Deconstructing the "*g^A* puzzle" within the realistic shell model

Luigi Coraggio

Dipartimento di Matematica e Fisica - Universita della Campania "Luigi Vanvitelli" ` Istituto Nazionale di Fisica Nucleare - Sezione di Napoli

Celebrating 75 Years of the Nuclear Shell Model and Maria Goeppert-Mayer

July 20th 2024, Argonne National Laboratory

Luigi Coraggio 75th **Anniversary of the Shell Model Symposium**

Acknowledgements

- University of Campania and INFN Naples Unit
	- G. De Gregorio
	- A. Gargano
	- N. Itaco
	- L. C.
- **O** INFN Pisa Unit
	- M. Viviani
- **IPHC Strasbourg**
	- F. Nowacki
- **Peking University**
	- $-$ F. R. Xu.
	- Z. H. Chen
- **o** SCNU Guangzhou
	- Y. Z. Ma

The quenching of g*^A*

A major issue in the calculation of quantities related to spin-isospindependent transitions is the need to quench the axial coupling constant *g^A* by a factor *q* in order to reproduce the data.

The quenching of g*^A*

This is an important question when studying $0\nu\beta\beta$ decay, in fact the need of a quenching factor largely affects the value of the half-life $\, T_{1/2}^{0\nu} ,$ since the latter would be enlarged by a factor q^{-4}

O The inverse of the $0\nu\beta\beta$ -decay half-life is proportional to the squared nuclear matrix element *M*0^ν

$$
\left[T_{1/2}^{0\nu}\right]^{-1} = G^{0\nu} \left|M^{0\nu}\right|^2 \left|g_A^2 \frac{\langle m_\nu\rangle}{m_e}\right|^2
$$

 $M^{0\nu}$ links $\left\lceil T_{1/2}^{0\nu}\right\rceil^{-1}$ to the neutrino effective $\langle m_{\nu} \rangle = \mid \sum_{k} m_{k} U_{e k}^{2} \mid \text{ (light-neutrino)}$ exchange)

That is why experimentalists are deeply concerned about *q*, its value has a strong impact on the sensitivity of the experimental apparatus.

The quenching of g*^A*

The two main sources of the need of a quenching factor *q* may be identified as:

Truncation of the nuclear configurations

Nuclear models operate a cut of the nuclear degrees of freedom in order to diagonalize the nuclear Hamiltonian ⇒ effective Hamiltonians and decay operators must be considered to account for the neglected configurations in the nuclear wave function

Nucleon internal degrees of freedom

Nucleons are not point-like $particles \Rightarrow$ contributions to the free value of *g^A* come from two-body meson exchange currents:

The result in the limit that the momentum carried by the leptons vanishes, up to order

Figure 1. Diagrams for (a) leading-order Gamow-Teller decay *st*, (b) short-range two-body current, and *K. Shimizu, M. Ichimura, and A. Arima, Nucl. Phys. A* **226***, 282 (1974)*

(3) long-range two-body current. *I. S. Towner, Phys. Rep.* **155***, 263 (1987)*

The effective operators for decay amplitudes

- Ψ^α eigenstates of the full Hamiltonian *H* with eigenvalues *E*^α
- \bullet ϕ eigenvectors obtained diagonalizing H_{eff} in the model space *P* and corresponding to the same eigenvalues *E*^α

 $\Rightarrow |\Phi_{\alpha}\rangle = P |\Psi_{\alpha}\rangle$

Obviously, for any decay-operator Θ:

 $\langle \Phi_{\alpha}|\Theta|\Phi_{\beta}\rangle \neq \langle \Psi_{\alpha}|\Theta|\Psi_{\beta}\rangle$

We then require an effective operator Θ_{eff} defined as follows

 $\Theta_{\rm eff}=\sum\left|\Phi_{\alpha}\right\rangle \left\langle \Psi_{\alpha}\middle|\Theta\middle|\Psi_{\beta}\right\rangle \left\langle \Phi_{\beta}\right|$ $\alpha\beta$

Consequently, the matrix elements of Θ_{eff} are

$$
\langle \Phi_{\alpha} | \Theta_{\rm eff} | \Phi_{\beta} \rangle = \langle \Psi_{\alpha} | \Theta | \Psi_{\beta} \rangle
$$

This means that the parameters characterizing Θ_{eff} are renormalized with respect to $\Theta \Rightarrow g^{\rm eff}_A = q \cdot g_A \neq g_A$

Two-body meson exchange currents

A powerful approach to the derivation of two-body currents (2BC) is to resort to effective field theories (EFT) of quantum chromodynamics.

