>et al.</i>

The ⁵²Ca(p,pn)⁵¹Ca Reaction: Extended $1p_{3/2}$ Orbital and the N = 32 Shell Closure

- J. Bonnard *et al.*, PRL 116, 212501 (2016): 0.7 fm size difference between $1p_{3/2}$ and $0f_{7/2}$
- Experimentally deduced 0.61(23) fm
- Level energies known from
 M. Rejmund *et al.* PRC 76, 021304(R) (2007)
- 0.6(3) mbarn cross section to state at 1720 keV

M. Enciu, H. Liu et al., PRL 129, 262501 (2022).