In such a way, both nuclear potentials and 2BC may be consistently constructed, since in the EFT approach they appear as subleading corrections to the one-body Gamow-Teller (GT) operator $\sigma\tau^{\pm}$.

β -decay in light nuclei

GT nuclear matrix elements of the β-decay of *p*-shell nuclei have been calculated with Green's function Monte Carlo (GFMC) and no-core shell model (NCSM) methods, including contributions from 2BC

S. Pastore et al., Phys. Rev. C **97** *022501(R) (2018)*

The contribution of 2BC improves systematically the agreement between theory and experiment

This release to distance and a state

P. Gysbers et al., Nat. Phys. **15** *428 (2019)*

Luigi Coraggio 75th **[Anniversary of the Shell Model Symposium](#page-0-0)**

Ab initio methods: β-decay in medium-mass nuclei

Coupled-cluster method CCM and in-medium SRG (IMRSG) calculations have recently performed to overcome the quenching problem *g^A* to reproduce β-decay observables in heavier systems *P. Gysbers et al., Nat. Phys.* **15** *428 (2019)*

In-Medium SRG

Coupled-Cluster Method

A proper treatment of nuclear correlations and consistency between GT two-body currents and 3N forces, derived in terms of ChPT, explains the "quenching puzzle"

The realistic shell model

The nucleons are subject to the action of a mean field, that takes into account most of the interaction of the nuclear constituents.

Only valence nucleons interact by way of a residual two-body potential, within a reduced model space.

- \bullet Advantage \rightarrow It is a microscopic and flexible model, the degrees of freedom of the valence nucleons are explicitly taken into account.
- \bullet Shortcoming \rightarrow High-degree computational complexity.
- We perform our calculations \bullet employing the KSHELL shell-model code

Our approach to the realistic shell model

Nuclear Hamiltonian: Entem-Machleidt N ³LO two-body potential plus N ²LO three-body potential $^{3}P_0$ $1S₀$ 0.8 erage c -c curve Lab. Energy (MeV) Lab. Energy (MeV 0.6 He c_{ry}-c_n curve $1P₄$ $3P_4$ 0.4 ⁴He Exp 0.2 -28.4 $\mathbb{S}^{\mathbb{R}}$ $.78$ -0.2 Lab. Energy (MeV) Lab. Energy (MeV) -0.4 $3S₄$ $3D₄$ -0.6 -0.8

- Axial current J_A calculated at N³LO in ChPT: LECs c_3 , c_4 , c_D are consistent with the 2NF and 3NF potentials
- H_{eff} calculated at 3rd order in perturbation theory
- Effective operators are consistently derived using MBPT

The effective shell-model Hamiltonian

We start from the many-body Hamiltonian *H* defined in the full Hilbert space:

$$
H = H_0 + H_1 = \sum_{i=1}^{A} (T_i + U_i) + \sum_{i < j} (V_{ij}^{NN} - U_i)
$$
\n
$$
\begin{pmatrix}\nPHP & PHQ \\
QHP & QHQ\n\end{pmatrix}\n\begin{array}{c}\nH = \Omega^{-1} H\Omega \\
\longrightarrow \\
QHP = 0\n\end{array}\n\begin{pmatrix}\nPHP & PHQ \\
O HQ\n\end{pmatrix}
$$

 $H_{\text{eff}} = P H P$

Suzuki & Lee
$$
\Rightarrow \Omega = e^{\omega}
$$
 with $\omega = \begin{pmatrix} 0 & 0 \\ \hline Q\omega P & 0 \end{pmatrix}$

$$
H_1^{\rm eff}(\omega) = PH_1P + PH_1Q \frac{1}{\epsilon - QHQ} QH_1P -
$$

 $-PH_1Q\frac{1}{\epsilon - QHQ}\omega H_1^{\text{eff}}(\omega)$

The perturbative approach to the shell-model $H^{\rm eff}$

Exact calculation of the \hat{Q} -box is computationally prohibitive for manybody system \Rightarrow we perform a perturbative expansion

$$
\frac{1}{\epsilon - QHQ} = \sum_{n=0}^{\infty} \frac{(QH_1Q)^n}{(\epsilon - QH_0Q)^{n+1}}
$$

Luigi Coraggio 75th **[Anniversary of the Shell Model Symposium](#page-0-0)**

0*f*1*p*-shell nuclei

Northern & Manufacture Rd

- Model space spanned by 4 proton and neutron orbitals 0*f*⁷/², 0*f*⁵/², 1*p*³/², 1*p*¹/²
- **Effects of induced 3-body** forces have been included
- Single-particle energies and residual two-body interaction are derived from the theory. No empirical input

Y. Z. Ma, L. C., L. De Angelis, T. Fukui, A. Gargano, N. Itaco, and F. R. Xu, Phys. Rev. C **100***, 034324 (2019)*

0*f*1*p*0*g*-shell nuclei

- Model space spanned by 4 proton and neutron orbitals 0*f*⁵/², 1*p*³/², 1*p*¹/², 0*g*⁹/²
- **•** Effects of induced 3-body forces have been included
- Single-particle energies and residual two-body interaction are derived from the theory. No empirical input

Designation of Advisories's ESS

L. C., N. Itaco, G. De Gregorio, A. Gargano, Z. H. Cheng, Y. Z. Ma, F. R. Xu, and M. Viviani, Phys. Rev. C **109***, 014301 (2024)*

The effective SM operators for decay amplitudes

Any shell-model effective operator may be derived consistently with the \hat{Q} -box-plus-folded-diagram approach to H_{eff}

It has been demonstrated that, for any bare operator Θ, a non-Hermitian effective operator Θ_{eff} can be written in the following form:

$$
\Theta_{\text{eff}} = (P + \hat{Q}_1 + \hat{Q}_1 \hat{Q}_1 + \hat{Q}_2 \hat{Q} + \hat{Q} \hat{Q}_2 + \cdots)(\chi_0 + \\ + \chi_1 + \chi_2 + \cdots),
$$

where

$$
\hat{Q}_m = \frac{1}{m!} \frac{d^m \hat{Q}(\epsilon)}{d\epsilon^m} \bigg|_{\epsilon = \epsilon_0} ,
$$

 ϵ_0 being the model-space eigenvalue of the unperturbed Hamiltonian H_0

K. Suzuki and R. Okamoto, Prog. Theor. Phys. **93** *, 905 (1995)*

The effective SM operators for decay amplitudes

The χ_n operators are defined in terms of the vertex function $\hat{\Theta}$ as:

$$
\chi_0 = (\hat{\Theta}_0 + h.c.) + \Theta_{00} ,
$$

\n
$$
\chi_1 = (\hat{\Theta}_1 \hat{Q} + h.c.) + (\hat{\Theta}_{01} \hat{Q} + h.c.) ,
$$

\n
$$
\chi_2 = (\hat{\Theta}_1 \hat{Q}_1 \hat{Q} + h.c.) + (\hat{\Theta}_2 \hat{Q} \hat{Q} + h.c.) +
$$

\n
$$
(\hat{\Theta}_{02} \hat{Q} \hat{Q} + h.c.) + \hat{Q} \hat{\Theta}_{11} \hat{Q} ,
$$

\n...

and

$$
\hat{\Theta}(\epsilon) = P\Theta P + P\Theta Q \frac{1}{\epsilon - QHQ} QH_1 P
$$

$$
\hat{\Theta}(\epsilon_1; \epsilon_2) = PH_1 Q \frac{1}{\epsilon_1 - QHQ} \times
$$

$$
Q\Theta Q \frac{1}{\epsilon_2 - QHQ} QH_1 P
$$

$$
\hat{\Theta}_m = \frac{1}{m!} \frac{d^m \hat{\Theta}(\epsilon)}{d\epsilon_1^m} \Big|_{\epsilon = \epsilon_0}
$$

$$
\hat{\Theta}_{nm} = \frac{1}{n!m!} \frac{d^n}{d\epsilon_1^n} \frac{d^m}{d\epsilon_2^m} \hat{\Theta}(\epsilon_1; \epsilon_2) \Big|_{\epsilon_{1,2} = \epsilon_0}
$$

The effective SM operators for decay amplitudes

The Θ -box is then calculated perturbatively, here are diagrams up to 2nd order of the effective decay operator Θ_{eff} expansion:

The axial current **J***^A*

The matrix elements of the axial current **J***^A* are derived through a chiral expansion up to N³LO, and employing the same LECs as in 2NF and 3NF

$$
\mathbf{J}_{A,\pm}^{\text{LO}} = -g_A \sum_i \sigma_i \tau_{i,\pm} ,
$$

$$
\mathbf{J}_{A,\pm}^{\text{N}^2\text{LO}} = \frac{g_A}{2m_N^2} \sum_i \mathbf{K}_i \times (\sigma_i \times \mathbf{K}_i) \tau_{i,\pm} ,
$$

$$
\mathsf{J}_{\mathsf{A},\pm}^{\mathrm{N}^3\mathrm{LO}}(\textrm{1PE};\mathbf{k}) = \sum_{i
$$
\mathsf{J}_{\mathsf{A},\pm}^{\mathrm{N}^3\mathrm{LO}}(\text{CT};\mathbf{k}) = \sum_{i
$$
$$

where

$$
z_0 = \frac{g_A}{2f_{\pi}^2 m_N} \left[\frac{m_N}{4g_a \Lambda_{\chi}} c_D + \frac{m_N}{3} (c_3 + 2c_4) + \frac{1}{6} \right].
$$

A. Baroni, L. Girlanda, S. Pastore, R. Schiavilla, and M. Viviani, Phys. Rev. C **93***, 015501 (2016)* INFN

Shell-model calculations and results

RSM calculations, starting from ChPT two- and three-body potentials and two-body meson-exchange currents for spectroscopic and spin-isospin dependent observables of ⁴⁸Ca, ⁷⁶Ge, ⁸²Se

 $↓$
Check RSM approach calculating GT strengths and 2νββ-decay

$$
\left[T_{1/2}^{2\nu}\right]^{-1} = G^{2\nu} \left|M_{\text{GT}}^{2\nu}\right|^2
$$
 where

$$
M_{2\nu}^{\text{GT}} = \sum_{n} \frac{\langle 0_{f}^{+} || \mathbf{J}_{A} || 1_{n}^{+} \rangle \langle 1_{n}^{+} || \mathbf{J}_{A} || 0_{f}^{+} \rangle}{E_{n} + E_{0}}
$$

IFŃ

0*f*1*p*-shell nuclei spectroscopic properties

$$
B(p, n) = \frac{|\langle \Phi_f || \sum J_A || \Phi_i \rangle|^2}{2J_i + 1}
$$

- (a) bare **J***^A* at LO in ChPT (namely the GT operator $g_A \sigma \cdot \tau$);
- (b) effective **J***^A* at LO in ChPT;
- (c) bare **J***^A* at N3LO in ChPT (namely includy 2BC contributions too);
- (d) effective **J***^A* at N3LO in ChPT.

Total GT[−] strength

(a) (b) (c) (d)
$$
Expt
$$

 $\sum B(GT^{-})$ 24.0 17.5 20.9 11.2 15.3 \pm 2.2

The impact of meson-exchange currents on the GT[−] matrix elements is $\approx 20\%$

GT matrix elements of 60 experimental decays of 43 0*f*1*p*-shell nuclei, only yrast states involved

$$
\sigma = \sqrt{\frac{\sum_{i=1}^{n}(x_i - \hat{x}_i)^2}{n}}
$$

- (a) bare **J***^A* at LO in ChPT (namely the GT operator $g_A \sigma \cdot \tau$);
- (b) effective **J***^A* at LO in ChPT;
- (c) bare **J***^A* at N3LO in ChPT (namely includy 2BC contributions too);

INFN

(d) effective **J***^A* at N3LO in ChPT.

²νββ nuclear matrix element *^M*²^ν ⁴⁸Ca→⁴⁸Ti

0*f*⁵/²1*p*0*g*⁹/²-shell nuclei spectroscopic properties

degli Studi
della Campania

Luigi Coraggio 75th **[Anniversary of the Shell Model Symposium](#page-0-0)**

INFN

$$
B(p, n) = \frac{|\langle \Phi_f || \sum J_A || \Phi_i \rangle|^2}{2J_i + 1}
$$

- (a) bare **J***^A* at LO in ChPT (namely the GT operator $g_A \sigma \cdot \tau$);
- (b) effective **J***^A* at LO in ChPT;
- (c) bare **J***^A* at N3LO in ChPT (namely includy 2BC contributions too);
- (d) effective **J***^A* at N3LO in ChPT.

Total GT[−] strength P *^B*(*GT* [−]) 15.8 10.8 12.8 7.4 [∼] (a) (b) (c) (d) $Expt$

The impact of meson-exchange currents on the GT[−] matrix elements is $\approx 18\%$

$$
B(p, n) = \frac{|\langle \Phi_f || \sum J_A || \Phi_i \rangle|^2}{2J_i + 1}
$$

- (a) bare **J***^A* at LO in ChPT (namely the GT operator $g_A \sigma \cdot \tau$);
- (b) effective **J***^A* at LO in ChPT;
- (c) bare **J***^A* at N3LO in ChPT (namely includy 2BC contributions too);
- (d) effective **J***^A* at N3LO in ChPT.

Total GT[−] strength $\sum B(GT)$ (a) (b) (c) (d) $Expt$ *^B*(*GT* [−]) 19.0 11.4 14.9 7.5 [∼]

The impact of meson-exchange currents on the GT⁻ matrix elements is $\approx 20\%$

²νββ nuclear matrix element *^M*²^ν ⁷⁶Ge→⁷⁶Se *J* π $\begin{array}{c} J^{\pi}_l \rightarrow J^{\pi}_f \ \hline 0^+_1 \rightarrow 0^+_1 \ \hline 0^+_1 \rightarrow 2^+_1 \ \hline 0^+_1 \rightarrow 0^+_2 \end{array}$ π (a) (b) (c) (d) Expt 0.211 0.153 0.160 0.118 0.129 ± 0.004
 0.023 0.042 0.025 0.048 ≤ 0.035 0.023 0.042 0.025 0.048 ≤ 0.035
 0.009 0.086 0.016 0.063 ≤ 0.089 ≤ 0.089 ²νββ nuclear matrix element *^M*²^ν ⁸²Se→⁸²Kr *J* π $\begin{array}{c} J^{\pi}_i \rightarrow J^{\pi}_f \ \hline 0^+_1 \rightarrow 0^+_1 \ \hline 0^+_1 \rightarrow 2^+_1 \ \hline 0^+_1 \rightarrow 0^+_2 \end{array}$ π (a) (b) (c) (d) Expt 0.173 0.123 0.136 0.095 0.103 ± 0.001
 0.003 0.006 0.008 0.033 < 0.020 0.003 0.006 0.008 0.033 ≤ 0.020
0.018 0.007 0.013 0.007 ≤ 0.052 < 0.052

L. C., N. Itaco, G. De Gregorio, A. Gargano, Z. H. Cheng, Y. Z. Ma, F. R. Xu, and M. Viviani, Phys. Rev. C **109***, 014301 (2024)*

Conclusions and Outlook

- The role of many-body correlations prevails on the meson-exchange currents for the renormalization of GT operator, the latter contribute $\approx 20\%$
- The explanation of the "quenching puzzle" can be achieved by focusing theoretical efforts on two main goals:
	- a) improving our knowledge of nuclear forces and exchange currents;
	- b) deriving effective Hamiltonians and decay operators from many-body theory.
- We plan to expand soon our study by:
	- including meson-exchange two-body currents for the *M*1 transitions;
	- performing calculations for heavier-mass systems (¹⁰⁰Mo, 130 Te, 136 Xe)
	- calculating 0νββ decay *M*⁰^ν including also the LO contact term.

Backup slides

Perturbative properties

Luigi Coraggio 75th **[Anniversary of the Shell Model Symposium](#page-0-0)**

J=7/2- J=3/2- J=1/2- J=5/2-

Shell-evolution properties

Induced three-body forces

For many-valence nucleon systems $(≥ 3)$ *H*_{eff} has to include the induced many-body components

Namely, at least three-body diagrams needs to be included in the perturbative expansion of the vertex function \hat{O} box

Shell model codes, at present, cannot manage three-body components of the shell-model Hamiltonian in large model spaces

We then resort to normal-ordering approximation, this means that TBME are different for each nuclear system

Continues of Motorcylin a Rid

LC, L. De Angelis, T. Fukui, A. Gargano, N. Itaco, and F. Nowacki, Phys. Rev. C **100***, 014316 (2019).*

Distribution of Materiality of Ride della Campan

INFŃ , and the contract of $\left(\mathbf{m} \right)$

 $2J_i + 1$

 $B(p, n) =$

degli Studi
della Campania Leiri Farcúsló

Luigi Coraggio 75th **[Anniversary of the Shell Model Symposium](#page-0-0)**

Red symbols: bare GT operator

LC, L. De Angelis, T. Fukui, A. Gargano, N. Itaco, and F. Nowacki, Phys. Rev. C **100***, 014316 (2019).*

Red symbols: bare GT operator Black symbols: effective GT operator

Experimental data from *Thies et al, Phys. Rev. C* **86***, 044309 (2012); A. S. Barabash, Universe* **6***, (2020)*

